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Abstract The evolutionary strategies that emerge within populations can be dictated
by numerous factors, including interactions with other species. In this paper, we
explore the consequences of such a scenario using a host–parasite system of human
concern. By analyzing the dynamical behaviors of a mathematical model we inves-
tigate the evolutionary outcomes resulting from interactions between Schistosoma
mansoni and its snail and human hosts. The model includes two types of snail hosts
representing resident and mutant types. Using this approach, we focus on establish-
ing evolutionary stable strategies under conditions where snail hosts express different
life-histories and when drug treatment is applied to an age-structured population of
human hosts. Results from this work demonstrate that the evolutionary trajectories
of host–parasite interactions can be varied, and at times, counter-intuitive, based on
parasite virulence, host resistance, and drug treatment.
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1 Introduction

Studying particular host–parasite interactions can often provide valuable insights into
general patterns of disease establishment and persistence in natural systems. Address-
ing these systems using mathematical models not only provides us with information
about the importance of particular disease parameters, but also allows us to follow the
outcomes of such interactions over evolutionary time. Currently, most coevolution-
ary models of host–parasite interactions involve microparasites with direct life cycles
(e.g., Anderson and May 1982, 1991; Boots and Bowers 1999; Boots and Haraguchi
1999; Bowers et al. 1994; Frank 1992; May and Anderson 1983; May and Nowak
1995; Miller et al. 2005; Nowak and May 1994). There have been few theoretical
studies investigating host–parasite coevolution using indirectly transmitted parasites
(e.g., Dobson 1988; Dobson and Keymer 1985). Indirect life cycles involve multiple
species of hosts (definitive and intermediate), all of which are required for the parasite
to complete its development from larvae to an adult. Variable selective forces imposed
by different host species (or strains) can have important consequences for parasite
fitness at a number of points throughout the life cycle (see Davies et al. 2001; Gower
and Webster 2004, 2005).

Empirical work has demonstrated that parasites may face different host strategies
for mitigating or preventing infection at different points in the life cycle (Minchella
1985). In some cases, hosts may actively resist parasite attack by altering morpholog-
ical, physiological, or immunological factors (Sandland and Minchella 2003a). How-
ever, these strategies can be costly and often result in trade-offs with other host fitness
parameters such as growth, reproduction, and survival (Beck et al. 1984; Boots and
Bowers 1999; Bowers et al. 1994; Sandland and Minchella 2003b). Alternatively, hosts
may express strategies that allow parasite infection, but reduce fitness costs associated
with invasion through reproductive enhancement (termed “fecundity compensation”)
(Minchella and Loverde 1981; Sandland and Minchella 2004) or suppression of resis-
tance responses which themselves can cause host damage and pathogenicity (termed
“tolerance”). Recently, a study by Miller et al. (2005) investigated the evolutionary
consequences of hosts employing two different strategies in the face of infection:
control, in which hosts reduced infection pathogenicity by actively reducing para-
site replication rates, and tolerance, where hosts accommodated infection but did not
reduce pathogen replication rates. Differences in the strategies exhibited by different
species or strains of host, can significantly influence parasite evolution (Zhang et al.
2007b). Although this scenario is of great interest from an evolutionary standpoint, it
is challenging mathematically.

The study presented in this paper investigates the evolutionary outcomes of inter-
actions between a complex life-cycle parasite (S. mansoni) and its hosts (humans
and snails). Schistosomes are dioecious helminth parasites with indirect life cycles.
Although several species of parasite compose the genus Schistosoma, we focus on
Schistosoma mansoni, a parasite of great human concern as it causes morbidity and
mortality in over 200 million people worldwide (CDC—Schistosomiasis Fact Sheet
2011; Chitsulo et al. 2000). S. mansoni uses snails along with humans to complete
its life cycle. Adult (female) worms within human hosts produce eggs, which, hatch
into miracidia when they come in contact with water. These larvae (miracidia) can
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human snail

miracidia

cercariae

Fig. 1 A diagram showing the schistosome life cycle (CDC—Schistosomiasis Biology 2011). The parasite
uses both the human (definitive) host and the snail (intermediate) host to complete its development

then infect snails. After 5 weeks, parasites (cercariae) are released from snails and are
infective to human hosts (see Fig. 1).

Schistosome infections of humans are often controlled through chemotherapy using
praziquantel (PZQ), a chemical that reduces human morbidity by killing adult worms
and diminishing the egg deposition within treated human hosts. Current evidence sup-
ports the view that selection for resistance to PZQ may be occurring in schistosome
populations and natural schistosome strains exhibit varying resistance to treatment with
PZQ (Cioli 2000; Fallon et al. 1997; Ismail et al. 1999). Due to the age-dependence in
schistosome infections in humans, various age-targeted treatment strategies have been
adopted in different populations, and mathematical models have been used to assess
the cost-effectiveness of the disease control programs (Chan et al. 1995; Zhang et al.
2007a).

Our model considered in this paper includes explicitly both the definitive human
host and the intermediate snail host. An age-structure is used for the human popula-
tion to take into account the age-dependent rates of infection and drug treatment. To
study the evolution of resistance to infection in the snail population, we consider two
types of snail hosts, one being more susceptible (sensitive to infection) and the other
one being more resistant to parasite infection. The parasite populations at the free-
living stages are modeled implicitly through the adult parasites and infected snails.
The model consists of a system of differential and integral equations. By conducting
stability analyses of the system we obtain threshold conditions, which are then used to
derive criteria for invasion by different host types. To study the evolution of parasite-
resistance in the snail host, we adopt the approach of using pairwise-invasibility plots
(PIP) (Geritz et al. 1997, 1998; Metz et al. 1996) to explore the evolutionary stable
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strategy (ESS). Several trade-off relationships between model parameters are consid-
ered based on biological evidence. Our model results help provide valuable insights
into this biological system. For example, the results can be used to determine how the
evolutionary outcomes of the system may depend on biological factors including the
shapes of the trade-off functions, the age-dependent rates of infection and drug treat-
ment in the human host, the level of drug-resistance of the parasite, and the prevalence
of infection (see Sect. 4).

2 The model

Let n(t, a) denote the density function of human hosts of age a at time t , and let
p(t, a) denote the density function of parasites carried by human hosts of age a at
time t . Based on the models in Anderson and May (1978), Dobson (1988), Hadeler
(1984), Hadeler and Dietz (1983), and Zhang et al. (2007a), the equations for n(t, a)

and p(t, a) take the forms (a derivation of these equations is given in the Appendix):

∂

∂t
n(t, a) + ∂

∂a
n(t, a) = −μh(a)n(t, a),

∂

∂t
p(t, a)+ ∂

∂a
p(t, a)=β(a)n(t, a)C(t)−(

μh(a)+μp+ f (σ (a))
)

p(t, a), (1)

n(t, 0) = �h, n(0, a) = n0(a), p(t, 0) = 0, p(0, a) = p0(a).

The parameters μh(a) and μp denote the per capita natural death rates of human
hosts of age a and the adult parasites within human hosts, respectively; f (σ (a)) is
the age-dependent killing rate of parasites due to effective drug treatment strategy
σ(a) for humans; β(a) is the per capita infection rate of human hosts by cercariae.
C(t) is the density of free-swimming cercariae released by infected snail hosts, whose
form will be specified later. The boundary conditions are n(t, 0) = �h (birth rate of
human hosts) and p(t, 0) = 0 (humans are born uninfected), and initial conditions
are n(0, a) = n0(a) and p(0, a) = p0(a) for given bounded functions with compact
supports. Note that in the n(t, a) equation in (1) the parasite-induced death rate has
been ignored. This is because the disease mortality in humans is low and the main
focus of this study is on the evolution of parasite-resistance in the snail host.

For the snail population, we consider two types of snail hosts based on their sus-
ceptibility to infection by the parasite with type 1 being more susceptible and type 2
being more resistant. Each type of the snail populations is divided into two sub-classes:
uninfected (Sk, k = 1, 2) and infected (Ik, k = 1, 2). Following the model structure
in Zhang et al. (2007a) (the model there includes only a single type of snail host),
the disease dynamics of the snail population is described by the following ordinary
differential equations:

d

dt
Sk(t) = b1k Sk(t)

b2k + ∑
i=1,2 [Si (t) + Ii (t)]

− ρk M(t)Sk(t) − μs Sk(t),

d

dt
Ik(t) = ρk M(t)Sk(t) − (μs + δk)Ik(t), k = 1, 2.

(2)
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The density-dependent growth rate

b1k Sk(t)

b2k + ∑
i=1,2 [Si (t) + Ii (t)]

(3)

corresponds to the competition between the snails for limited resources. More detailed
explanations of this form of density dependence can be found in Rueffler and Schreiber
(2005). In a comprehensive review of snail–trematode interactions, Sorensen and
Minchella (2001) concluded that trematode infection reduces or completely inhib-
its snail reproductive activity (see also Meuleman 1972; Pan 1965; Sandland and
Minchella 2003b). In the case of the interaction between S. mansoni and B. glabrata,
host sterilization has been well documented (see Gerard and Theron 1997) and contin-
ues throughout the life time of the snail (see Gerard and Theron 1997; Sorensen and
Minchella 2001). Based on these studies, we also assumed in (3) that only uninfected
susceptible snails reproduce.

