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a b s t r a c t

Motivated by relatively recent empirical studies on Schistosoma mansoni, we use a mathematical model

to investigate the impacts of drug treatment of the definitive human host and coinfection of the

intermediate snail host by multiple parasite strains on the evolution of parasites’ drug resistance.

Through the examination of evolutionarily stable strategies (ESS) of parasites, our study suggests that

higher levels of drug treatment rates (which usually tend to promote monomorphism as the

evolutionary equilibrium) favor parasite strains that have a higher level of drug resistance. Our study

also shows that whether coinfection of intermediate hosts affects the levels of drug resistance at ESS

points and their stability depends on the assumptions on the cost of parasites paid for drug resistance,

coinfection functions and parasites’ reproduction within coinfected hosts. This calls for more empirical

studies on the parasite.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Coevolutionary dynamics between hosts and parasites are
dictated by specific host attributes, parasite attributes, and their
surrounding environment. Oftentimes, theoretical investigations
incorporate host features such as resistance or tolerance into their
models, whereas virulence is commonly identified as a key parasite
attribute. Although there are numerous descriptions of virulence
across biological disciplines, in evolutionary ecology it is typically
defined as the reduction in host fitness generated by parasitic
infection. In mathematical modeling, it is often approximated by
the parasite-induced instantaneous death rate of infected host
organisms (Bull, 1994; Read, 1994; Frank, 1996). In this study, we
focus on host–parasite systems which involve a parasite with
complex life cycle such as that of Schistosoma mansoni.

Traditionally, theoretical studies on the evolution of virulence
have assumed positive associations between virulence and para-
site replication rate, and between parasite replication rate and
transmission success (Anderson and May, 1981; Frank, 1992,
1996; Bull, 1994; Mackinnon and Read, 1999). These trade-off
assumptions underlie the prediction that selection should favor
high virulence in parasite strains or species (Bonhoeffer and

Nowak, 1994; Nowak and May, 1994; van Baalen and Sabelis,
1995; Mosquera and Adler, 1998). Most of the theoretical studies
have considered host–parasite systems with one host type and a
single strain of parasites. When multiple host types and more
parasite strains are considered, different evolutionary outcomes
of host–parasite interactions may emerge, especially if coinfection
within a single host is possible (see, for example, May and Nowak,
1995; Mackinnon and Read, 1999; Gandon et al., 2001; de Roode
et al., 2004; Huijben et al., 2010; Yang et al., in press). In these
cases, the trade-off relationships between parasite virulence and
other life history characteristics can be influenced by the inter-
action between multiple host types and parasite strains. As the
benefit of increasing virulence may be nullified by the degree of
host damage and corresponding reductions in parasite fitness, it is
assumed that, all things being equal, selection will favor an
optimal balance between parasite exploitation and transmission
success, the direction and magnitude of which will be dictated by
a suite of genetic and environmental factors.

Interactions between hosts and parasites may become more
complex if environments change within host organisms. It is quite
common for parasite strains or species to co-occur within their
hosts (e.g., Minchella et al., 1995; Ebert and Mangin, 1997; Davies
et al., 2002; de Roode et al., 2004; Hastings, 2006; Sandland et al.,
2007). This can lead to competition among parasites and the
subsequent emergence of strains or species utilizing particular
virulence strategies. For example, empirical work by Ebert and
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Mangin (1997) suggested that parasite coinfection and within-
host competition resulted in selection for low-virulence strains of
the microparasite, Glugoides intestinalis, in its water flea host
(Daphnia magna) while the work done by de Roode et al. (2004)
shows that selection for high or low virulence of malaria parasites
depends on host genotypes. These empirical results in combina-
tion with accumulating theoretical studies (e.g., Claessen and de
Roos, 1995; van Baalen and Sabelis, 1995; Mosquera and Adler,
1998; Gandon et al., 2001; Zhang et al., 2007) suggest that
coinfections can alter our views of virulence evolution such as
the one mentioned earlier that models predict evolution to high
virulence (Read and Taylor, 2001). This work focuses mainly on
the impact of coinfection of the intermediate snail host and drug
treatment of human hosts on the evolution of schistosome drug
resistance and virulence to the intermediate host.

It has been well-documented that anti-parasite treatment
programs targeting human hosts can result in the emergence of
resistant parasite strains. Many recent studies have focused on
the evolution and spread of drug resistance (e.g., Hastings and
D’Alessandro, 2000; Hastings and Watkins, 2006; Hastings, 2006;
Wargo et al., 2007; Huijben et al., 2010; Chmielecki et al., 2011;
Read et al., 2011). The main argument is that by killing drug
sensitive pathogens, drug treatment reduces the intensity of both
intrahost and interhost competitions between drug sensitive and
resistant pathogens and hence increases subsequent transmission
of surviving resistant pathogens from treated hosts. As a result,
while intensive drug treatment can reduce the appearance of
certain drug resistant parasites through mutations, it may also
maximize the transmission and facilitate the evolution of surviv-
ing resistant pathogens. This calls for studies on optimal treat-
ment strategy (e.g., Torella et al., 2010; Chmielecki et al., 2011;
Read et al., 2011). The prevalence and evolution of resistance may
also be constrained by natural selection and genetic recombina-
tion (Hastings, 2006 and the reference therein). Because drug
treatments on coinfected hosts benefit resistant pathogens the
most, all the studies mentioned above indicate that coinfection of
human hosts can make a significant contribution to resistance
spread and evolution. For parasites with complex life cycles, the
fitness in one obligatory host may be associated with that in
another obligatory host; and thus, the prevalence and evolution of
drug resistance may be affected by coinfection of the intermedi-
ate hosts and intrahost ecology. In the context of schistosome, this
study shows that coinfection of the intermediate snail host may
have a significant influence on the coexistence of parasites with
different levels of drug resistance.

S. mansoni is a macroparasite with an indirect life-cycle that
uses mammals as definitive hosts and snails as intermediate
hosts. Adult parasites within the definitive hosts mate and
produce eggs, which will hatch into free-swimming miracidia in
water. Miracidia can infect snails and transform into sporocysts.
About four weeks after an infection, the infected snails begin to
release free-swimming cercariae, which can penetrate human
skin and develop into adult parasites (CDC, 2012). High genetic
diversity has been reported for schistosome parasites within both
definitive and intermediate hosts using molecular markers (e.g.,
Sire et al., 1999, 2001; Eppert et al., 2002; Curtis et al., 2002).
Current evidence supports the view that selection for resistance
to praziquantel (PZQ) may be occurring in schistosome popula-
tions and natural schistosome strains exhibit varying resistance to
treatment with PZQ (Fallon and Doenhoff, 1994; Fallon et al.,
1997; Ismail et al., 1999; Cioli, 2000; Webster et al., 2008;
Melman et al., 2009; Lamberton et al., 2010). Treatment of human
hosts and parasite resistance to the drug as well as possible
associated costs for resistance may have significant influence
in the parasite’s evolutionary strategy. Although it is known
from empirical studies that coinfection is common (an infected

snail usually carries a number of parasites of different strains), it
is not clear how often or when drug resistant mutants may
appear.

A series of relatively recent empirical studies on the parasite
(Davies et al., 2001; Gower and Webster, 2004, 2005; Webster
et al., 2004, 2008) demonstrate that the parasite fitness in the
definitive mouse host is strongly inversely correlated with that in
the intermediate snail host, while the parasite’s virulence and
replication rate exhibit opposite associations: positive in the
definitive host and negative in the intermediate host. These
findings prompted us to investigate their impacts on the long-
term evolutionary equilibrium of the parasite. In this work we
built a mathematical model that includes an age-structure in the
definitive human host, drug treatment on humans, parasites’ drug
resistance and virulence to the intermediate snail host. Again, the
virulence is measured by the parasite-induced mortality in the
snail host. Because the disease-induced mortality in humans is
low, it is ignored in our model. Using the model with assumptions
from empirical studies, we studied how human drug treatment
programs and coinfection of the intermediate host affect the
evolutionarily stable strategy of the parasite’s drug resistance
and virulence to the intermediate host.

In the next section we introduce the mathematical model and
its limiting system which captures the same asymptotic behaviors
as those of the original one. Some basic dynamical behaviors of the
limiting system determined by the parasite’s reproduction number
are also presented in this section. Section 3 derives the invasion
conditions for mutant parasite strains, which can be used to infer
how a mutant parasite can maximize its fitness under the envir-
onment set by resident parasites. In Section 4, we study the
impacts of drug treatments of human hosts and coinfections of
intermediate snail hosts on the evolutionarily stable strategy of
parasites. Finally, some related issues are discussed in Section 5.

2. The model

Because parasite transmission to human hosts and drug treat-
ment programs are age-dependent (Fenwick and Webster, 2006),
the model is structured by the chronological age of human hosts,
which is denoted by a. Consider two parasite strains (i¼1,2) with
different drug resistance levels (characterized by yZ1 in later
sections). Let nðt,aÞ denote the number of human hosts of age a at
time t and piðt,aÞ denote the total number of adult parasites of
strain i carried by all human hosts of age a. Assume that adult
parasites piðt,aÞ may die naturally at a rate mp, be killed by age-
dependent drug treatments sðaÞ of human hosts at a rate f iðsðaÞÞ
(depending on the parasite strain i), or die due to the natural
death of human hosts at a rate mhðaÞ. A human host can acquire an
adult parasite at a rate proportional to the number of larvae
(cercariae) Ci with proportionality constant biðaÞ, depending on
the host age a. Because the mortality rate of humans due to
schistosomiasis is low (e.g., Kheir et al., 1999), we simply assume
that the per capita death rate of human hosts due to a parasite
infection is negligible, equal to zero. Following the framework due
to Anderson and May (1978) and Dobson (1985) (see Hadeler and
Dietz, 1983 and Hadeler, 1984 for partial differential equations
and the derivation in the case of one strain of parasites in
Appendix A), we have the partial differential equations for the
density functions n and pi:

@

@t
þ
@

@a

� �
nðt,aÞ ¼�mhðaÞnðt,aÞ,

@

@t
þ
@

@a

� �
piðt,aÞ ¼ biðaÞnðt,aÞCi�ðmhðaÞþmpþ f iðsðaÞÞpiðt,aÞ, ð1Þ
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together with the boundary conditions nðt,0Þ ¼Lh (birth rate of
human hosts), piðt,0Þ ¼ 0 (humans are born uninfected), and
initial conditions are nð0,aÞ ¼ n0ðaÞ, pið0,aÞ ¼ pi0ðaÞ for given
bounded functions with compact support. The parameters in the
equations are listed in Table 1. The natural mortality of human
host is considered because the model includes the demographic
process (birth and natural death) so that the human population
does not go to extinction when long-term dynamics (an evolu-
tionary time scale) are considered. It is also assumed that the
infection within a human host will persist as long as the adult
parasites remain inside the host and continue to lay eggs, and that
the mortality of parasites within the human host includes both a
natural death rate and an extra death rate due to drug treatment.

For the population dynamics of the intermediate snail host, we
include the possibility of coinfection of snails by different strains
of parasites. Assume that the double infection can occur only after
an infection by a single strain of parasites and that the order in
which coinfection occurs is irrelevant (Gower and Webster, 2005).
For simplicity, we do not allow coinfections with the same strain
of parasites, i.e., the coinfection rates rij ¼ 0 if i¼ j (Mosquera and
Adler, 1998). Under these assumptions, the snail population can
be divided into four epidemiological classes: uninfected snail
hosts (S), hosts infected only by parasites of strain i (Ii, i¼1, 2),
and hosts co-infected with both strains (I12). Following an
approach similar to that of Mosquera and Adler (1998), we can
describe the population dynamics for the intermediate snail host
using the following set of differential and integral equations:

d

dt
S¼Ls�ðr1M1þr2M2ÞS�msS,

d

dt
Ii ¼ riMiS�rjiMjIi�ðmsþdiÞIi,

d

dt
I12 ¼ r12M1I2þr21M2I1�ðmsþd12ÞI12,

Mi ¼ gi

Z 1
0

piðt,aÞ da, 1r ia jr2: ð2Þ

Here, Mi represents the number of free-swimming parasites
(miracidia) of strain i produced by adult parasites of strain i,
Pi ¼

R1
0 piðt,aÞ da at the per capita rate gi. All other parameters are

defined in Table 1.
The connection of the system (2) to the equations for the

variables n and pi in the system (1) is through the parasite

population (cercariae) Ci by the following equation:

Ci ¼ ciIiþc0iI12, i¼ 1;2, ð3Þ

which assumes that the number of strain i cercariae is propor-
tional to the number of snails infected by strain i parasites (both
singly infected and co-infected with the proportionality constants
ci and c0i, respectively).

Combining Eqs. (1)–(3) we have the following full model

@

@t
þ
@

@a

� �
nðt,aÞ ¼�mhðaÞnðt,aÞ,

@

@t
þ
@

@a

� �
piðt,aÞ ¼ biðaÞnðt,aÞCi�ðmhðaÞþmpþ f iðsðaÞÞpiðt,aÞ,

d

dt
S¼Ls�ðr1M1þr2M2ÞS�msS,

d

dt
Ii ¼ riMiS�rjiMjIi�ðmsþdiÞIi,

d

dt
I12 ¼ r12M1I2þr21M2I1�ðmsþd12ÞI12,

Ci ¼ ciIiþc0iI12, Mi ¼ gi

Z 1
0

piðt,aÞ da, 1r ia jr2, ð4Þ

with the initial and boundary conditions:

nðt,0Þ ¼Lh, nð0,aÞ ¼ n0ðaÞ, piðt,0Þ ¼ 0, pið0,aÞ ¼ pi0ðaÞ, i¼ 1;2:

We need to point out that in the model (4), we have ignored
coinfection in the human host. This is mainly because there is
little empirical information about the competition of different
strains of parasites within infected definitive hosts. There is also
an issue associated with mating of adult parasites within human
hosts for sexual production of the parasites (Xu et al., 2005;
Castillo-Chavez et al., 2008). These considerations will make the
analysis of the model extremely difficult.

To study the dynamics of the system (4) on the evolutionary
(long) time scale, we can simplify the mathematical analysis by
ignoring the transient dynamics and considering only the limiting
system which captures the asymptotical behaviors of system (4).
We show in Appendix B that the limiting system of (4) is given by

d

dt
S¼Ls�ðr1M1þr2M2ÞS�msS,

d

dt
Ii ¼ riMiS�rjiMjIi�msiIi,

d

dt
I12 ¼ r12M1I2þr21M2I1�ms12I12,

Mi ¼

Z 1
0
ðciIiðt�aÞþc0iI12ðt�aÞÞRhiðaÞ da, i,j¼ 1;2, ia j, ð5Þ

together with given initial value Sð0Þ ¼ S0 and initial functions
I0
i ðsÞ and I0

12ðsÞ for sr0. In the system (5), we have used the
following short-hand notations:

msi ¼ msþdi, ms12 ¼ msþd12, phðaÞ ¼ e�
R a

0
mhðwÞ dw,

mhiðaÞ ¼ mhðaÞþmpþ f iðsðaÞÞ, phiða,tÞ ¼ e�
R aþ t

a
mhiðwÞ dw,

RhiðtÞ ¼Lhgi

Z 1
0

biðaÞphðaÞphiða,tÞ da, Rhi ¼

Z 1
0

RhiðtÞ dt:

These notations have clear biological meanings. For example,
phðaÞ is the survival probability of human hosts of age a while
phiða,tÞ is the survival probability of an adult parasite in a human
host of age aþt who was infected t time units ago (i.e., t is the
infection age of the host). Therefore, RhiðtÞ gives the total number

Table 1
Definitions of variables and parameters (i¼1,2).

mhðaÞ Per capita natural death rate of human hosts at age a

mp Per capita natural death rate of adult parasites in human hosts

f iðsðaÞÞ Per capita death rate of adult parasites due to drug treatments sðaÞ of

aged-a human hosts

biðaÞ The transmission rate of a strain i cercaria to aged-a human hosts

Lh Recruitment rate of human hosts

Ls Recruitment rate of snail hosts

ms Per capita natural death rate of snail hosts

ri Infection rate of uninfected snail hosts by a strain i parasite

rji Rate at which a snail host that was infected with strain i parasites is

infected by a parasite of strain j (ja i); rij ¼ 0 if i¼ j

Z Efficiency of coinfection in intermediate snail hosts

di Per capita disease-induced death rate of singly infected hosts Ii

d12 Per capita disease-induced death rate of co-infected hosts I12

ci Releasing rate of infected snails Ii

c0i Rate at which co-infected snails I12 release strain i parasites

gi The reproduction rate of strain i adult parasites in infected human

hosts

yi Drug-resistance level of strain i parasites
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of strain i miracidia produced by adult parasites within all human
hosts with infection age t due to one cercaria, and Rhi gives the
total number of strain i miracidia produced by adult parasites in
all human hosts due to one cercaria.

Notice that susceptible snail hosts with the population level
fixed at Ls=ms totally release Lsrici=msmsi number of cercariae due
to one miracidium. The basic reproduction number of strain i

parasites is given by

Ri ¼
Lsrici

msmsi

Rhi: ð6Þ

It is shown in Appendix C that when only a single strain of
parasites (e.g., strain i) is present in the population, the popula-
tion dynamics is determined completely by the basic reproduc-
tion number Ri. That is, the disease-free equilibrium is globally
asymptotically stable if Rio1, and it is unstable if Ri41, in
which case a unique endemic equilibrium exists and is stable.

These results for the reduced system with a single strain of
parasites will be helpful for the study of invasion by a mutant
strain of parasites and the evolutionary outcomes of parasite
strains. In the next section, we will focus the limiting system (5)
and derive the invasion reproduction number (invasion fitness)
and investigate the evolution of parasites’ traits.

3. Invasion condition

In this section, we derive conditions under which a mutant
strain of parasites can prosper and invade in a resident parasite
population when a small number of mutants are introduced into
the population. For this analysis, we assume that the resident
parasite population has established itself at an equilibrium. This
equilibrium will correspond to a positive equilibrium in a reduced
system in which only one parasite strain is considered, but will
correspond to a boundary equilibrium in the full system (5) in
which both parasite strains are considered. Then, whether or not
an invasion by the mutant strain is successful can be determined
either by considering when the boundary equilibrium of the full
system (5) is unstable or by conducting an invadability analysis
based on information about the boundary equilibrium and the
invasion reproduction number. The latter approach seems to be
more biologically motivated than the former one (Bowers and
Turner, 1997; Bowers, 2000).

There are three possible boundary equilibria of system (5), the
parasite-free equilibrium:

Q0 ¼ ðLs=ms,0;0,0Þ,

the equilibrium at which only strain 1 is present:

Q1 ¼ ðS
n

1,In1,0;0Þ which exists if and only if R141,

and the equilibrium at which only strain 2 is present:

Q2 ¼ ðS
n

2,0,In2:0Þ which exists if and only if R241,

The expressions for the equilibrium population levels, Sn

i and Ini ,
are given in (26) in Appendix C, andRi are given in (6). It is shown
in Appendix D that the parasite-free equilibrium Q0 is stable if
Rio1 for both i¼1, 2, and it is unstable if eitherR141 orR241.
We assume in this section that both R1 and R2 are greater than
1 so that both of the boundary equilibria Q1 and Q2 exist.