The parameters b1k and b2k(k = 1, 2) are the saturation and scaling constants,
respectively, for the type k host. For simplicity the two scaling constants b21 and b22
are set to be the same. In (2), ρk is the per capita infection rate of type k uninfected snail
host; μs and δk are the per capita natural death rate of the snail hosts and the per capita
disease-induced death rate of infected snail hosts of type k(k = 1, 2) respectively; and
M(t) is the density of the free-living miracidia produced by the adult parasites within
the human hosts.

Since miracidia and cercariae die quickly if they cannot find a host to infect (Feng
et al. 2004), we assume that M(t) is proportional to the number of adult parasites, i.e.,

M(t) = γ

∞∫

0

p(t, a)da

with γ being the per capita effective egg-production rate of adult female parasites, and
that C(t) is proportional to the infected snail hosts, i.e.,

C(t) =
∑

k=1,2

ck Ik(t)

with ck being the rate at which a type k infected snail host releases cercariae.
Combining the systems (1) and (2) we arrive at the following model:

∂

∂t
n(t, a) + ∂

∂a
n(t, a) = −μh(a)n(t, a),

∂

∂t
p(t, a) + ∂

∂a
p(t, a) = β(a)n(t, a)C(t) − (

μh(a) + μp + f (σ (a))
)

p(t, a),

d

dt
Sk(t) = b1k Sk(t)

b2k + ∑
i=1,2 [Si (t) + Ii (t)]

− ρk M(t)Sk(t) − μs Sk(t), (4)

d

dt
Ik(t) = ρk M(t)Sk(t) − (μs + δk)Ik(t), k = 1, 2,
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Table 1 Definition of parameters used in the model (4)

Symbol Definition

μh(a) Per capita natural death rate of human hosts of age a

σ(a) Effective drug-treatment rate of human hosts of age a

θ Drug-resistance level of adult parasite within human hosts

�h Birth rate of human hosts

β(a) Per capita infection rate of human hosts by free-living cercariae

γ Per capita effective egg-production rate of adult parasites

b1k Saturation constant for the growth rate of snails

b2k Scaling constant for the growth rate of snails

ρk Per capita infection rate of type k susceptible snail hosts

ck Cercaria releasing rate of an infected snail hosts of type k

μs Per capita natural death rate of snail hosts

μp Per capita natural death rate of adult parasites

δk Per capita disease-induced death rate of infected snail hosts of type k

k = 1, 2

C(t) =
∑

k=1,2

ck Ik(t), M(t) = γ

∞∫

0

p(t, a)da,

n(t, 0) = �h, n(0, a) = n0(a), p(t, 0) = 0, p(0, a) = p0(a).

All parameters used in the model (4) are listed in Table 1.

3 Mathematical properties of the system (4)

In this section, we study the dynamical behaviors of the system (4) by analyzing the
mathematical properties of the system, including the existence and stability of biolog-
ically feasible equilibrium points and possible bifurcations. Using a similar approach
as in Zhang et al. (2007a) we can show that solutions of the system (4) are defined for
all t ≥ 0 and will remain nonnegative and bounded for all time.

Since the n(t, a) equation in the system (4) is independent of other variables, we
can solve it by integrating the equation along the characteristic lines:

n(t, a) =
{

�hπh(a), t ≥ a,

n0(a − t) πh(a)
πh(a−t) , t < a,

(5)

where n0(a) is a given function and

πh(a) = e− ∫ a
0 μh(w)dw (6)
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represents the survival probability of a definitive host of age a. Substituting the solution
(5) for n(t, a) in the p(t, a) equation in (4), and integrating the equation we get

p(t, a) =
{

p1(t, a), t ≥ a,

p2(t, a), t < a
(7)

with

p1(t, a) = �h

a∫

0

β(w)C(t + w − a)πh(w)
πσ (a)

πσ (w)
dw,

p2(t, a)= p0(a−t)
πσ (a)

πσ (a − t)
+

a∫

a−t

β(w)C(t + w−a)n0(a−t)
πσ (a)

πσ (w)

πh(w)

πh(a−t)
dw,

where

πσ (a) = e− ∫ a
0 [μh(w)+μp+ f (σ (w))]dw (8)

represents the survival probability of an adult parasite in a definitive host of age a.
Our approach is to replace the partial differential equations in (4) by integral equa-

tions and then analyze the limiting system as t → ∞ of the resulting equations. For
this purpose, we rewrite the function M(t) as

M(t) = γ

∞∫

0

p(t, a)da = γ

t∫

0

p1(t, a)da + γ

∞∫

t

p2(t, a)da.

Notice that the solutions of the system (4) are bounded. Thus, the last integral in
the above expression goes to zero as t → ∞. Let M̃(t) be the limiting function of
M(t), i.e.,

M̃(t) = γ

∞∫

0

p1(t, a)da.

Then, by changing the orders of integrations we obtain

M̃(t) = γ

∞∫

0

p1(t, a)da

= γ

∞∫

0

�h

a∫

0

β(w)C(t + w − a)πh(w)πσ (a)π−1
σ (w)dwda
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= γ�h

∞∫

0

∞∫

w

β(w)C(t + w − a)πh(w)πσ (a)π−1
σ (w)dadw

= γ�h

∞∫

0

∞∫

0

β(w)C(t − τ)πh(w)πσ (w + τ)π−1
σ (w)dτdw

= γ�h

∞∫

0

C(t − τ)

∞∫

0

β(w)πh(w)πσ (w + τ)π−1
σ (w)dwdτ

=
∑

k=1,2

ck

∞∫

0

Ik(t − τ)Rh(τ )dτ,

where

Rh(τ ) = γ�h

∞∫

0

β(w)πh(w)πσ (w + τ)π−1
σ (w)dw. (9)

Substituting M̃(t) for M(t) in the Sk and Ik equations in system (4), we get the fol-
lowing limiting system for Sk and Ik , which are independent of the variables n(t, a)

and p(t, a):

d

dt
Sk(t) = b1k Sk(t)

b2k + ∑
i=1,2(Si (t) + Ii (t))

− ρk M̃(t)Sk(t) − μs Sk(t),

d

dt
Ik(t) = ρk M̃(t)Sk(t) − (μs + δk)Ik(t), k = 1, 2, (10)

M̃(t) =
∑

k=1,2

ck

∞∫

0

Ik(t − a)Rh(a)da.

From (5), (7), and C(t) = ∑
k=1,2 ck Ik(t) we know that as t → ∞,

n(t, a) → �hπh(a),

p(t, a) → �h

a∫

0

β(w)

⎡

⎣
∑

k=1,2

ck Ik(t + w − a)

⎤

⎦πh(w)
πσ (a)

πσ (w)
dw,

where πh(a) and πσ (a) are given in (6) and (8). Thus, the asymptotic behaviors of
n(t, a) and p(t, a) can be determined once the behaviors of Ik(t) (k = 1, 2) are known.
Since the qualitative behaviors of the system (4) can be captured by its limiting system
as t → ∞, we will focus in the following subsections on the analysis of the limiting
system (10).
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3.1 The reduced system with a single type of snail host

System (10) consists of four nonlinear integral-differential equations. It is rather chal-
lenging to analyze the qualitative behaviors directly, especially for the existence and
stability of a coexistence equilibrium (where all variables are positive). We adopt the
approach of considering first the qualitative behaviors of the boundary equilibrium
points of the system (10), at which only one type of snail hosts exists (both uninfected
and infected snails are present). We then use these results to gain information about a
coexistence equilibrium, as well as questions related to invasion and evolution.

In the case when only one type (type 1 or 2) snail host is present, the system (10)
reduces to

d

dt
Sk(t) = b1k Sk(t)

b2k + Sk(t) + Ik(t)
− ρk M̃k(t)Sk(t) − μs Sk(t),

d

dt
Ik(t) = ρk M̃k(t)Sk(t) − (μs + δk)Ik(t), (11)

M̃k(t) = ck

∞∫

0

Ik(t − a)Rh(a)da, k = 1 or 2.

Notice that the only difference between the systems (10) and (11) is between M̃(t)
(which is a sum of two terms) and M̃k(t) (which has a single term). Due to the math-
ematical symmetry between the two types of snail hosts, the analysis of system (11)
for k = 1 and for k = 2 will be identical. Consider the order of variables of the system
(11) to be (Sk, Ik). Since the carrying capacity of the type k snail host in the absence
of infection is b1k

μs
− b2k , we need to assume that

b1k

μs
− b2k > 0, k = 1, 2 (12)

so that the snail population size is positive in the absence of infection. The system
(11) always has the parasite-free equilibrium Ek0 = (Sk0, 0) = (b1k/μs − b2k, 0).

Let Ēk = (S̄k, Īk) denote an equilibrium of the system (11). Then Ēk satisfies the
equations

b1k S̄k

b2k + S̄k + Īk
− ρkckRh Īk S̄k − μs S̄k = 0, (13)

ρkckRh Īk S̄k − (μs + δk) Īk = 0, (14)

where

Rh =
∞∫

0

Rh(τ )dτ
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and Rh(τ ) is given in (9). We can show that the existence of an interior equilibrium
(i.e., all components are positive) depends on the parasite reproduction number �k

within the type k snail host, which is defined as

�k = ρkckRh

μs + δk

(
b1k

μs
− b2k

)
. (15)

Notice from the expression of Rh(τ ) (see (9)) that

β(w)�hπh(w)

represents the average number of adult parasites within human hosts of age w produced
by one cercariae, and

πσ (w + τ)π−1
σ (w)

is the survival probability of an adult parasite in a human host of age w + τ who was
infected τ time units ago while at age w (i.e., τ is the infection age of a human host of
age w + τ ). Thus, the quantity

∞∫

0

β(w)�hπh(w)πσ (w + τ)π−1
σ (w)dw

gives the total number of adult parasites within human hosts with infection age τ pro-
duced by one cercariae, and Rh(τ ) gives the total number of miracidia produced by
adult parasites within human hosts due to one cercariae. Finally, from the definitions
of ρk (per capita infection rate of snails of type k), ck (cercaria releasing rate by one
infected snail of type k), μs + δk (1/(μs + δk) is the duration of infection of a snail
of type k), and b1k/μs − b2k (size of snails of type k in a susceptible population),
we know that �k represents the total number of secondary cercaria produced by one
cercariae. That is, �k indeed is the parasite’s reproduction number associated with the
type k snail hosts.