Next, we derive the invasion conditions via the invadability
analysis. Consider strain 1 parasites as the residents, whose
population level has already stabilized at the equilibrium level
Q1 ¼ ðS

n

1,In1,0;0Þ, and strain 2 parasites as the invaders. We need to
determine the average reproduction number of a typical invader
in the environment set by the equilibrium Q1. Note that a typical
invader cercaria can produce miracidia in the number Rh2

through the definitive human host. These miracidia can infect

snails and consequently generate cercariae via two potential
paths: (i) by infecting the uninfected snails Sn

1 and (ii) by co-
infecting the infected snails In1. In path (i), the number of snails
infected by the miracidia Rh2 is given by r2Rh2Sn

1. These infected
snails may or may not become co-infected by resident parasites.
Suppose that an infected snail (by an invader miracidium)
remains singly infected for an average time T2 and co-infected
for an average time T12. Then the probability that the infected
snail dies while being singly infected is ms2T2, and the probability
of dying while being co-infected is ms12T12. Therefore,

ms2T2þms12T12 ¼ 1: ð7Þ

Notice that the average time T2 can be determined directly by the
total rate ms2þr12c1Rh1In1 (at which infected snails I2 leave the
class I2 either dying or being co-infected), i.e.,

T2 ¼
1

ms2þr12c1Rh1In1
: ð8Þ

Then T12 can be determined from (7) as

T12 ¼
r12c1Rh1In1

ms2þr12c1Rh1In1

1

ms12

: ð9Þ

Therefore, when the number of susceptible snails available to
invading miracidia is Sn

1, a typical invader cercaria can reproduce
the following number of cercariae:

ðc2T2þc02T12Þr2Rh2Sn

1: ð10Þ

In path (ii), the number of snails infected by resident parasites is
In1. These infected snails can be co-infected by the invading
miracidia Rh2 produced by adult parasites due to one invader
cercaria, and remain being co-infected for an average time 1=ms12.
Thus, through path (ii) a typical invader cercaria can reproduce
the following number of cercariae:

c02r21Rh2In1
ms12

: ð11Þ

Therefore, from (10) and (11) with T2 and T12 being replaced by
(8) and (9), the total reproduction number of an invader cercaria
is given by

R21 ¼
c2 r2Rh2Sn

1

ms2þr12c1Rh1In1
þ
r12c1Rh1In1c02r2Rh2Sn

1

ðms2þr12c1Rh1In1Þms12

þ
c02r21Rh2In1

ms12

:

ð12Þ

It is clear from the deduction of R21 that if R2141, a small
number of invaders can start a growing population and hence the
invasion will be successful in the environment Q1 set by the
residents. Therefore, the quantity R21 can be used as a measure of
the fitness of invading parasites. We call R21 the invasion
reproduction number (or invasion fitness) for strain 2 parasites.

From the symmetry between the two parasite strains, we can
derive an invasion reproduction number R12 for the parasites of
strain 1:

R12 ¼
c1r1Rh1Sn

2

ms1þr21c2Rh2In2
þ

r21c2Rh2In2c01r1Rh1Sn

2

ðms 1þr21c2Rh2In2Þms12

þ
c01r12Rh1In2

ms12

,

ð13Þ

which determines whether or not strain 1 parasites can invade
the population of strain 2 parasites.

The results given below show that the invasion reproduction
numbers R21 and R12 actually determine the stability of the
equilibria Q1 and Q2, respectively. The proof of the first result is
given in Appendix D.

Result 1. Let R21 be as defined in (12). The equilibrium Q1 is
stable if R21o1 and it is unstable if R2141.

D. Xu et al. / Journal of Theoretical Biology 304 (2012) 197–210200
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Result 2. Let R12 be as defined in (13). The equilibrium Q2 is
stable if R12o1 and unstable if R1241.

These results allow us to use the invasion reproduction
numbers Rij ði,j¼ 1;2,ia jÞ to investigate the evolutionarily stable
strategies for parasite’s traits.

4. Evolution of parasites

For the study of evolution of parasites presented in this
section, we have chosen the approach of adaptive dynamics (for
other applications of this approach, see Metz et al., 1996; Geritz
et al., 1997, 1998). We focus on the long-term evolutionary
equilibrium of the parasite’s resistance to drug and virulence to
the intermediate host. The adaptive dynamics approach allows for
the decouple of the ecological/epidemiological and evolutionary
time scales by assuming that mutations are rare and ecological/
epidemiological dynamics of the population reaches its asympto-
tical state before some new mutants appear (Gandon and Day,
2009). This assumption leads to an evolutionary analysis simply
based on the mutants’ fitness in the environment prescribed by
the resident population, and hence significantly simplify the
mathematical analysis. This approach does not consider any
genetic details related to parasites’ traits (which are often
unknown) and hence circumvents the intricacies of Mendelian
inheritance (Geritz et al., 1998). However, it has been shown that
the approach can produce compatible predictions in comparison
with other genetic methods (see Geritz et al., 1998 and the
reference therein). It is worthwhile to point out that the actual
evolutionary changes in parasites’ mean fitness may be studied
using the approach proposed by Gandon and Day (2009).

In our evolutionary analysis, the measure we use for mutants’s
(invasion) fitness is the invasion reproduction number R21 as
given in (12). For ease of presentation, we replace the subscripts
i¼1, 2 for parasite strains by i¼r, m (r for a resident strain and m

for a mutant strain), and use the following notation for R21:

Rðm,rÞ ¼
cmrmRhmSn

r

msmþrrmcrRhrInr
þ
rrmcrRhrInr c0mrmRhmSn

r

ðmsmþrrmcrRhrInr Þmsrm

þ
c0mrmrRhmInr

msrm

:

ð14Þ

According to Result 1, if Rðm,rÞ41 ðo1Þ, then the mutant strain
can invade successfully and prosper (can not invade) in the
population of a resident strain. A strategy rn is an evolutionarily
singular strategy if the gradient dRðm,rÞ=dm is zero at m¼ r¼ rn

(e.g., Metz et al., 1996; Geritz et al., 1997, 1998). An evolutionarily
singular strategy rn is stable if Rðm,rnÞ is maximized at m¼ rn,
where it equals 1. The parasite strain with ESS as a resident strain
can not be out-competed by invaders of other strains.

Our assumptions on parasites’ trade-offs, which will be
reflected by functional relationships between model parameters,
are mostly based on empirical studies (e.g., Davies et al., 2001,
2002; Sturrock, 2001; Gower and Webster, 2004, 2005; Massara
et al., 2004; Webster et al., 2004, 2008). These trade-off assump-
tions will allow us to investigate how drug treatments of human
hosts and coinfection of the intermediate host affect the ESS in
terms of the parasite’s drug resistance and virulence to the
intermediate host. Assume that the level of drug resistance of
parasites is characterized by the parameter yiZ1. The effect of
resistance is reflected in the reduced parasite killing rate
f iðsðaÞÞrsðaÞ, where sðaÞ is the age-dependent drug treatment
rate. A simple example of the function fi, as used in Xu et al.
(2005) and Castillo-Chavez et al. (2008), could be

f iðsðaÞÞ ¼
sðaÞ
yi

:

For a drug resistant parasite strain i, it is assumed that yi41 due
to the fact that drug sensitive parasite strains are less fit than
resistant strains in the presence of human drug treatments. For
presentation purposes, the results described in this section are for
the case of constant (i.e., age-independent) drug treatment rate s.
The case of age-dependent treatment sðaÞ will be discussed in
Section 5. We also assume that high drug resistance is associated
with low reproduction rates gi in the definitive host (Webster
et al., 2008) and describe the rate gi by a decreasing function:

gi ¼ gðyiÞ ¼ g0gðyiÞ, i¼ 1;2,

where g040 is a constant. We will consider three types of
functions for gðyÞ: linear, convex–concave and concave. See
Fig. 1 (right) for the shapes of these functions.

Field studies show that the risk of schistosome infection
depends on the age of the definitive human hosts and the age
of peak infection also varies according to the prevalence level of
the disease (Homeida et al., 1988; WHO, 1989; Sturrock, 2001;
Massara et al., 2004; Deribe et al., 2011). For ease of numerical
simulations we consider the parasites’ transmission rate biðaÞ to
be a piece-wise function of age a:

biðaÞ ¼
biyj if 10ðj�1Þoar10j, j¼ 1;2, . . . ,7,

0 if a470:

(

Here, the constant bi represents the background transmission rate
of strain i parasites, and the multipliers yj have fixed values
dependent on the age group j. Fig. 1(left) shows the multipliers yj

versus age a that we used in numerical simulations.
For the infection rates of snail hosts, we assume that the rates

for single infection and coinfection are different. The rates of
single infections ri are equal to a constant, i.e,

r1 ¼ r2 ¼ r0:
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Fig. 1. The left figure is a plot of multipliers yi versus the age of human hosts. The parasites’ transmission rate biðaÞ to human hosts is given by the product of yj and a

background transmission rate bi. The figure on the right is a plot of the function gðyÞ versus the drug resistance level y for the reproduction rate of adult parasites in human

hosts gi ¼ g0g . In numerical simulations, gðyÞ ¼ ð9�yÞ=8 for the linear trade-off, gðyÞ ¼ ð0:55þ1=ð8e1:5y�8þ1ÞÞ=1:55 for the convex–concave trade-off, and

gðyÞ ¼ 4=3�y2=ð2þy2
Þ for the concave trade-off and g0 ¼ 9000 per year.
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However, the coinfection rates rij ði,j¼ 1;2,ia jÞ are assumed to
be an increasing function of the difference in levels of drug
resistance 9y1�y29 (Gower and Webster, 2005). Here we simply
assume that the coinfection rates of snail hosts take the following
form:

r12 ¼ r21 ¼ rðxÞ ¼ Zr0

xn

0:2þxn
, ð15Þ

where x¼ 9y1�y29 and Z measures the relative efficiency of
coinfections (cf. Levin and Pimentel, 1981), which allows us to
study how coinfections affect the ESS. The parameter n deter-
mines whether rij is differentiable with respect to y2 at y2 ¼ y1.
We will present the evolutionary results for differentiable and
non-differentiable coinfection functions separately in two
subsections.

Note that bi represents the infection rate of the definitive host
and ci is the parasite (cercariae) production rate. From the formula
for the invasion reproduction number Rðm,rÞ (which is expressed
in terms of Rh), we notice that bi and ci always appear in the
product form bici in Rðm,rÞ. Although empirical studies (Davies
et al., 2001; Gower and Webster, 2004) show that the parasite
virulence di is negatively correlated to ci and positively correlated
to bi, it is not clear how the product bici changes with di. To
simplify the analysis, we assume a trade-off between di and the
product bici denoted by

cibi ¼ TcbðdiÞ, i¼ 1;2, ð16Þ

where TcbðdÞ is a function which can be either an increasing or a
decreasing function of d.

For the case of coinfection, depending on how coinfection may
affect the reproduction c0i in comparison to ci for parasite strain i,
there are three possible relationships between the products c0ibi

and cibi ði¼ 1;2Þ which can be described by

c01b1þc02b2 ¼ xðc1b1þc2b2Þ ð17Þ

with x being smaller than, greater than, or equal to 1. For ease of
reference, we introduce the definitions: the case of xZ1 is
referred to as facilitation, whereas the case of xo1 is referred to
as competitive suppression. As for the trade-off between reproduc-
tion and virulence of parasites within coinfected snail hosts,
based on the finding that low virulent strains can have competi-
tive advantages over high virulent strains within the intermediate
host (Gower and Webster, 2005) we assume the following links
between c0ibi and dj:

c0ibip
dj

d1þd2
, 1r ia jr2, ð18Þ

with the proportionate constant equal to xðc1b1þc2b2Þ ¼

x½Tcbðd1ÞþTcbðd2Þ�. That is, combining (17) and (18) we have

c0ibi ¼ x½Tcbðd1ÞþTcbðd2Þ�
dj

d1þd2
, 1r ia jr2: ð19Þ

We are now ready to discuss the ESS of the parasites and
identify optimal levels of drug resistance (y) and virulence (d).
Denote a singular strategy by rn ¼ ðyn,dn

Þ. Then it satisfies

@Rðm,rÞ

@dm

����
m ¼ r

¼ 0,
@Rðm,rÞ

@ym

����
m ¼ r

¼ 0: ð20Þ

From the first equation, together with the constraint on coinfec-
tion of snail hosts, rij ¼ 0 for i¼ j, it follows that

dðcmbmÞ

ddm
¼

cmbm

msm

,

from which the virulence dn can be obtained. Note that cmbm=msm

is positive. Thus, this dn exists only if the product cmbm, as a trade-
off function of virulence dm, is an increasing function and dn is
evolutionarily stable if cmbm is a concave function. As in the case
of directly transmitted diseases (e.g., Pugliese, 2002; Svennungsen
and Kisdi, 2009), one can study how the shape of the trade-off
function cmbm and/or an increase in snail mortality (due to snail
control efforts) affect the virulence dn to snail hosts.

The ESS resistance level yn can be calculated by substituting
the value of dn into the second equation of (20) in the case where
the coinfection rates rij given in (15) is differentiable with respect
to y2 at y2 ¼ y1 (e.g., n¼2). The evolutionary stability and
convergence of the ESS point will be examined by the second
derivatives of the invasion reproduction number R and pairwise
invadability plots (PIP) (Metz et al., 1996; Geritz et al., 1997,
1998). In the case where the coinfection rates rij is not differenti-
able (e.g, n¼1), we substitute the value of dn into the expression
(14) of R and then directly use PIP to study the ESS resistance yn.

The above analysis can help to guide numerical simulations for
identifying the ESS. Consider the case in which TcbðdÞ (see (16)) is
an increasing function of the form:

TcbðdÞ ¼ c0b0

1:5d2

0:5d2
0þd

2
,

where c0, b0 and d0 are constants. Then, for biologically reason-
able parameter values (see the caption of Fig. 2), dn can be
computed and is equal to 2.873, which is smaller than the
background virulence value 3.5. In this case, the coinfection
efficiency Z and drug treatment rate s have no impact on dn. In
the following we separately present our results according to the
differentiability of the coinfection functions rij.

4.1. Differentiable coinfection functions

In the case when the coinfection rates rij (given in (15) for
n¼2) are differentiable, numerical simulations and PIPs (see
Fig. 2) show that there exists an evolutionarily convergent ESS
yn. That is, in evolutionary time the drug resistance level yn tends
to be approached.

To introduce PIPs, let us consider the case of the linear trade-off
curve gðyÞ (see Fig. 1 for trade-off curves). When there is no
coinfection (i.e., Z¼ 0) (Fig. 2A), any resident strain of parasites
with drug resistance y less than the ESS yn can be invaded by some
more drug-resistant strains, not by any less resistant strain. Any
resident strain with drug resistance level y4yn can be invaded by
less resistant strains. Only yn is not invadable and thus it is
evolutionarily convergent and stable. In this case, yn is the evolu-
tionary endpoint (in the sense of evolutionary convergence and
stable stability) and dimorphism or polymorphism is not possible.
Fig. 2B is for the case of facilitation (xZ1) and when coinfections
are allowed (i.e., Z40). It illustrates that the ESS yn is invadable
and hence evolutionarily unstable. In this case, an initially mono-
morphic population will become dimorphic or even polymorphic,
and the ESS yn is called a branching point. Fig. 2C is for the case of
competitive suppression (xo1), and it shows that the ESS yn is
evolutionarily stable and hence is an evolutionary endpoint.

When the trade-off curve g is linear, the PIPs reveal the
following observations (Fig. 2A–D). The first observation is that
variations in the coinfection efficiency Z or in x do not affect the
drug resistance level yn at ESS (see Fig. 2A–C). However, high
coinfection efficiencies (Z) and reproduction (xZ1) can alter the
evolutionary stability of yn and hence make it more likely to have
dimorphism or polymorphism (Fig. 2B). Our numerical simula-
tions also show that, in the case of competitive suppression
(xo1), an increase in the coinfection efficiency Z or a decrease
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in x tends to stabilize the ESS point yn and inhibit dimorphism as
an evolutionary endpoint (e.g. Fig. 2C). The second observation is
that if two strains exhibit facilitation within intermediate hosts
(xZ1), the drug treatment rate s tends to stabilize the ESS point
yn and promote monomorphism as the final evolutionary result
(Fig. 2B and D). In contrast, our simulations show that drug
treatment does not change the stability of the ESS point in the
case of competitive suppression xo1.

Similar observations can be made for the case of convex–
concave trade-off (Fig. 2E–H). A noticeable difference between the
linear and convex–concave trade-offs for low treatment rates (i.e.,
Fig. 2A–C versus E–G, or see Fig. 3) is that the resistance level yn at

the ESS is higher in Fig. 2E–G. Recall that the convex–concave
trade-off corresponds to a relatively lower cost for drug resistance
(see Fig. 1). This suggests that even under moderate treatment
rates, higher levels of drug resistance will still be likely to develop
if the cost for drug resistance is low.

When the cost for drug resistance is relatively high as
illustrated by the concave trade-off curve g shown in Fig. 1, there
are usually two ESS points, denoted by yn and y and as shown in
Fig. 4. The point y is evolutionarily unstable and divergent; and
hence, it is unattainable and acts as an evolutionary repeller. The
other point ynoy is evolutionarily stable and convergent. There-
fore, when a small variation in drug resistance is present, yn will
be the final evolutionary endpoint. Fig. 4 also shows that when
higher levels of drug resistance are allowed, the evolutionary
result is expected to show either monomorphism of the strain
with resistance yn or the most resistant strain (depending on the
shape of g). Again, these outcomes are the consequence of the
specific feature associated with the trade-off function gðyÞ being
concave (see Fig. 1). Notice from Fig. 1 that g decreases much
more quickly with y for yo3:5 than for y43:5. This is, higher
costs will be expected for an increase in drug resistance when y is
small. Therefore, for smaller values of y, an optimal resistance yn

will likely to be at an intermediate level (yno2:5, see Fig. 3). On
the other hand, when y is large (greater than the critical level y),
due to the moderate cost the parasite may also develop higher
levels of resistance.

From our numerical experiments we also noticed that the
coinfection parameters Z, x and the treatment rate s have little
impact on the evolutionary stability of the ESS yn, implying that
the structure of one stable and one unstable ESS is persistent.

4.2. Non-differentiable coinfection functions

When the coinfection functions rij are not differentiable (see
(15) for n¼1), we use the linear trade-off g to illustrate the

Fig. 2. Pairwise invadability plots (PIP) when the coinfection function rij given in (15) is differentiable (n¼2) with respect to y2 at y2 ¼ y1. The invasion fitness Rðm,rÞ is

greater than 1 in the shaded regions and less than 1 in the unshaded regions. A–D are for the linear trade-off function gðyÞ while E–H are for the convex–concave trade-off

function gðyÞ. Except parameter values listed in the graphs, all others are Lh ¼ 8, mh ¼ 0:014, Ls ¼ 25, r0 ¼ 2� 10�9, ms ¼ 0:5, c0 ¼ 28 000, b0 ¼ 0:000027, d0 ¼ 3:5. The time

unit of the parameters is per year and most of these parameter values are taken from Feng et al. (2004).
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evolution of drug resistance. Unlike in the previous cases in which
there is only a single ESS point, there are now two ESS points,
which we denote by yn and yn as shown in Fig. 5. We observe
from the plots in Fig. 5 that if a resident parasite strain has a drug
resistance level below yn, then it can be invaded by any parasite
strain that has a higher level of drug resistance. If a resident strain
has a resistance level above yn, then it can be invaded by any
parasite strain that has a lower resistant level. Therefore, yn and
yn are evolutionarily convergent and attainable either from left or
from right.

Fig. 5A is for the case of x41 (competitive facilitation). It
illustrates that all strategies between yn and yn are invadable.
Hence, the evolutionary outcome can be dimorphism or even
polymorphism with drug resistance levels being in the range
½yn,yn

�. In contrast, monomorphism is expected for the case of
xo1 (competitive suppression) as demonstrated in Fig. 5B–D.
Fig. 5B and C is for different values of the coinfection efficiency Z.
It shows in Fig. 5B that a resident strain with resistance level
yA ½yn,yn

� is capable of preventing an invasion by mutant strains,
and hence the evolutionary outcome can be a monomorphism
with a resistance level in ½yn,yn

�. As Z increases (Fig. 5C), yn and yn

can become invadable. Fig. 5C and D compares the outcomes for
different values of s (drug treatment), and they show that an
increase in s tends to stabilize yn and yn.