Let E∗
k = (S∗

k , I ∗
k ) denote an interior equilibrium of the system (11). From (13)

and (14), we have

S∗
k = μs + δk

ρkckRh
= 1

�k

(
b1k

μs
− b2k

)
, (16)

and I ∗
k satisfies the equation

b1k
b2k+S∗

k +I ∗
k

− ρkckRh I ∗
k − μs = 0. (17)

Equation (17) can be rewritten as

F(I ∗
k ) = 0, (18)
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where F(x) is a quadratic function defined by

F(x) = ρkckRh x2 + [
ρkckRh(b2k + S∗

k ) + μs
]

x + μs(b2k + S∗
k ) − b1k,

and S∗
k is given in (16). Notice that

F(0) = μs(b2k + S∗
k ) − b1k

= μs

(
b2k + μs + δk

ρkckRh

)
− b1k

= μs(μs + δk)

ρkckRh

[
1 − ρkckRh

μs + δk

(
b1k

μs
− b2k

)]

= μs(μs + δk)

ρkckRh
(1 − �k).

Clearly, F(0) < 0 (> 0) when �k > 1 (< 1). Notice also that F(x) has a minimum at

xmin = −ρkckRh(b2k + S∗
k ) + μs

2ρkckRh
< 0.

This implies that the equation F(x) = 0 has a unique positive solution for �k > 1
and no positive solution for �k < 1. Thus, we have the following result:

Result 1 There is a unique interior equilibrium E∗
k when �k > 1, and E∗

k does not
exist when �k < 1.

The next result shows that the reproduction number �k and the threshold value
�k = 1 also determine the stabilities of the equilibrium points Ek0 and E∗

k of the
system (11).

Result 2 Assume that the condition (12) holds.

(a) The parasite-free equilibrium Ek0 =
(

b1k
μs

− b2k, 0
)

is locally asymptotically

stable if �k < 1, and it is unstable if �k > 1.
(b) When �k > 1, there exists a threshold value b1k = b̃1k (with all other parameters

being fixed), such that the unique endemic equilibrium E∗
k = (S∗

k , I ∗
k ) determined

in Result 1 is locally asymptotically stable if b1k < b̃1k .

Moreover, numerical simulations show that a Hopf bifurcation may occur at some
critical point b1k = b∗

1k > b̃1k , leading to the appearance of stable periodic solutions.

The analytic proofs for Part (a) and Part (b) of Result 2 are provided in the Appen-
dix. The existence of a Hopf bifurcation and the threshold point b∗

1k is confirmed via
numerical simulations. This is illustrated in Fig. 2, which shows numerical solutions of
the fraction Ik (t)

Sk (t)+Ik (t)
for two values of b1k below or above b∗

1k (k = 1 or 2). The solu-
tion converges to the equilibrium E∗

k when b1k < b∗
1k (see (a)), and a stable periodic

solution exists for b1k > b∗
1k (see (b)). Other parameter values used in the simula-

tions are: �h = 8, μh = 0.014, μs = 0.5, δk = 1.8, μp = 0.2, β0 = 2 × 10−5, ρk =
10−4, γ0 = 3, b2k = 600 and ck = 20,000 (k = 1, 2). The time unit is year. Most of the
values are from Feng et al. (2004), and the definitions of β0 and γ0 are given in Sect. 4.1.
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Fig. 2 Time plots of the fraction of infected snail hosts Ik (t)
Sk (t)+Ik (t) for the reduced system (11) with a

single type of snail host (k = 1 or 2). The plot in a is for the case when the parameter values are chosen
such that �k > 1 and b1k = 330 < b∗

1k . It shows that the equilibrium E∗
k is stable. The plot in b is for

the case when �k > 1 and b1k = 450 > b∗
1k . It shows that a stable periodic orbit exists. Other parameter

values are given in the text

3.2 Analysis of the model with both types of snail hosts

In this section, we study the dynamics of the full system (10) in which both types of
snail hosts are included. As we have mentioned earlier, an interior equilibrium of the
reduced system (11) corresponds to a boundary equilibrium of the full system (10).
Again, we omit the extreme case when both snail populations are absent. Using the
order of variables U = (S1, I1, S2, I2) and from the results in Sect. 3.1, we know that
the system (10) has the following non-trivial boundary equilibrium points:

U10 =
(

b11
μs

− b21, 0, 0, 0
)
, U02 = (0, 0, b12

μs
− b22, 0),

U∗
1 = (S∗

1 , I ∗
1 , 0, 0), U∗

2 = (0, 0, S∗
2 , I ∗

2 ),

where S∗
k and I ∗

k are determined in Sect. 3.1 (see (16)–(18)). The subscript “10” in U10
represents the equilibrium at which only type 1 snail host is present and there is no
infection. Similarly, the subscript “02” in U02 represents the equilibrium with type 2
snail host only and without infection. The system (10) may also have other boundary
equilibria. However, for the biological questions we are interested in, we will only
consider the ones listed above.

An interior equilibrium of system (10), denoted by U� = (S�
1 , I �

1 , S�
2 , I �

2 ) with all
components positive, satisfies the following system of four equations

b1k Sk
�

b2k + ∑
i=1,2(Si

� + Ii
�)

− ρk M�S�
k − μs Sk

� = 0,

ρk M�Sk
� − (μs + δk)Ik

� = 0, k = 1, 2,

where M� = ∑
i=1,2 ci Ii

�Rh . It is very difficult to solve analytically the above system
for U�. This is the main reason that we will study questions related to the coexistence
equilibria via numerical simulations.
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It turns out that a degenerate case occurs (i.e., the characteristic equation at the
parasite-free equilibrium U10 or U02 has a zero eigenvalue) when the two types of
snail hosts have the same carrying capacity, i.e., when

b11

μs
− b21 = b12

μs
− b22.

Thus, when discussing the stability of U10 or U02, we assume that the two carrying
capacities are not equal. Without loss of generality, assume that the type 1 snail host
has a higher carrying capacity, i.e.,

b11

μs
− b21 >

b12

μs
− b22 > 0. (19)

Under this condition we have the following result.

Result 3 Let the condition (19) hold.

(a) U10 is locally asymptotically stable when �1 < 1 and unstable when �1 > 1.
(b) U02 is always unstable.

A proof of Result 3 can be found in the Appendix.
The more interesting results are about the stabilities of U∗

1 and U∗
2 , as these results

are directly related to the invasion properties of a population. For example, the stability
of the equilibrium E∗

1 for the reduced system (11) indicates that the snail population
of type 1 has stabilized at the equilibrium U∗

1 for the full system (10) in the absence of
snails of type 2. When a small number of new species of snails (type 2) is introduced
into this environment, they will be able to invade into the population of host type 1
only if the equilibrium U∗

1 for the full system (10) is unstable. In such a case, we refer
to the snail host of type 1 as the “resident host” and the snail host of type 2 as the
“mutant host”, and refer to this invasion as invasion of U∗

1 by the mutant host.
We first derive the invasion condition using the invasibility analysis (see Bowers

1999; Bowers and Turner 1997). A mathematical proof of the result will be provided
at the end of this section. In order for the mutant snails to successfully invade U∗

1 , they
must have a positive growth rate. In the process of invasion by a susceptible mutant
snail, the snail may either remain uninfected or become infected if it did not die. Let
TU denote the average duration in which the snail is alive and uninfected. Then

TU = 1

μs + ρ2c1 I ∗
1 Rh

.

Let TI denote the average duration of being infected (and did not die). Note that the
lifespan of an uninfected (infected) snail of type 2 is 1/μs (1/(μs + δ2)), and that

TU

1/μs
+ TI

1/(μs + δ2)
= 1. (20)
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From the Eq. (20) we have

TI = ρ2c1 I ∗
1 Rh

(μs + δ2)(μs + ρ2c1 I ∗
1 Rh)

.

Let φU and φI denote the net contribution of the snail to the growth rate of the popu-
lation during the periods TU and TI respectively. Recall the assumption that infected
snails do not reproduce. Thus,

φU = b12

b22 + S∗
1 + I ∗

1
− μs,

φI = −(μs + δ2).

Then, the total contribution of the snail to the population growth of the mutant type is

g2 = φU TU + φI TI

=
(

b12

b22 + S∗
1 + I ∗

1
−μs

)
1

μs + ρ2c1 I ∗
1 Rh

− (μs + δ2)ρ2c1 I ∗
1 Rh

(μs + δ2)(μs + ρ2c1 I ∗
1 Rh)

(21)

=
b12

b22+S∗
1 +I ∗

1

μs + ρ2c1 I ∗
1 Rh

− 1.

Clearly, g2 must be positive in order for the mutant type to successfully invade the
resident population. From the condition g2 > 0 we obtain the invasion reproduction
number �21 and the invasion condition:

�21 =
b12

b22+S∗
1 +I ∗

1

μs + ρ2c1 I ∗
1 Rh

> 1. (22)

The interpretation of �21 is clear. The fraction b12
b22+S∗

1 +I ∗
1

gives the number of new

mutant snails produced by one susceptible snail of type 2 while the type 1 snail host
is at the equilibrium U∗

1 , and 1
μs+ρ2c1 I ∗

1 Rh
= TU is the duration in which the mutant

snail is productive (i.e., alive and uninfected). Thus, �21 represents the net reproduc-
tion number of the mutant host in the environment where the resident host is at the
equilibrium U∗

1 .
By symmetry, we can also obtain the condition under which the type 1 host (as the

mutant) can invade U∗
2 is

�12 =
b11

b21+S∗
2 +I ∗

2

μs + ρ1c2 I ∗
2 Rh

> 1, (23)

here �12 is the invasion reproduction number for the type 1 snail host.

Remark We point out that the quantity �k (for k = 1, 2) is a measure of the par-
asite’s reproduction associated with the type k snail host, whereas the quantity � j i
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(1 ≤ i 	= j ≤ 2) is a measure of the snail host’s reproduction. More precisely, � j i

describes the reproductive ability of type j snails when introduced to an environment
where the type i host is at the endemic equilibrium with S∗

i > 0 and I ∗
i > 0. We

also need to point out that the Eq. (22) also provides an equivalent version of fitness
for the mutant host. As discussed in Hoyle and Bowers (2008), the fitness is defined
as being the per capita growth rate of a rare mutant invader (see Metz et al. 1992).
A sign-equivalent version of it is given by �0 − 1 > 0, where �0 is the dominant
eigenvalue of the next generation matrix as defined in Diekmann and Heesterbeek
(2000). The quantity �21 given in (22) has a similar meaning.

Using these invasion reproduction numbers we can describe the stability results for
U∗

k (k = 1, 2) as follows.

Result 4 Let b11 < b̃11 (this will exclude the possibility of periodic orbits in the
reduced system (3.1), see Result 2).

(a) The equilibrium U∗
1 exists if the basic reproduction number �1 > 1.

(b) U∗
1 is locally asymptotically stable if the invasion reproduction number �21 < 1

and unstable if �21 > 1.

A symmetric result also holds:

Result 5 Let b12 < b̃12.

(a) The equilibrium U∗
2 exists if the basic reproduction number �2 > 1.

(b) U∗
2 is locally asymptotically stable if the invasion reproduction number �12 < 1

and unstable if �12 > 1.

A proof of Result 4 can be found in the Appendix. Result 5 can be proved in a
similar way.

We remark that Results 4 and 5 imply that the coexistence of both types of snail
hosts with a positive infection level will be expected when both invasion reproduction
numbers exceed 1, i.e., �21 > 1 and �12 > 1. This is illustrated in Fig. 3a. However,
these are only sufficient but not necessary conditions. This is because in Results 4
and 5, there are other conditions such as �1 > 1 or �2 > 1 (they ensure the existence
of U∗

1 or U∗
2 ). Thus, coexistence may still be possible even when one of the invasion

reproduction numbers is below 1, e.g., �12 < 1 and �21 > 1. One of such cases is
illustrated in Fig. 3b. In the case when U∗

1 and U∗
2 both exist and are stable, coexistence

cannot occur if one of the invasion reproduction numbers is below 1. This is illustrated
in Fig. 4.

We remark also that although the outcome of competitive-exclusion between the
two types of snail hosts is expected without the shared parasite, it may not be the case
in the presence of parasites. This is why the condition �k > 1 is required, which
guarantees the establishment of the parasite population in the type k snail host. Notice
that the conditions for coexistence depend on the invasion reproduction numbers �12
and �21 which, from (22) and (23), depend on the levels of infection in the two types
of snail hosts.
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Fig. 3 Time plots of the fractions of infected snail hosts Ik (t)∑
i=1,2(Si (t)+Ii (t))

of type k (k = 1, 2) for the full

system (4). Plots in a are for the case when both �12 and �21 are greater than 1, whereas plots in b are for
the case when �12 < 1 and �21 > 1. In both cases, the system converges to the endemic equilibrium U�.
All parameter values are the same as in Fig. 2 except for ρ2: ρ2 = 3 × 10−5 in (a) and ρ2 = 10−5 in (b)

4 Biological insights gained from the model analysis

In this section, we use the mathematical results obtained in previous sections to explore
the population outcomes of the two types of snail hosts under the influence of the
pathogen. Assuming that there are costs for the snail hosts to be resistant to parasite
infection, we can use the invasion thresholds to examine how the differences in host
resistance and reproduction may influence the snail population composition. The inva-
sion conditions also allow us to look at the evolutionary trajectories of both hosts and
parasites in terms of either parasite-resistance (hosts) or virulence (parasites).

4.1 Competitive outcomes between two types of hosts

We are interested in exploring how the variability in parasite-resistance (and its asso-
ciated fitness costs) may affect the composition of snail types within a population
(e.g., monomorphism vs. coexistence). Outcomes may also depend on the intensity
of drug-treatment in human hosts, age-dependent infection rates, and the level of
drug-resistance of the parasites.

Consider the type 1 snail host as the resident type which is more susceptible to
parasite infection (e.g., with a higher ρ1 value), and consider the type 2 snail host to
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Fig. 4 Similar to Fig. 3b but for the case when both U∗
1 and U∗

2 are existent and stable (�1 and �2
are both greater than 1). Plots in a show that the system converges to the boundary equilibria U∗

1 when
�12 = 1.13 > 1 (b12 = 317) and �21 = 0.985 < 1, whereas plots in b show that the system converges to
the boundary equilibria U∗

2 when �12 = 0.95 < 1 (b12 = 335) and �21 = 1.04 > 1. All other parameters
have the same values as in Fig. 3b

be more resistant to parasite infection (i.e., ρ2 < ρ1). The trade-off for type 2 hosts
is that a higher resistance may result in a reduced birth rate (which is represented by
the parameter b12, i.e., b12 < b11). We will investigate how the changes in ρk and b1k

(k = 1, 2) may affect population outcomes. More specifically, we will examine how
the threshold quantities determined by the invasion reproduction numbers, �21 = 1
and �12 = 1, may depend on changes in the two quantities:

ρ1 − ρ2

ρ1
and

b11 − b12

b11
. (24)

To do this, we need to specify the forms of age-dependent functions in the human
hosts such as β(a) and σ(a), as well as the forms of parasite production as a function
of drug-resistance, γ (θ). Here, the age-dependent transmission rate β(a) and drug-
treatment rate σ(a) are chosen as step functions based on epidemiological data which
suggest that the highest prevalence of schistosome infection occurs within the age
group 11–20 (see Massara et al. 2004; Sturrock 2001). Examples of such functions
are:

β(a) =
{

β0β j if 10 ( j − 1) < a ≤ 10 j, j = 1, 2, . . . , 7,

0 if a > 70
(25)
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Fig. 5 Examples of β j and σ j used in the age-dependent functions β(a) and σ(a) as defined in (25) and
(26). These functions are used in the simulations. a Age-dependent transmission β(a). b Age-dependent
drug treatment σ(a)

and

σ(a) =
{

σ0σ j if 10 ( j − 1) < a ≤ 10 j, j = 1, 2, . . . , 7,

0 if a > 70.
(26)

In these formulas, β0 and σ0 represent respectively the background transmission rate
and the effective treatment rate of definitive hosts. The constants β j and σ j depend
on the ages of human hosts (see Zhang et al. 2007a), and examples of these functions
are demonstrated in Fig. 5.

The function f (σ (θ)) denotes the death rate of parasites due to drug treatment
with treatment rate σ(θ) for parasites with a drug-resistant level θ ≥ 1 (θ = 1 for
drug-sensitive parasites). In our simulations, this death rate is assumed to be

f (σ (a)) = σ(a)

θ
, θ ≥ 1. (27)

Based on experimental studies (Gower and Webster 2005), we assume that parasites
with drug-resistance level θ have a reduced reproduction rate γ (θ) which reflects the
cost of drug-resistance. Two particular forms of γ (θ) considered here are given by

γ (θ) = γ0

(
9 − θ

8

)
, (28)

γ (θ) = γ0

(
16 − θ

15

)1/5

, (29)

where γ0 > 0 is a constant representing the background replication rate of drug-
sensitive parasites. The curves of these two functions are shown in Fig. 6 for the case
of γ0 = 1. The solid curve corresponds to the function in (28) which represents the
case when the cost for resistance is higher, whereas the dashed curve corresponds to
the function in (29) which represents the case when the cost for resistance is lower.