In Fig. 6, we examine how the length of the interval ½yn,yn
�may

depend on other factors such as Z and s. The curves in Fig. 6 show

the changes of the ESS points yn and yn with Z (A and C) or s
(B and D). For both the case x41 (A and B) and the case xo1
(C and D), it shows that the interval ½yn,yn

� increases with Z but
decreases with s (except for very small s). All parameter values
are the same as in Fig. 2 except those listed on the graphs.

5. Discussion

Traditionally, theoretical studies on the evolution of pathogens
assume positive associations between virulence and parasite
replication rate, and between parasite replication rate and trans-
mission success (Anderson and May, 1981; Frank, 1992, 1996;
Bull, 1994; Mackinnon and Read, 1999). However, relatively
recent empirical work demonstrated that the reproductive suc-
cess of schistosomes in the definitive mouse host was strongly
inversely related to the reproductive success in the intermediate
snail host (Davies et al., 2001; Gower and Webster, 2004; Webster
et al., 2008). Moreover, parasite reproductive output from snails
was negatively correlated with both virulence (within snails) and
transmission success to mice. These findings were both unex-
pected and exciting as they differed from the predictions emer-
ging from traditional virulence theory (e.g., Frank, 1992, 1996;
Bull, 1994). Motivated by these findings, we developed a math-
ematical model that includes both coinfections of snail hosts and
parasites’ drug resistance in human hosts. Armed with the
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assumptions mainly based on a series of empirical studies (Chan
et al., 1995; Davies et al., 2001; Gower and Webster, 2004, 2005;
Webster et al., 2008), we investigated the impacts of human drug
treatments and coinfections of intermediate snail hosts on the
evolutionarily stable strategy (ESS) of schistosome drug resistance
y and the virulence d to the intermediate snail host.

Our results suggest that the impact of human drug treatments
(s) and coinfections of intermediate hosts (represented by the
parameter Z in the analysis) on ESS points may depend on other
factors, three of which are discussed here. The first factor
concerns the level of cost for parasites’ resistance to the drug
(described by the function gðyÞ). Relatively low and high costs are
represented by convex–concave, linear and concave curves,
respectively (see Fig. 1). The second factor is the relationship
between the coinfection rates rij and the difference in drug
resistance levels 9y2�y19 (see (15)). Two scenarios based on the
properties of the function in (15) are presented in Sections 4.1 and
4.2, which illustrated that the conclusions under these two
scenarios can be dramatically different (more details are sum-
marized below), which suggest the importance and need for field
studies that can help determine accurate relationships between
the factors such as coinfection rates and resistance levels. The
third factor is related to whether the effect of coinfection on
parasite reproduction is in the form of facilitation (xZ1) or
competitive suppression (xo1).

One of the main conclusions of this study is that when the
cost for parasites’ drug resistance is low (gðyÞ is linear or

convex–concave), coinfection of the intermediate host (Z) tends
to destabilize the ESS point yn and promotes di- or polymorph-
ism in the case of facilitation (xZ1), while stabilizing the ESS
and promoting monomorphism in the case of competitive
suppression (xo1) (see Figs. 2 and 5). The role of drug
treatment (s) is very different. Although the ESS may be
destabilized in the case of xZ1, s has little effect on the
stability of the ESS in the case of xo1. In contrast to the above,
when the cost for resistance is relatively high (gðyÞ is concave),
the outcomes are dramatically different in the sense that both
coinfection (Z) and treatment (s) have very little impact on the
stability of the ESS points (see Fig. 4).

It should be noted that the different outcomes mentioned above
in terms of whether polymorphism or monomorphism will be
expected are direct consequences of whether the parasites exhibit
facilitation (xZ1) or competitive suppression (xo1) within snail
hosts. In the case of facilitation, coinfected snails release more
parasites than singly infected snails; and thus, the parasites may
improve their fitness by increasing the frequency of coinfection
with other parasites with different levels of drug resistance. In the
case of competitive suppression, the parasites do better in singly
infected snail hosts; and thus, monomorphism is expected. Which
strategies will be adopted by parasites may depend on specific
host–parasite interactions. For example, the study on malaria
parasites in Hastings (2006) shows that drug resistance rarely goes
to fixation in a population under frequency-dependent competi-
tion. For schistosome parasites, empirical studies have shown that
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D. Xu et al. / Journal of Theoretical Biology 304 (2012) 197–210 205



Author's personal copy

snails exposed to mixed strains of parasites release more parasites
than those exposed to a single strain of parasites (e.g., Davies et al.,
2002). Therefore, schistosome parasites may exhibit facilitation
within the intermediate host. Further empirical studies are needed
to examine the drug sensitivity of the parasites.

Another conclusion in this study is about the effect of coin-
fection (Z) and treatment (s) on the ESS levels of drug resistance
(yn and/or yn). It may depend on model assumptions and para-
meter values. For example, we considered the second factor
mentioned above and presented our results under two different
assumptions on the coinfection function (15) (i.e., the relationship
between the coinfection rates rij and the level of drug resistance).
We showed that while the coinfection efficiency (Z) may have
little effect on the level yn of drug resistance when the coinfection
function in (15) is differentiable (see Section 4.1), the length of
the ESS interval ½yn,yn

� will depend on the magnitudes of Z, x, and
s (see Fig. 6). Other recent studies from different fields have
suggested that coinfection may result in suppression of resistant
pathogens (e.g., Hastings, 2006; Torella et al., 2010; Chmielecki
et al., 2011; Read et al., 2011). The implication of the results in
both our study and others is that whether or not and how the
evolution of drug resistance will depend on coinfection and drug
treatment may vary for different host–parasite systems, and that
it is necessary to identify other relevant factors that may alter the
predictions on the evolutionary trajectory.

We point out that, when considering the role of coinfections in
our ESS analysis (see Section 4) we have focused mainly on
coinfections in the intermediate snail hosts. Coinfections in
human hosts may also be an important factor in the evolution
and spread of parasites’ drug resistance. It has been demonstrated
that, in the presence of drug treatment, coinfections in human
hosts can lead to a substantial competitive release of drug
resistant parasites, which may accelerate the spread of drug
resistance (e.g., Wargo et al., 2007; Huijben et al., 2010). As
resistance spreads and coinfection frequently occurs, parasites’
competition for resources may also constrain the prevalence of
resistance because of the declining intrahost selection for resis-
tance (Hastings, 2006). Given the fact that an infected snail often
harbours a number of different parasite genotypes in the field
(Sire et al., 1999; Eppert et al., 2002) and that mixed genotype
infections lead to increased reproduction rates of the parasite
(Davies et al., 2002), it is not clear whether or not the properties
of ESS points can be affected if the parasites’ competition for
resources within snail hosts is incorporated in our model, espe-
cially when a trade-off may exist between parasites’ competition
ability in the intermediate snail host and other parasites’ traits in
the definitive human host. In the absence of these trade-offs, one
might expect a lower level of yn based on the same argument as
that for parasite competition within human hosts. For schistosome

parasites, there also exists mating competition: males can
pull paired females away from their partners although homo-
specific females are preferred (Cosgrove and Southgate, 2002).
These competitions (within both human and snail hosts) have
not been explicitly incorporated in our model. Further theoretical
and empirical studies are needed in order to improve the
model.

The evolutionary result of a parasite–host system usually
depends on trade-offs between benefits and costs of the system
(e.g., Boots and Haraguchi, 1999). It is even difficult to measure
the shapes of trade-off curves due to lack of empirical data. In our
numerical experiments, except for the trade-offs presented in
Section 4 we also checked the evolutionary outcomes in the case
of decreasing trade-off functions TcbðdÞ. We found that these
different trade-off assumptions do not bring any qualitative
changes in the ESS yn except that the quantity of yn becomes
much larger, which we believe is unrealistic.

Our model can be applied to study the impacts of age-
dependent drug treatment programs (Colley et al., 2001;
Fenwick et al., 2003). If drugs are distributed according to the
infection risks of human hosts (e.g., given by the parasites’
transmission rate biðaÞ), the model simulations show that the
treatments usually result in a little higher drug resistance yn than
those in the case of uniform (age-independent) treatments, acting
as the role of higher uniform treatment rates. However, the drug
resistance level at the ESS yn could be very low for treatment
programs targeting at a specific age group of hosts like school-age
children (Colley et al., 2001). This is because untreated patients
functioning as refuges transmit drug sensitive parasites. A
detailed study on the impacts of age-targeted treatment strate-
gies will be presented elsewhere. Instead of age-targeted treat-
ments one could study the effect of treatment strategies based on
a threshold level of parasites within human hosts (i.e., sympto-
matic treatments). From the simulations we carried out under
various scenarios of age-targeted treatments, we expect that
symptomatic treatment tends to reduce the development of drug
resistance (depending on the threshold level of parasites).