123



Evolution of host resistance to parasite infection 219

Fig. 6 The effective parasite
reproduction rate γ (θ) versus
the drug-resistance level θ . The
solid and dashed lines represent
the cases of higher and lower
costs of drug resistance,
respectively

1 2 3 4 5 6 7 8
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Fig. 7 Competitive outcomes
between the parasite-susceptible
(resident) strain and the
parasite-resistant (mutant) strain
of snail hosts in the trade-off
space characterized by(

ρ1−ρ2
ρ1

,
b11−b12

b11

)
. We observe

that the mutant type is favored
when the cost of
parasite-resistance is low,
whereas coexistence is favored
for intermediate levels of cost.
This plot is for the case when
there is no drug treatment of
humans (i.e., σ0 = 0) and
drug-resistance is absent (i.e.,
θ = 1)
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Given these functional forms and assumptions specified above, and for fixed
values of θ, β0 and σ0, we can generate a bifurcation diagram in the parameter plane(

ρ1−ρ2
ρ1

, b11−b12
b11

)
as shown in Fig. 7. In this figure, the infection rate and growth rate for

the resident snail host (b11 and ρ1) are fixed, and the corresponding rates for the mutant
type snail host (b12 and ρ2) can vary. The fraction (b11 − b12)/b11 provides a mea-
sure for the cost of parasite resistance in the snail host, and the fraction (ρ1 − ρ2)/ρ1
describes the level of parasite resistance in the snail host. We plotted three curves
determined by the equations �12 = 1,�21 = 1 and �2 = 1, which divide the plane
in three regions. In the region below (above) the �12 = 1 curve, the mutant type host
will out-compete (be excluded by) the resident type host. In the region between the
three curves (i.e., above the �12 = 1 curve and below the two curves determined by
�21 = 1 and �2 = 1), coexistence will be expected. Figure 3a is an example of the
case when �12 > 1,�21 > 1 and �2 > 1, which is in the coexistence region.

We need to point out that the coexistence region described above may not allow for
an evolutionary branching point in adaptive dynamics terms, which we will discuss
more in Sect. 4.2. Such an example is presented in Bowers et al. (2005). The approach
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they presented requires that one can solve the invasion equations (both mutant and
resident), which are needed in order to consider their derivatives and the derivatives of
trade-offs. A branching point can then be determined by observing in which region the
trade-off curve enters the singular TIP (trade-off and invasion plots). For our model,
it is not easy to determine the branching point as the invasion equations are difficult
to solve analytically. It is possible that the coexistence state in the coexistence region
is temporary and unstable, depending on the properties of the evolutionarily singular
strategy that are determined by the trade-off assumptions on hosts’ benefits and costs
(which are shown in the next section).

We also observe in Fig. 7 that for smaller values of (b11 − b12)/b11 (i.e., when cost
of resistance is low), mutant snails with a wider rage of resistance (represented by
the values of (ρ1 − ρ2)/ρ1) can out-compete the resident snails. On the other hand,
when cost of resistance is high (larger values of (b11 − b12)/b11), it is more likely that
the resident type will exclude the resistance type. Coexistence of both resident and
mutant snails is favored only when the cost is at an intermediate level. Other parameter
values used in Fig. 7 are: b11 = 600, ρ1 = 10−4,�h = 8, μh = 0.014, μs = 0.5,

μp = 0.2, β0 = 10−5, γ0 = 3, δk = 1.8, and ck = 20,000 (k = 1, 2).
Figure 7 is for the case of no drug treatment for the human host (σ0 = 0). When

drug treatment is present (σ0 > 0), although the qualitative behaviors of the competi-
tion between snail types are similar to that presented in Fig. 7, significant quantitative
differences can be observed depending on the age-dependent treatment strategies. For
example, in Fig. 8, two bifurcation diagrams are plotted for two treatment strategies
that target at different age-groups. Figure 8a is for the case when the age-dependent
treatment strategy σ(a) follows the distribution shown in Fig. 5b, and Fig. 8b is for
the treatment strategy that targets only at the age-group 10–30, i.e., σ(a) 	= 0 only
for 10 < a ≤ 30. For the two σ(a) functions used in Fig. 8a, b, the areas under the
σ(a) curve are the same. All other parameters are the same as in Fig. 7. We observe
that the targeted treatment strategy (Fig. 8b) makes it more likely for the mutant host
type (parasite-resistant) to out-compete the resident type (parasite-susceptible).

We can also view the difference in ρk and in b1k (k = 1, 2) as a measure of simi-
larity between the two host types of snails. It shows that if the two snail host types are
similar, then monomorphism is favored. As the degree of similarity decreases (bigger
differences), the likelihood of polymorphism increases. This seems to suggest that the
cost of parasite-resistance may contribute to the maintenance of polymorphism in the
presence of the parasite (Bowers et al. 1994; Webster and Woolhouse 1999).

4.2 Evolution of parasite-resistance in snail hosts

In this section, we consider the snail types 1 and 2 as the resident (or susceptible) and
mutant (or resistant) hosts, respectively, and replace the subscripts 1 and 2 by s and m
to denote resident and mutant. Because this study focuses on the evolution of (snail)
host resistance to parasite infection, and the parameter ρm represents the infection rate
of mutant (resistant) snail host, we thus choose ρm for the analysis of evolutionary
outcomes. Based on the experimental results in Webster and Woolhouse (1999), we
assume that there are some costs associated with the host’s resistance to parasites. For
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Fig. 8 Similar to Fig. 7 but different age-dependent drug treatment programs are applied. Effects of two
age-dependent treatment strategies, determined by the function σ(a), are compared. The plot in a is for the
case when σ(a) has the form described in Fig. 5, whereas the plot in b is for the case in which only the
age-group (10, 30] is targeted (i.e., σ(a) 	= 0 only for 10 < a ≤ 30). All other parameters have the same
values as in Fig. 7. It demonstrates that the targeted treatment strategy makes it more likely for the mutant
host type (parasite-resistant) to out-compete the resident type (parasite-susceptible)

example, a reduced infection rate (ρm) is associated with a lower birth rate (b1m). That
is, there is a functional relationship between b1m and ρm :

b1m = b1m(ρm), b′
1m(ρm) > 0.

We will also replace the subscripts 1 and 2 in �21 by s and m, respectively, and have

�ms = �21 =
b1m (ρm )

b2m+S∗
s +I ∗

s

μs + ρmcs I ∗
s Rh

,

where S∗
s and I ∗

s are given in (16) and (17). Note that S∗
s and I ∗

s are functions of ρs (the
infection rate of snails of type s). Thus, �ms = �ms(ρs, ρm) is a function of ρs and ρm .

From Result 4, the invasion condition for the mutant type host to invade the resident
type host at the equilibrium U∗

s = (S∗
s , I ∗

s , 0, 0) is

�ms(ρs, ρm) > 1. (30)

For the mutant type to be more successful in the invasion, the quantity �ms (which can
be considered as a measure of fitness for the mutant host) should be maximized. We
will use �ms(ρs, ρm) to determine the evolutionary strategy. A strategy ρ∗ is called
an evolutionarily singular strategy if the fitness gradient satisfies the condition

d�ms

dρm

∣
∣∣
ρm=ρs=ρ∗ = 0

123



222 Y. Yang et al.

(a) (b)

Fig. 9 Illustration of the graphical approach for identifying an evolutionarily singular strategy ρ∗ for the
trade-off function b1m (ρm ) with two different properties. In a and b, the trade-off function b1m (ρm ) is
respectively concave-down and concave-up. B1 and B2 are the respective points where the horizontal axis
intersects with the tangent lines of the trade-off curve passing through the two endpoints. An evolutionarily
singular strategy can be determined by identifying a point ρ∗ such that the tangent line of the curve b1m (ρm )

at ρ∗ passes through the point A
(
− μs

cs I∗
s Rh

, 0
)

(see Geritz et al. 1997, 1998; Metz et al. 1996). An evolutionary singular strategy ρ∗
is stable (i.e., ρ∗ is an Evolutionary Stable Strategy or ESS) (Smith 1982) if

�ms(ρ
∗, ρm) < 1

for all ρm 	= ρ∗ in a neighborhood of ρ∗ (Geritz et al. 1997, 1998; Metz et al. 1996).
When ρ∗ is an ESS, the host type using this strategy will not be invaded by any other
host types.

We first discuss how an evolutionary singular strategy ρ∗ can be determined. With
some simplifications, we can rewrite the condition d�ms/dρm = 0 as

db1m

dρm
= b1m(ρm)

ρm + μs
cs I ∗

s Rh

. (31)

The condition (31) can be better understood by using a graphical interpretation as
shown in Fig. 9. In this figure, the function b1m = b1m(ρm) is plotted, which can be
either concave-down and increasing (as shown in (a)) or concave-up and increasing
(as shown in (b)). Notice that, if such a ρ∗ exists, db1m(ρ∗)

dρm
is the slope of the line

that passes through the two points (ρ∗, b1m(ρ∗)) (which is on the curve b1m(ρm)) and

A
(
− μs

cs I ∗
s Rh

, 0
)

(which is on the ρm axis). Thus, an evolutionarily singular strategy

can be determined by identifying a point ρ∗ such that the tangent line of the curve

b1m(ρm) at ρ∗ passes through the point A
(
− μs

cs I ∗
s Rh

, 0
)

.

From this geometric interpretation, we can see that not all functions b1m(ρm) will
make it possible for ρ∗ to exist, and that the existence of an evolutionarily singular
strategy ρ∗ will depend highly on the shape of the trade-off function. In addition,

for ρ∗ to exist, the point A
(
− μs

cs I ∗
s Rh

, 0
)

must lie between the points B1 and B2.

Using the functional forms defined in the previous section, we consider two examples
of b1m(ρm) which have significantly different shapes as shown in Fig. 11. This figure
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Fig. 10 The figures in a and b illustrate the pairwise invasibility plots (PIP) for the cases when the trade-off
function b1m (ρm ) is concave-down and concave-up, respectively. The horizontal axis is the infection rate
ρs of the susceptible (resident) type of snail host, and the vertical axis is the infection rate ρm of the resistant
(mutant) type of snail host. In both plots, the invasion reproduction number satisfies the condition �ms < 1
in the shaded region and �ms > 1 in the unshaded region. All parameter values are the same as in Fig. 7

demonstrates how an evolutionarily singular strategy ρ∗ can be determined for a given
trade-off function b1m(ρm).

We now examine the stability and convergence of an evolutionarily singular strat-
egy ρ∗ using a pairwise-invasibility plot (PIP) (Geritz et al. 1997, 1998; Metz et al.
1996). To draw a PIP, we first need to choose parameters that can reflect the direction
of evolution for the host. Here, we choose ρs and ρm to be the parameters, which
represent the respective levels of parasite-resistance of the resident and mutant host
types (see Fig. 10). Figure 10a, b is for the example a and example b, respectively, of
the trade-off function b1m(ρm) shown in Fig. 11. In these PIPs, the fitness landscapes
as experienced by a rare mutant correspond to the vertical lines where the resident trait
value ρs is constant. Only mutants with trait values ρm for which �ms > 1 are able to
successfully invade. (note that �ms is a function of ρs and ρm). The two curves in each
of these figures correspond to the threshold conditions �ms = 1 (the decreasing curve)
and �m = �s (the diagonal line). The condition �ms > 1 holds for points (ρs, ρm)

in the shaded region, whereas the condition �ms < 1 holds for points (ρs, ρm) in the
unshaded region. The intersection of the two curves corresponds to an evolutionarily
singular strategy ρ∗ (Geritz et al. 1997, 1998).

An evolutionarily singular strategy ρ∗ may or may not be an ESS. First, we look
at Fig. 10a. Notice that for a given resident (susceptible) host with strategy C , if
a mutant host uses a strategy C1 with C1 > C , then the point (C, C1) falls in the
unshaded region, in which case the mutant host cannot invade as �ms < 1. However,
if a mutant host uses a strategy C2 with C2 < C , then the point (C, C2) falls into the
shaded region, in which case the mutant host will be able to invade as �ms > 1. In
this case, the mutant type will replace the resident type and becomes the new resident
type with the strategy C2. If we repeat this process, it can be observed that as long as
the strategy Ci is on the right-side of ρ∗ (i.e., Ci > ρ∗), it will be replaced by a new
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Fig. 11 Two examples of the cost function b1m (ρm ). A higher infection rate ρm is associated with a lower
parasite-resistance in the snail host, and a lower birth rate of snails is associated with a higher cost for
parasite-resistance. Examples a and b represent the cases of the function b1m (ρm ) being concave-down and
concave-up, respectively. See the text for more explanations

strategy with a smaller value. Using a similar argument we know that if a strategy Ci

is on the left-side of ρ∗ (i.e., Ci < ρ∗), it will be replaced by a new strategy with
a larger value. Thus, the parasite-resistance of the snail host will evolve towards ρ∗
which acts as an evolutionary endpoint. Therefore, ρ∗ is an ESS.

Next, we look at Fig. 10b. Using the similar argument as in Fig. 10a, we observe
that for a given resident strategy Ei with Ei < ρ∗, a mutant with a strategy greater
(smaller) than Ei cannot (can) invade the resident type. On the other hand, for a
given resident strategy Ei with Ei > ρ∗, a mutant with a strategy greater (smaller)
than Ei can (cannot) invade the resident type. Thus, the direction of evolution for
parasite-resistance of the snail host will be away from ρ∗. In this case, ρ∗ is unstable
and unattainable, acting as an evolutionary repeller. This suggests that when there is
variation in parasite-resistance, the evolutionary outcome could be the monomorphism
of either the most or the least resistant snail type.

The trade-off examples a and b shown in Fig. 11 represent the cases of the function
b1m(ρm) being concave-down and concave-up, respectively, which are used for gener-
ating Fig. 10. The lower bound for b1m is set to be 310 which is low enough to guarantee
a positive carrying capacity, i.e., b1m

μs
− b2m > 0, and the upper bound for b1m is set to

be 600 which is high enough to guarantee the existence of the two boundary equilibria
U∗

1 and U∗
2 . The functional form used in Example a is b1m(ρm) = 890 − 5.8×10−2

ρm+10−4 , for
which the cost of parasite-resistance increases more dramatically than the concave-up
function in Example b, where b1m(ρm) = 550 + 0.5 × 1042ρ10

m .
The mathematical results in previous sections can be used to investigate how the

ESS ρ∗ may be influenced by the variation in virulence δ. Figure 12 shows that ρ∗
increases with δ, which implies that higher parasite virulence favors less resistance
(increased susceptibility) in snail hosts. This conclusion is consistent with Bowers
et al. (1994) and Boots and Bowers (1999). Under these circumstances, when the par-
asite’s virulence is higher, parasites kill infected snails more rapidly thereby lowering
the infection probability. Consequently, there is lower pressure to avoid infection by
paying reproductive costs associated with resistance. In this figure, we have used the
concave-down function for b1m(ρm) as shown in Fig. 11a.
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Fig. 12 Dependence of the
evolutionarily stable strategy ρ∗
on the parasite virulence δ to the
snail host. This is for the case
when drug-treatment in the
human host is absent (σ0 = 0)
and there is no drug-resistance in
the parasites (θ = 1). All
parameter values are the same as
in Fig. 7
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We can also look at the influence of drug-treatment in human hosts (σ ) and
associated drug-resistance of parasites (θ ) in the ESS ρ∗. We need to point out that
when considering drug-treatment in human hosts, it is more realistic to take into
account human migration among villages which likely influences water-contact rates
with various water bodies. However, this requires the use of a metapopulation approach
(i.e., models that include a collection of sub-populations with connections between
these sub-populations), which dramatically increases the complexity of the model.
For simplicity, our model here assumes that human and snail populations are stable
in time and space. We can examine the influence of drug-treatment of humans in the
ESS ρ∗ by using the two reproduction rates γ (θ) given in (28) and (29). Figure 13a
shows that the ESS ρ∗ increases with σ0 (the background rate of drug-treatment).
That is, higher infection rates (more susceptible snail type) will be selected when
drug-treatment level is high. This occurs because the probability of infection will be
lower when drug-treatment rate is high; and thus, the pressure to avoid infection is low
and it is more beneficial for snail hosts to remain susceptible. For fixed σ0, a higher cost
for drug-resistance favors higher infection rate (more susceptible snail type). This is
because (under same conditions) the density of miracidia is lower in the case of “high
cost” (28) than in the case of “low cost” (29).

The dependence of the ESS ρ∗ on the level of drug-resistance θ is not as simple
(see Fig. 13b), as it can also be affected by the shape of the function γ (θ). If we
consider the case of “high cost” for drug-resistance (given in (28)), the solid curve
in Fig. 13b shows that intermediate values of drug-resistance level θ are associated
with lower infection rates in snails (i.e., higher parasite-resistance in snails). However,
as θ increases further, the ESS ρ∗ increases with θ which implies that lower levels
of parasite-resistance will be favored. To understand this nonmonotonic response, we
need to look at the effect of drug-resistance θ on the whole system. As a higher level
of drug-resistance θ reduces the effectiveness of drug-treatment σ , a higher density of
parasites may be expected. On the other hand, because of the cost for drug-resistance,
the reproduction rate γ (θ) will be decreased, which may lower the parasite density.
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Fig. 13 a Dependence of the evolutionarily stable ρ∗ on the background drug treatment rate σ0 for given
levels of drug-resistance (θ ) and virulence in the snail hosts (δ). b Dependence of the evolutionarily sta-
ble ρ∗ on the drug-resistance level θ for given levels of drug-treatment (σ0) and virulence (δ). The solid
curve is for the case when the function γ (θ) in (28) is used, and the dotted curve is for the case when the
function γ (θ) in (29) is used

Depending on the shapes of trade-offs (27) and (28) (note that f (σ ) is concave-up
and γ (θ) is linear with respect to θ ), the change due to the reduced drug-resistance is
more dramatic when the drug-resistance level θ is lower. Thus, in the case of “high
cost” for drug-resistance (and for fixed drug-treatment rate σ0), for low drug-resis-
tance values (smaller θ ) the resistant type of snail host is favored; whereas for high
drug-resistance values (larger θ ) the susceptible type of snail host is favored. In the
case of “low cost” for drug-resistance, the dotted curve in Fig. 13b shows that the ESS
ρ∗ decreases with θ . Thus, higher drug-resistance levels select for lower infection
rates in the snails, leading to a more resistant type of snail host.

5 Discussion

In this paper, we employed a model for the snail–schistosome–human system to study
the transmission dynamics of the system and its implications for evolutionary outcomes
of the host–parasite interactions. Evolutionary dynamics of host–parasite interactions
are of great interest to biologists and epidemiologists. Many mathematical models have
been used to study the outcomes of these interactions, but most of these models are
for parasites with direct life cycles. The model we studied here is for parasites with an
indirect life cycle (such as schistosome). These models are usually more complex and
their analyses are more challenging mathematically. Nevertheless, these models are
important to consider as they may provide novel insights into the underlying processes
that impact the evolutionary outcomes of host–parasite interactions, as demonstrated
in this study.