The parasite virulence considered in this study has been
limited to intermediate hosts. We remark that although the
virulence to human hosts is very low in terms of the disease
mortality, it may be an interesting question to study when the
morbidity caused by schistosomiasis is considered as a measure
for parasite virulence. This question is relevant as the issue of
drug resistance is clearly related to the high morbidity of the
disease. To incorporate disease morbidity in the analysis pre-
sented in this paper, it may require the information about a stable
endemic equilibrium of the model, which will be a very challen-
ging task due to the complexity of the model. One way to do this
is to first simplify our model by considering only the definitive
host (i.e., ignoring the intermediate host). In any case, the main
contribution of this study lies in its attempt to analyze a model
which includes many details of the interaction between hosts and
a parasite with a complex life cycle.
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Appendix A. Derivation of Eq. (1)

The derivation of system (1) for two strains of parasites is the
same as that for one strain of parasites. For writing convenience,
we here consider one strain of parasites. Let Hðt,a,xÞ be the
number of human hosts of age a at time t, carrying x adult
parasites. Assume that the rate at which a human host acquires
one adult parasite is proportional to the number C of the larvae
cercariae with proportionality constant bðaÞ, depending on the
age a of the host. Then parasites in a host may increase from x�1
to x because of acquiring a new parasite at rate bðaÞC, and
decrease from xþ1 to x because of the natural death of one
parasite at rate mp, or being killed by drug treatments at rate
f ðsðaÞÞ, where sðaÞ represents drug treatments. Of course, all
parasites in a host die if the host dies. Human hosts die naturally
at a rate mhðaÞ (note that the per capita death rate of human hosts
due to one parasite infection is assumed to be zero). Following
frameworks by Anderson and May (1978) (see also Dobson, 1985
for the case of ordinary differential equations and Hadeler and
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Dietz, 1983; Hadeler, 1984 for the case of partial differential
equations), we have the following infinite system of equations for
Hðt,a,xÞ

@

@t
þ
@

@a

� �
Hðt,a,xÞ ¼ bðaÞCHðt,a,x�1Þþðmpþ f ðsÞÞðxþ1ÞHðt,a,xþ1Þ

�ðbðaÞCþmhþðmpþ f ðsÞÞxÞHðt,a,xÞ ð21Þ

for xZ1, and

@

@t
þ
@

@a

� �
Hðt,a,0Þ ¼ ðmpþ f ðsÞÞHðt,a,1Þ�ðbðaÞCþmhÞHðt,a,0Þ ð22Þ

for x¼0.
Let nðt,aÞ denote the total number of human hosts of age a at

time t and pðt,aÞ denote the total number of adult parasites
carried by human hosts of age a at time t. Then

nðt,aÞ ¼
X1
x ¼ 0

Hðt,a,xÞ, pðt,aÞ ¼
X1
x ¼ 1

xHðt,a,xÞ:

Adding Eqs. (21) and (22) we have

@

@t
þ
@

@a

� �
nðt,aÞ ¼ �mhnðt,aÞ,

@

@t
þ
@

@a

� �
pðt,aÞ ¼ bðaÞnðt,aÞC�ðmhþmpþ f ðsÞÞpðt,aÞ,

which are the same as Eq. (1) (except the subindex i).

Appendix B. Reduction to the limiting system

Note that the nðt,aÞ equation in the model (4) is independent of
other variables. Integrating the equation along characteristic
lines, leads to

nðt,aÞ ¼

LhphðaÞ, tZa,

n0ða�tÞ
phðaÞ

phða�tÞ
, toa

8><
>: ð23Þ

Substituting the expressions of nðt,aÞ into the piðt,aÞ equation and
integrating the equation yields

piðt,aÞ ¼

Lh

R a
0 biðwÞCiðtþw�aÞphðwÞ

phiðaÞ

phiðwÞ
dw, tZa,

pi0ða�tÞ
phiðaÞ

phiða�tÞ

þ
R a

a�t biðwÞCiðtþw�aÞn0ða�tÞ
phiðaÞ

phiðwÞ

phðwÞ

phða�tÞ
dw, toa:

8>>>>>>><
>>>>>>>:

Denote the solution as

piðt,aÞ ¼
q1ðt,aÞ, tZa,

q2ðt,aÞ, toa

(
ð24Þ

Then

Mi ¼ gi

Z 1
0

piðt,aÞ da¼ gi

Z t

0
q1ðt,aÞ daþgi

Z 1
t

q2ðt,aÞ da:

Notice that the total population size of intermediate hosts is
bounded by either Ls=ms or the initial population size. From the
biological meanings of mh, mhi and the initial functions pi0, n0, it
follows that the last integral in the above formula goes to zero as
t-1. Thus, in the limit situation we have

Mi ¼ gi

Z 1
0

q1ðt,aÞ da

¼ gi

Z 1
0

Lh

Z a

0
biðwÞCiðtþw�aÞphðwÞphiðaÞp�1

hi ðwÞ dw da

¼ giLh

Z 1
0

Z 1
w

biðwÞCiðtþw�aÞphðwÞphiðaÞp�1
hi ðwÞ da dw

¼ giLh

Z 1
0

Z 1
w

biðwÞCiðtþw�aÞphðwÞphiðaÞp�1
hi ðwÞ da dw

¼ giLh

Z 1
0

Z 1
0

biðwÞCiðt�aÞphðwÞphiðaþwÞp�1
hi ðwÞ da dw

¼ giLh

Z 1
0

Ciðt�aÞ

Z 1
0

biðwÞphðwÞphiðwþaÞp�1
hi ðwÞ dw da

¼ ci

Z 1
0

Iiðt�aÞRhiðaÞ daþc0i

Z 1
0

I12ðt�aÞRhiðaÞ da:

Substituting the expression for Mi into the S, Ii and I12 equation in
model (4), we have the limiting system (5). From (23) and (24)
and Ci ¼ ciIiþc0iI12, we know that as t-1,

nðt,aÞ-LhphðaÞ,

piðt,aÞ-Lh

Z a

0
biðwÞðciIiðtþw�aÞþc0iI12ðtþw�aÞÞphðwÞ

phiðaÞ

phiðwÞ
dw:

Therefore, the asymptotic behavior of piðt,aÞ can be determined
once the behaviors of Ii(t) and I12ðtÞ are determined. Thus, it is
enough to study the limiting system (5) in order to investigate the
equilibria of model (4) and their stabilities.

Appendix C. Stability analysis of the single
strain infection model

By setting the coinfection rates rij ¼ 0, which implies that
I12 ¼ 0, one can obtain the single strain infection model from
model (4) and its limiting system is given by

d

dt
S¼Ls�ri

~MiS�msS,

d

dt
Ii ¼ ri

~MiS�msiIi, ð25Þ

where ~Mi ¼ ci

R1
0 Iiðt�aÞRhiðaÞ da. Setting the right side of system

(25) equal to zero, we have the disease-free equilibrium and an
interior equilibrium:

E0 ¼ ðS
0,I0

i Þ ¼
Ls

ms

,0

� �
,

Ei ¼ ðS
n

i ,Ini Þ ¼
Ls

ms

1

Ri
,
Ls

msi

1�
1

Ri

� �� �
, ð26Þ

if the reproductive number Ri41, where

Ri ¼
LsriciRhi

msmsi

:

Claim 1. The disease-free equilibrium E0 for the single strain model

(25) is stable if Rio1 and unstable if Ri41. In the later case, there

exists a unique endemic equilibrium Ei which is stable. Moreover, E0

is also a global attractor whenRio1, i.e., limt-1ðSðtÞ,IiðtÞÞ ¼ E0 with

Sð0ÞZ0,Iið0ÞZ0.

Proof. Linearizing the system (25) at an equilibrium point ð ~S,~I iÞ

we can obtain a linear system for the perturbations of S and Ii. For
the linear system we look for the exponential solutions z0elt and
end up with an eigenvalue problem J1z0 ¼ 0. Here z0 is a constant
two-dimensional vector and the matrix J1 is given by

J1 ¼
�l�ms�riciRhi

~I i �riciR̂hi
~S

riciRhi
~I i �l�msiþriciR̂hi

~S

 !
: ð27Þ

Here, R̂hi ¼
R1

0 RhiðaÞe
�la da. Obviously, R̂hioRhi for lZ0 and

ðd=dlÞR̂hio0.
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Stability of E0. By evaluating the determinant of J1 at the

disease-free equilibrium E0, we have the characteristic equation:

ðlþmsÞ lþmsi�riciR̂hi
Ls

ms

� �
¼ 0: ð28Þ

That is, either l¼�ms or

gðlÞ ¼ lþmsi�riciR̂hi
Ls

ms

¼ 0,

Note that ðd=dlÞR̂hio0. The function gðlÞ is an increasing func-

tion. Therefore gðlÞ has no positive real zeros if ð0Þ40 and one

positive real zero if gð0Þo0. Note that

gð0Þ ¼ msi�riciRhi
Ls

ms

¼ msið1�RiÞ:

Thus if Ri41, gð0Þo0 and gðlÞ have a positive real zero, implying

that E0 is unstable. If Rio1, gð0Þ40 and hence gðlÞ40 for lZ0.

Therefore, in order to obtain the stability of E0 in the case of

Rio1, we only need to show that gðlÞ has no complex zeros with

nonnegative real parts. Suppose that xZ0 and

gðxþyiÞ ¼ xþyiþmi�rici
Ls

ms

Z 1
0

e�ðxþyiÞaRhiðaÞ da¼ 0:

Then the real part of gðxþyiÞ must equal to zero, i.e.

ReðgðxþyiÞÞ ¼ xþmsi�rici
Ls

ms

Z 1
0

e�xa cosðyaÞRhiðaÞ da¼ 0:

However, ReðgðxþyiÞÞZgðxÞ40, a contradiction. Thus, the func-

tion gðlÞ has no zero points with nonnegative real parts and hence

E0 is stable if Rio1.

Stability of Ei. Similarly, evaluating the determinant of J1 at the

endemic equilibrium Ei, we have the characteristic equation:

½lþmsþriciRhiI
n

i �½lþmsi�riciR̂hiS
n

i �þðriciÞ
2R̂hiRhiS

n

i Ini ¼ 0, i:e:,

ðlþmsÞðlþmsiÞ�riciR̂hiS
n

i ðlþmsÞþriciRhiI
n

i ðlþmsiÞ ¼ 0: ð29Þ

Rewrite the equation as

lþmsi�riciR̂hiS
n

i þriciRhiI
n

i

lþmsi

lþms

¼ 0

and denote the left side by FðlÞ. We need to show that FðlÞ has no

zero points with nonnegative real parts when Ri41.