The model studied in this paper incorporates both the definitive human host and
two types of intermediate snail hosts. Age-structure of human hosts is also considered
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to reflect the age-dependent transmission rates, which makes it possible to study
age-targeted drug treatment rates as well as associated drug resistance in the para-
sites. We analyzed the mathematical properties of the model in terms of stabilities of
steady states and possible appearance of stable periodic solutions, and calculated the
basic reproductive numbers �i of the parasites associated with the snail hosts of type
i (i = 1, 2). Furthermore we derived the invasion reproduction numbers � j i for the
snail host of type j when type i is at an endemic equilibrium E∗

i (1 ≤ i 	= j ≤ 2),
which are used to explore the evolutionary outcomes of the host–parasite system.

Our results show that the reproduction numbers �i and � j i provide threshold
conditions that determine the parasite-resistance of snail hosts, infection levels of par-
asites, and evolutionary outcomes for both parasites and hosts. By constructing various
bifurcation diagrams involving relevant model parameters, we were able to examine
the roles of several biological factors (e.g., trade-offs between parasite-resistance and
reproduction of the snail hosts, trade-offs between virulence and reproduction of par-
asites, and trade-offs between drug-resistance and regeneration of parasites) in influ-
encing the evolutionary outcomes of this host–parasite system. Using the approach of
evolutionary stable strategy (ESS) and the method of pairwise invasibility plots (PIP),
we demonstrated how ESS may depend on specific functional forms under various
model assumptions, such as the cost function b1m(ρm) for the growth rate of snail
hosts due to parasite-resistance. We presented examples which illustrate that the sta-
bility and convergence of an evolutionary singular strategy may depend on the specific
functional forms of b1m(ρm). This kind of conclusion is of great interests to evolution-
ary biologists, and it has led to the development of three distinct geometric approaches
that allow for the evolutionary study of models while keeping the role of geometry of
the trade-offs explicit (see Bowers et al. 2005; de Mazancourt and Dieckmann 2004;
Rueffler et al. 2004 for more details).

Most of the assumptions used in our analyses were based on either experimental
results or observations from natural systems. Our findings suggest that model results
can be very sensitive to model assumptions in some cases, and much less sensitive
in others. Our results have also allowed us to draw interesting conclusions in terms
of competitive outcomes between host types. For example, we found that, under the
assumed trade-off between the cost of parasite-resistance in snails (ρi ) and the snail
reproductive rate (b1i ), the likelihood of host polymorphism increases as the degree
of difference between the two snail host types increases, suggesting that the cost of
parasite-resistance may contribute to the maintenance of resistance polymorphism in
this system. This mechanism may help to explain the occurrence of such patterns
in a number of host species from Daphnia (Duncan and Little 2007) to Drosophila
(Kraaijeveld and Godfray 1997) to snails (Webster and Woolhouse 1999).

We have also obtained other conclusions from the model analyses. For example,
when parasite virulence is high (i.e., the parasite-induced death rate in the snail host is
large), the parasite-susceptible snail type may exclude a parasite-resistant type for the
given trade-off functions. This result may seem counter-intuitive, as higher parasite
virulence is often predicted to favor host investment in resistance. However, in this
case, reductions in host survival may inadvertently lead to this result, by reducing
transmission probabilities. Therefore, hosts may be more fit by not investing in resis-
tance due to the low probability of actually becoming infected by a virulent parasite.
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In addition, we found that different drug-treatment rates of human hosts (σ(a)) and
the trade-off functions for drug-resistance may interact to alter the ESS. When we
used the particular functional form of γ (θ), a more susceptible snail host type was
favored when the drug-treatment rate of humans is high. This has significant biological
and epidemiological ramifications, as attempts to reduce infection at one stage of the
parasite life cycle (humans) may, in fact lead to enhanced susceptibility of hosts at
another stage of the life cycle.

This modeling study focuses on assessing the roles that host life-history, parasite
transmission, virulence, and drug therapy play in shaping populations of an indirectly
transmitted parasite and its hosts. The models used in this work include several sim-
plifying assumptions. One example is that the sex ratio of adult worms within human
hosts is assumed to be 1:1 although the ratios in nature population are usually male-
biased (2:1). The role of schistosome mating structure in host–parasite interactions has
been considered previously using mathematical models (see, for example, Xu et al.
2005). Nonetheless, even with these simplifications, results from this research can
provide important insights into the factors responsible for parasite transmission and
the emergence of drug resistance in the field.

We remark that the model considered in this paper includes only a single parasite
strain, and we have focused mainly on the evolutionary outcomes of the intermediate
hosts in terms of the their resistance to infection. An extension of this model can be
considered in which both multiple types of snail hosts and multiple parasite strains can
be included explicitly. Then questions concerning co-evolutionary dynamics of hosts
and parasites can be studied. Such models will certainly be more complicated and
more challenging to analyze mathematically. Even for the simplified model (4), only
partial analysis have been carried out and more detailed examination is still needed to
identify the roles played by other factors. For example, when we considered the effect
of drug treatment of human hosts, we fixed the age-distributions of infection rate β(a)

and the age-dependent treatment σ(a), and varied only the constant σ0. The structure
of model (4) actually allows us to explore the impact of various age-distributions of
transmission and drug treatment (β(a) and σ(a)) on the evolutionary outcomes of the
host–parasite interactions. Figure 8 illustrates a such example. Additional results on
the influence of age structure will be presented elsewhere.
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Appendix

In this appendix, we provide an outline of the derivation for the age-structured equa-
tions for n(t, a) and p(t, a) in (1) as well as proofs for some of the results stated in
the main text.

Derivation of the equations for n(t, a) and p(t, a) in (1)

The definitions of n(t, a) and p(t, a) are adopted from Hadeler (1984) and Hadeler
and Dietz (1983), and the derivation presented here also follows their approach. The
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difference is that they do not consider intermediate hosts; and thus, the infection rate
of humans is proportional to the total density of parasites. Here, we assume that the
infection rate of humans is proportional to the total density of cercariae C .

Let H(t, a, x) denote the number of human hosts of age a at time t , carrying x
adult parasites. Assume that the rate at which a human host acquires one parasite is
proportional to C(t) with (host) age-dependent proportionality constant β(a). Then
the number of parasites within a host of age a can increase from x − 1 to x by acquir-
ing a new parasite at the rate β(a)C , and decrease from x + 1 to x due to either the
natural death of parasites at the per-capita rate μp or being killed by drug treatment
at the rate f (σ (a)). Here σ(a) represents the age-targeted drug treatment rate for the
human hosts. Assume also that all parasites within a host will die if the host dies,
which occurs at the per-capita rate μh(a) (note that the mortality of human hosts due
to parasites is ignored in this paper). Then, we have the following infinite system of
partial differential equations for H(t, a, x):

(
∂

∂t
+ ∂

∂a

)
H(t, a, x)=β(a)C H(t, a, x − 1)+(

μp+ f (σ )
)
(x+1)H(t, a, x+1)

− [
β(a)C+μh +(

μp+ f (σ )
)

x
]

H(t, a, x), for x ≥1,

(32)
(

∂

∂t
+ ∂

∂a

)
H(t, a, 0) = (

μp + f (σ )
)

H(t, a, 1) − (β(a)C + μh) H(t, a, 0),

for x = 0.

Let n(t, a) denote the total number of human hosts of age a at time t , and let p(t, a)

denote the total number of parasites carried by human hosts of age a at time t . Then

n(t, a) =
∞∑

x=0

H(t, a, x), p(t, a) =
∞∑

x=1

x H(t, a, x).

Adding equations in (32) accordingly we have

(
∂

∂t
+ ∂

∂a

)
n(t, a) = −μh(a)n(t, a),

(
∂

∂t
+ ∂

∂a

)
p(t, a) = β(a)n(t, a)C(t) − (

μh(a) + μp + f (σ (a))
)

p(t, a),

which are the same equations as in (1).

Proof of Result 2

For ease of presentation we introduce the notation

μk = μs + δk, k = 1, 2. (33)

123



230 Y. Yang et al.

Linearizing the system (11) at an equilibrium point (S̄k, Īk) we get the following
characteristic equation

det

⎛

⎝
b1k (b2k+ Īk )

(b2k+S̄k+ Īk )
2 − ρkck ĪkRh − μs − λ − b1k S̄k

(b2k+S̄k+ Īk )
2 − ρkck S̄k R̂h(λ)

ρkck ĪkRh ρkck S̄k R̂h(λ) − μk − λ

⎞

⎠ = 0,

(34)

where R̂h(λ) denotes the Laplace transform of Rh(τ ), i.e.,

R̂h(λ) =
∞∫

0

Rh(τ )e−λτ dτ, (35)

and λ is an eigenvalue.
At Ek0 = (Sk0, 0), the characteristic equation (34) simplifies to

(
λ + b1k Sk0

(b2k + Sk0)2

) (
λ − ρkck Sk0 R̂h(λ) + μk

)
= 0, (36)

which has one negative eigenvalue λ = − b1k Sk0
(b2k+Sk0)

2 with other eigenvalues being
given by the equation

f (λ) = λ − ρkck Sk0 R̂h(λ) + μk = 0.

Notice that d
dλ

R̂h < 0, which implies that f (λ) is an increasing function. Notice also
that

f (0) = −ρk

(
b1k

μs
− b2k

)
ckRh + μk = μk(1 − �k).

It follows that f (λ) has no nonnegative real roots if �k < 1 and one positive real root
if �k > 1. Thus, Ek0 is unstable if �k > 1.