Note that msrmsi. When lZ0,

FðlÞ4lþmsi�riciR̂hiS
n

i ¼ lþmsi�riciR̂hi
Ls

msRi
¼ hðlÞ:

The function hðlÞ is an increasing function and hð0Þ ¼ 0, implying

that hðlÞZ0 for lZ0. Therefore, FðlÞ has no nonnegative real

zeros. Suppose that xþyi is a complex zero point of FðlÞ with

xZ0, i.e., FðxþyiÞ ¼ 0 with xZ0. Then the real part of FðxþyiÞ

must be zero,

ReðFðxþyiÞÞ ¼ xþmsi�riciS
n

i

Z 1
0

e�xa cosðyaÞRhiðaÞ da

þriciI
n

i 1þ
diðxþmsÞ

ðxþmsÞ
2
þy2

" #
¼ 0:

Note that

0¼ ReðFðxþyiÞÞ4xþmsi�riciS
n

i

Z 1
0

e�xaRhiðaÞ da¼ hðxÞZ0,

a contradiction. Thus, FðlÞ has no complex zeros with nonnegative

real parts. Therefore, Ei is stable if Ri41.

Global property: The solutions of system (25) with nonnegative

initial conditions remain nonnegative, and

d

dt
ðSþ IiÞ ¼Ls�msS�ðmsþdiÞIirLs�msðSþ IiÞ:

Therefore, the supreme limit of SðtÞþ IiðtÞ is bounded by Ls=ms. Let

S1 ¼ lim sup
t-1

SðtÞ, I1i ¼ lim sup
t-1

IiðtÞ:

Using Lemma A.20 in Thieme’s book (2003), we can choose a

sequence tn-1 such that ðd=dtÞIiðtnÞ-0 and IiðtnÞ-I1i . From the

Ii equation in the system (25) it follows that

0rriciRhiI
1
i S1�msiI

1
i r riciRhi

Ls

ms

�msi

� �
I1i ¼ msiðRi�1ÞI1i :

Therefore, I1si ¼ 0 if Rio1. It follows that

limt-1ðSðtÞ,IiðtÞÞ ¼ ðLs=ms,0Þ. &

Appendix D. Stability of equilibria Qi

Claim 2. The disease-free equilibrium Q0 is stable with respect to the

limiting system (5) if both reproductive numbers Ri (i¼1,2) are less

than 1. It is unstable if Ri41 for some i¼1,2.

Proof. As in Appendix C, linearizing system (5) at Q0 and looking
for exponential solutions of the linearized system we can obtain
the characteristic equation:

ðlþmsÞ lþms1�r1c1R̂h1
Ls

ms

� �
ðlþms12Þ lþms2�r2c2R̂h2

Ls

ms

� �
¼ 0:

From the analysis of the roots of Eq. (28), it follows that all the
roots of the above equation have negative real parts and hence Q0

is stable if Rio1, i¼1,2. Otherwise, the characteristic equation
has roots with positive real parts, implying that Q0 is
unstable. &

Proof of Result 1. The stability of the equilibrium Q1 is governed
by the roots of the characteristic equation for the model (5) at Q1,
which is given by the determinant of the matrix J equal to zero,
where

J¼
J1 n

0 J2þ J3þ idl

 !
, J2 ¼

�ms2�r12c1In1Rh1 0

r12c1In1Rh1 �ms12

 !
,

J3 ¼
r2c2Sn

1R̂h2 r2c02Sn

1R̂h2

r21c2In1R̂h2 r21c02In1R̂h2

0
@

1
A, idl ¼

�l 0

0 �l

� �
, ð30Þ

where J1 is the matrix given in (27) evaluated at E1, and the block
n is of no interests. Therefore, the roots of the characteristic
equation are roots of either

detðJ1Þ ¼ 0 or detðJ2þ J3þ idlÞ ¼ 0:

From Claim 1 in Appendix C, we know that E1 is stable if R141
and hence all the roots of the equation detðJ1Þ ¼ 0 have negative
real parts. Thus, the stability of Q1 is determined by the roots of
the equation detðJ2þ J3þ idlÞ ¼ 0, which can be simplified as

ðlþms2þr12c1In1Rh1Þðlþms12�r21c02In1R̂h2Þ

�r2Sn

1R̂h2ðc2ðlþms12Þþc02r12c1In1Rh1Þ ¼ 0: ð31Þ

Consider the function gðlÞ ¼ lþms12�r21c02In1R̂h2. The function

gðlÞ is an increasing function and has the properties: gðlÞ40 for

lZ0 if gð0Þ40 and gðlÞ has a non-negative real zero point

(denoted l0) if gð0Þr0. From Eq. (31) it follows that the (real or

complex) roots of the equation are not zero points of the function
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gðlÞ. Therefore we can rewrite the equation into

GðlÞ ¼ lþms2þr12c1In1Rh1�r2Sn

1ðc2ðlþms12Þþc02r12c1In1Rh1Þ
R̂h2

gðlÞ
¼ 0:

Note that whenever lZ0 and gðlÞa0, we have

d

dl
ðlþms12ÞR̂h2

gðlÞ

 !
¼

1

g2ðlÞ
�r12c02In1ðR̂h2Þ

2
þðlþms12Þ

2 d

dl
R̂h2

� �
o0

d

dl
R̂h2

gðlÞ

 !
¼

1

g2ðlÞ
ðlþms12Þ

d

dl
R̂h2�R̂h2

� �
o0:

Therefore, dGðlÞ=dl40 for lZ0 whenever GðlÞ is well-defined.

Thus GðlÞ is an increasing function either on ðl0,1Þ when gð0Þr0

or on ½0,1Þ when gð0Þ40. GðlÞ also satisfies the limit properties:

lim
l-lþ0

GðlÞ ¼�1, lim
l-1

GðlÞ ¼ þ1:

Therefore, GðlÞ has a positive real zero point if gð0Þr0 and hence

the equilibrium Q1 is unstable. The condition gð0Þr0 is equiva-

lent to

r21c02Rh2In1
ms12

Z1,

which is a sufficient condition for R2141. In the case of gð0Þ40,

the sign of Gð0Þ determines whether GðlÞ has positive real zero

points. That is, GðlÞ has a positive real zero point if Gð0Þo0 while

GðlÞ has no positive real zeros if Gð0Þ40. Calculations show that

the condition Gð0Þo0 (40) is equivalent to R2141 (o1).

Therefore, Q1 is unstable if R2141.

To obtain the stability of Q1 when R21o1 (i.e., Gð0Þ40), we

only need to show that all complex roots of the equation GðlÞ ¼ 0

have negative real parts. Suppose that GðxþyiÞ ¼ 0 with xZ0

when Gð0Þ40. Regarding l as a parameter, the matrix J3 given in

(30) is a matrix function, J3ðlÞ. Recall that the zero points of the

function GðlÞ are the roots of detðJ2þ J3ðlÞþ idlÞ ¼ 0. Therefore,

xþyi is an eigenvalue of the matrix J2þ J3ðxþyiÞ. The matrix

J2þ J3ð0Þ has positive off-diagonal elements and hence has a

principal eigenvalue l1. That is, the spectral bound sðJ2þ J3ð0ÞÞ of

the matrix J2þ J3ð0Þ is l1. Since the characteristic equation of

J2þ J3ð0Þ is given by the equation GðlÞ ¼ 0 with R̂h2 replacing by

Rh2, it follows from the monotonicity of GðlÞ that sðJ2þ J3ð0ÞÞ ¼

l1o0 when Gð0Þ40. Noting that
R1

0 e�ðxþyiÞaRh2ðaÞ darR1
0 e�xaRh2ðaÞ daoRh2 and applying the monotonicity of spectral

bounds for matrices with nonnegative off-diagonal elements, we

have the following inequality for spectral bounds:

0rxrsðJ2þ J3ðxþyiÞÞrsðJ2þ9J3ðxþyiÞ9ÞrsðJ2þ J3ðxÞÞ

rsðJ2þ J3ð0ÞÞo0,

a contradiction. Therefore, the complex zero points of GðlÞ must

have negative real parts and hence Q1 is stable if R21o1. &

References

Anderson, R.M., May, R.M., 1978. Regulation and stability of host–parasite
population interactions. I. Regulatory processes. J. Anim. Ecol. 47, 219–247.

Anderson, R.M., May, R.M., 1981. The population dynamics of microparasites and
their invertebrate hosts. Philos. Trans. R. Soc. London Series B 291, 451–524.

Bonhoeffer, S., Nowak, M.A., 1994. Mutation and the evolution of virulence. Proc.
R. Soc. London B 258, 133–140.

Boots, M., Haraguchi, Y., 1999. The evolution of costly resistance in host–parasite
systems. Am. Nat. 153, 359–370.

Bowers, R.G., 2000. A baseline model for the apparent competition between many
host strains: the evolution of host resistance to microparasites. J. Theor. Biol.
200, 65–75.

Bowers, R.G., Turner, J., 1997. Community structure and the interplay between
interspecific infection and competition. J. Theor. Biol. 187, 95–109.

Bull, J.J., 1994. Perspective: virulence. Evolution 48, 1423–1437.
Castillo-Chavez, C., Feng, Z., Xu, D., 2008. A schistosomiasis model with mating

structure and time delay. Math. Biosci. 211, 333–341.
CDC, Parasites-Schistosomiasis /http://www.cdc.gov/parasites/schistosomiasis/S

(accessed on January 2012).
Chan, M.S., Guyatt, H.L., Bundy, D.A., Booth, M., Fulford, A.J., Medley, G.F., 1995. The

development of an age structured model for schistosomiasis transmission
dynamics and control and its validation for Schistosoma mansoni. Epidemiol.
Infect. 115, 325–344.

Chmielecki, J., Foo, J., Oxnard, G.R., Hutchinson, K., et al., 2011. Optimization of
dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer
modeling. Sci. Transl. Med. 3 (90). 90ra59.

Cioli, D., 2000. Praziquantel: is there real resistance and are there alternatives?
Curr. Opinion Infect. Dis. 13, 659.

Claessen, D., de Roos, A., 1995. Evolution of virulence in a host–pathogen system
with local pathogen transmission. OIKOS 74, 401–413.