For the case of �k < 1, we need to show that f (λ) does not have complex roots
with nonnegative real part. Suppose that λ = x + yi is a complex root of f (λ) with
x ≥ 0. Then the equation f (λ) = 0 becomes

f (x + yi) = x + yi − ρk

(
b1k

μs
− b2k

)
ck

∞∫

0

Rh(a)e−(x+yi)ada + μk = 0.

Thus, the real part of f (x + yi) must be zero, i.e.

Re( f (x + yi)) = x − ρk

(
b1k

μs
− b2k

)
ck

∞∫

0

Rh(a)e−xa cos yada + μk = 0. (37)
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On the other hand, notice that Re( f (x + yi)) ≥ f (x) and that f (x) ≥ f (0) > 0.
Thus, Re( f (x + yi)) > 0, which contradicts (37). It follows that Ek0 is locally
asymptotically stable when �k < 1. This finishes the proof of part (a).

To prove part (b), i.e., the stability of E∗
k , we notice that the characteristic equation

at E∗
k is

det

⎛

⎜⎜
⎝

− b1k S∗
k

(b2k + S∗
k + I ∗

k )2 − λ − b1k S∗
k

(b2k + S∗
k + I ∗

k )2 − ρkck S∗
k R̂h(λ)

ρk M∗
k ρkck S∗

k R̂h(λ) − μk − λ

⎞

⎟⎟
⎠ = 0, (38)

where R̂h(λ) is given in (35) and

M∗
k = ck I ∗

k Rh .

In the characteristic equation (38), we have used the fact that at E∗
k (see (17)),

b1k

b2k + S∗
k + I ∗

k
− ρkck I ∗

k Rh − μs = 0.

Rewrite the characteristic equation (38) as

G(λ) = 0, (39)

where

G(λ) =
(

λ + b1k S∗
k

(b2k + S∗
k + I ∗

k )2

) (
λ − ρkck S∗

k R̂h(λ) + μk

)

+ ρk M∗
k

(
b1k S∗

k

(b2k + S∗
k + I ∗

k )2 + ρkck S∗
k R̂h(λ)

)
.

(40)

For ease of the proof, we consider a variation of the the equation G(λ) = 0. Notice
that the function G(λ) can be written as

G(λ)=
(

λ+ b1k S∗
k(

b2k +S∗
k + I ∗

k

)2 − b1k

b2k + S∗
k + I ∗

k
+ρk M∗

k +μs

)(
λ−ρk S∗

k ck R̂h +μk

)

+ ρk M∗
k

(
b1k S∗

k

(b2k + S∗
k + I ∗

k )2 + ρk S∗
k ck R̂h

)

=
(

λ + b1k S∗
k(

b2k + S∗
k + I ∗

k

)2 − b1k

b2k + S∗
k + I ∗

k
+ μs

)

(λ + μk)

− ρk S∗
k ck R̂h

(

λ + b1k S∗
k(

b2k +S∗
k + I ∗

k

)2 − b1k

b2k + S∗
k + I ∗

k
+μs

)

+ρk M∗
k (λ+μk)
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+ρk M∗
k

b1k S∗
k(

b2k + S∗
k + I ∗

k

)2

= (λ + z∗)(λ + μk)−ρk S∗
k ck R̂h(λ + z∗)+ρk M∗

k (λ+μk)+ b1kρk M∗
k S∗

k(
b2k +S∗

k + I ∗
k

)2 ,

where

z∗ = b1k S∗
k(

b2k + S∗
k + I ∗

k

)2 − b1k

b2k + S∗
k + I ∗

k
+ μs .

Straightforward calculations yield that G(−z∗) 	= 0, i.e., λ = −z∗ is not a root of
G(λ). Thus, we can divide both sides of the equation G(λ) = 0 by λ + z∗ and obtain
the following equation which is equivalent to G(λ) = 0:

H(λ) = λ + μk − ρk S∗
k ck R̂h + ρk M∗

k
λ + μk

λ + z∗ + b1kρk M∗
k S∗

k

(b2k + S∗
k + I ∗

k )2

1

λ + z∗ = 0.

We first show that for z∗ > 0, H(λ) does not have roots (either real or complex)
with positive real part. Suppose that λ = x + yi is a root of H(λ) with x > 0.
Then, from the fact that ρkck S∗

k Rh − μk = 0 (see (16)) we know that the real part of
H(x + yi) satisfies

Re(H(x + yi)) = x + μk − ρkck S∗
k

∞∫

0

e−xa cos (ya)Rh(a)da

+ ρk M∗
k
(x+μk)(x+z∗)+y2

(x+z∗)2 + y2 + b1kρk M∗
k S∗

k

(b2k +S∗
k + I ∗

k )2

x+z∗

(x+z∗)2+y2

> x + μk − ρkck S∗
k

∞∫

0

e−xa cos (ya)Rh(a)da

≥ x + μk − ρkck S∗
k Rh

= x > 0.

However, Re(H(x + yi)) = 0. This contradiction implies that H(λ), and hence G(λ),
has no roots with positive real part when z∗ > 0.

The following relations show that λ = 0 is not a root of G(λ):

G(0) = b1k S∗
k(

b2k + S∗
k + I ∗

k

)2

(−ρk S∗
k ckRh + μk

) + ρk M∗
k

(
b1k S∗

k(
b2k + S∗

k + I ∗
k

)2

+ ρk S∗
k ckRh

)
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>
b1k S∗

k(
b2k + S∗

k + I ∗
k

)2

(−ρk S∗
k ckRh + μk

)

= b1k S∗
k(

b2k + S∗
k + I ∗

k

)2

(
μk − ρkckRh

μk

ρkckRh

)

= 0.

Therefore, we have shown that z∗ > 0 is a sufficient condition for the stability of E∗
k .

Although it is not clear from the expression of z∗ whether or not z∗ may change its
sign for realistic values of the model parameters, our numerical calculations show that
both z∗ > 0 and z∗ < 0 are possible. Under the condition z∗ > 0, if we choose b1k

as a bifurcation parameter (with all other parameters fixed), then we can numerically
determine a threshold value b̃1k such that

z∗ > 0 if and only if b1k < b̃1k .

Thus, b1k < b̃1k provides a sufficient condition for E∗
k to be locally asymptotically

stable.
When b1k > b̃1k or equivalently z∗ < 0, it is possible that the characteristic equation

G(λ) may have complex roots with opposite signs. In fact, our numerical calculations
show that there exists a critical point b1k = b∗

1k such that for b1k near b∗
1k, E∗

k is stable
when b1k < b∗

1k and unstable when b1k > b∗
1k , in which case a stable periodic solution

exists (see Fig. 2).
The proof of Result 2 is completed.

Proof of Result 3

Let μk (k = 1, 2) be as defined in (33). The characteristic equation at the equilibrium
U10 is

F1(λ) =
(

λ + b11S10

(b21 + S10)2

)
(λ + μ2)

(
λ − ρ1S10c1 R̂h + μ1

)

×
(

λ − b12

b22 + S10
+ μs

)
= 0,

where S10 = b11/μs − b12. It is easy to check that the condition (19) implies that the
eigenvalue b12

b22+S10
− μs < 0. From the proof of the stability of E∗

1 in Sect. 3.1 we

know that the function λ − ρ1S10c1 R̂h + μ1 has all roots with negative real part when
�1 < 1 and at least one positive root when �1 > 1. It follows that U10 is locally
asymptotically stable when �1 < 1 and unstable when �1 > 1.
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Similarly, the characteristic equation at the equilibrium U02 is

F2(λ) =
(

λ + b12S02

(b22 + S02)
2

)
(λ + μ1)

(
λ − ρ2S02c2 R̂h + μ2

)

×
(

λ − b11

b21 + S02
+ μs

)
= 0,

where S02 = b12/μs − b22. From the condition (19) we can verify that the eigenvalue
b11

b21+S02
− μs > 0. Thus, U02 is unstable.

This finishes the proof of Result 3.

Proof of Result 4

Let μk (k = 1, 2) be as defined in (33). The proof for the existence of U∗
1 follows

from that for E∗
1 of the reduced system (3.1). For the stability of U∗

1 , notice that the
characteristic equation at U∗

1 is

det

(
J1 ∗
0 J4

)
= 0,

where

J1 =
⎛

⎝
− b11 S∗

1
(b21+S∗

1 +I ∗
1 )2 − λ − b11 S∗

1
(b21+S∗

1 +I ∗
1 )2 − ρ1c1 R̂h S∗

1

ρ1c1 I ∗
1 Rh ρ1c1 R̂h S∗

1 − μ1 − λ

⎞

⎠ ,

J4 =
⎛

⎝
b12

b22+S∗
1 +I ∗

1
− ρ2c1 I ∗

1 Rh − μs − λ 0

ρ2c1 I ∗
1 Rh −μ2 − λ

⎞

⎠ .

From the proof for the stability of E∗
1 we know that, under the conditions b11 < b̃11

and �1 > 1, all solutions of the equation det(J1) = 0 have negative real parts. Thus,
U∗

1 is stable if all solutions of det(J4) = 0 have negative real parts. This is true if

b12

b22 + S∗
1 + I ∗

1
− ρ2c1 I ∗

1 Rh − μs < 0, (41)

which is equivalent to �21 < 1. U∗
1 is unstable if the inequality (41) is reversed, which

is equivalent to �21 > 1.
The proof of Result 4 is completed.
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