Colley, D.G., LoVerde, P.T., Savioli, L., 2001. Infectious disease: medical helminthol-
ogy in the 21st century. Science 293, 1437–1438.

Cosgrove, C.L., Southgate, V.R., 2002. Mating interactions between Schistosoma
Mansoni and S. margrebowiei. Parasitology 125, 233–243.

Curtis, J., Sorensen, R.E., Minchella, D.J., 2002. Schistosome genetic diversity: the
implications of population structure as detected with microsatellite markers.
Parasitology 125, S51–S59.

Davies, C.M., Fairbrother, E., Webster, J.P., 2002. Mixed strain schistosome
infections of snails and the evolution of parasite virulence. Parasitology 124,
31–38.

Davies, C.M., Webster, J.P., Woolhouse, M.E.J., 2001. Trade-offs in the evolution of
virulence in an indirectly transmitted macroparasite. Proc. R. Soc. London B
268, 251–257.

de Roode, J.C., Culleton, R., Cheesman, S.J., Carter, R., Read, A.F., 2004. Host
heterogeneity is a determinant of competitive exclusion or coexistence in
genetically diverse malaria infections. Proc. R. Soc. London B 271, 1073–1080.

Deribe, K., Eldaw, A., Hadziabduli, S., Kailie, E., Omer, M.D., Mohammed, A.E., et al.,
2011. High prevalence of urinary schistosomiasis in two communities in South
Darfur: implication for interventions. Parasites Vectors 4, 14.

Dobson, A.P., 1985. The population dynamics of competition between parasites.
Parasitology 91, 317–347.

Eppert, A., Lewis, F.A., Grzywacz, C., Coura-Filho, P., Caldas, I., Minchella, D.J., 2002.
Distribution of schistosome infections in molluscan hosts at different levels of
parasite prevalence. J. Parasitol. 88 (2), 232–236.

Ebert, D., Mangin, K.L., 1997. The influence of host demography on the evolution of
virulence of a microsporidian gut parasite. Evolution 51, 1828–1837.

Fallon, P.G., Doenhoff, M.J., 1994. Drug-resistant schistosomiasis: resistance to
praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug
specific. Am. J. Trop. Med. Hyg. 51, 83–88.

Fallon, P.G., Mubarak, J.S., Fookes, R.E., Niang, M., Butterworth, A.E., Sturrock, R.F.,
Doenhoff, M.J., 1997. Schistosoma mansoni: maturation rate and drug suscept-
ibility of different geographic isolates. Exp. Parasitol. 86, 29–36.

Feng, Z., Eppert, A., Milner, F., Minchella, D.J., 2004. Estimation of parameters
governing the transmission dynamics of schistosomes. Appl. Math. Lett. 17,
1105–1112.

Fenwick, A., Savioli, L., Engels, D., Bergquist, N.R., Todd, M.H., 2003. Drugs for the
control of parasitic diseases: current status and development in schistoso-
miasis. Trends Parasitol. 19, 509–515.

Fenwick, A., Webster, J.P., 2006. Schistosomiasis: challenges for control, treatment
and drug resistance. Curr. Opinion Infect. Dis. 19, 577–582.

Frank, S.A., 1992. A kin selection model for the evolution of virulence. Proc. R. Soc.
London B 250, 195–197.

Frank, S.A., 1996. Models of parasite virulence. Q. Rev. Biol. 71, 37–78.
Gandon, S., Day, T., 2009. Evolutionary epidemiology and the dynamics of

adaptation. Evolution 63, 826–838.
Gandon, S., Jansen, V.A.A., van Baalen, M., 2001. Host life history and the evolution

of parasite virulence. Evolution 55 (5), 1056–1062.
Geritz, S.A.H., Metz, J.A.J., Kisdi, E., Meszena, G., 1997. The dynamics of adaptation

and evolutionary branching. Phys. Rev. Lett. 78, 2024–2027.
Geritz, S.A.H., Kisdi, E., Meszena, G., Metz, J.A.J., 1998. Evolutionarily singular

strategies and the adaptive growth and branching of the evolutionary tree.
Evol. Ecol. 12 (1), 35–57.

Gower, C.M., Webster, J.P., 2004. Fitness of indirectly transmitted pathogens:
restraint and constraint. Evolution 58, 1178–1184.

Gower, C.M., Webster, J.P., 2005. Intraspecific competition and the evolution of
virulence in a parasitic trematode. Evolution 59 (3), 544–553.

Hadeler, K.P., 1984. An integral equation for helminthic infections: stability of the
noninfected population. In: Lakeshmikantham, V. (Ed.), Trends in Theoretical
and Practical Nonlinear Differential Equations. Lecture Notes in Pure and
Applied Mathematics, vol. 90. Marcel Dekker.

Hadeler, K.P., Dietz, K., 1983. Nonlinear hyperbolic partial differential equations
for the dynamics of parasite populations. Comp. Math. Appl. 9 (3), 415–430.

Hastings, I.M., 2006. Complex dynamics and stability of resistance to antimalarial
drugs. Parasitology 132, 615–624.

Hastings, I.M., D’Alessandro, U., 2000. Modelling a predictable disaster: the rise
and spread of drug-resistant malaria. Parasitol. Today 16, 340–347.

Hastings, I.M., Watkins, W.M., 2006. Tolerance is the key to understanding
antimalarial drug resistance. Trends Parasitol. 22, 71–77.

Homeida, M., Ahmed, S., Dafalla, A., Suliman, S., Eltom, I., Nash, T., Bennett, J.L.,
1988. Morbidity associated with Schistosoma mansoni infection as determined

D. Xu et al. / Journal of Theoretical Biology 304 (2012) 197–210 209



Author's personal copy

by ultrasound: a study in Gezira. Sudan. Am. J. Trop. Med. Hyg. 39 (2),
196–201.

Huijben, S., Nelson, W.A., Wargo, A.R., Sim, D.G., Drew, D.R., Read, A.F., 2010.
Chemotherapy, within-host ecology and the fitness of drug-resistant malaria
parasites. Evolution 64, 2952–2968.

Ismail, M., Botros, S., Metwally, A., William, A., Farghally, A., Tao, L., Day, T.A.,
Bennett, J.L., 1999. Resistance to praziquantel: direct evidence from Schistosoma
mansoni isolated from Egyptian villagers. Am. Soc. Trop. Med. Hyg. 60, 932–935.

Kheir, M.M., Eltoum, I.A., Saad, A.M., Ali, M.M., Baraka, O.Z., Homeida, M.M., 1999.
Mortality due to schistosomiasis mansoni: a field study in Sudan. Am. J. Trop.
Med. Hyg. 60, 307–310.

Lamberton, P.H., Hogan, S.C., Kabatereine, N.B., Fenwick, A., Webster, J.P., 2010. In
vitro praziquantel test capable of detecting reduced in vivo efficacy in
Schistosoma mansoni human infections. Am. J. Trop. Med. Hyg. 83, 1340–1347.

Levin, S., Pimentel, D., 1981. Selection of intermediate rates of increasing in
parasite–host systems. Am. Nat. 117, 308–315.

Mackinnon, M.J., Read, A.F., 1999. Genetic relationships between parasite viru-
lence and transmission in the rodent malaria Plasmodium chabaudi. Evolution
53, 689–703.

Massara, C.L., Peixoto, S.V., Barros, H.S., Enk, M.J., Carvalho, O.S., Schall, V., 2004.
Factors associated with Schistosomiasis Mansoni in a population from the
municipality of Jaboticatubas, State of Minas Gerais, Brazil. Mem. Inst.
Oswaldo Cruz 99 (Suppl. I), 127–134.

May, R.M., Nowak, M.A., 1995. Coinfection and the evolution of virulence. Proc. R.
Soc. London B 261, 209–215.

Melman, S.D., Steinauer, M.L., Cunningham, C., Kubatko, L.S., Mwangi, I.N., et al.,
2009. Reduced susceptibility to praziquantel among naturally occurring
Kenyan isolates of Schistosoma mansoni. PLoS Negl. Trop. Dis. 3, e504.

Metz, J.A.J., Geritz, S.A.H., Meszena, G., Jacobs, F.J.A., Van Heerwaarden, J.S., 1996.
Adaptive dynamics: a geometrical study of nearly faithful reproduction. In:
Van Strien, S.J., Verduyn Lunel, S.M. (Eds.), Stochastic and Spatial Structures of
Dynamical Systems. Elsevier, North-Holland, pp. 183–231.

Minchella, D.J., Sollenberger, K.M., Pereira de Souza, C., 1995. Distribution of
schistosome genetic diversity within molluscan intermediate hosts. Parasitol-
ogy 111, 217–220.

Mosquera, J., Adler, F.R., 1998. Evolution of virulence: a unified framework for
coinfection and superinfection. J. Theor. Biol. 195, 293–313.

Nowak, M., May, R.M., 1994. Superinfection and the evolution of parasite
virulence. Proc. R. Soc. London B 255, 81–89.

Pugliese, A., 2002. On the evolutionary coexistence of parasite strains. Math.
Biosci. 177–178, 355–375.

Read, A.F., 1994. The evolution of virulence. Trends Microbiol. 2, 73–76.
Read, A.F., Day, T., Huijben, S., 2011. The evolution of drug resistance and the

curious orthodoxy of aggressive chemotherapy. Proc. Natl. Acad. Sci. USA http:
//dx.doi.org/10.1073/pnas.1100299108.

Read, A.F., Taylor, L.H., 2001. The ecology of genetically diverse infections. Science

11, 1099–1102.
Sandland, G.J., Foster, A.V., Zavodna, M., Minchella, D.J., 2007. Interplay between

host genetic variation and parasite transmission in the Biomphalaria glabrata–

Schistosoma mansoni system. Parasitol. Res. 101, 1083–1089.
Sire, C., Durand, P., Pointier, J.P., Theron, A., 1999. Genetic diversity and recruit-

ment pattern of Schistosoma mansoni in a Biomphalaria glabrata snail popula-

tion: a field study using random-amplified polymorphic DNA markers.

J. Parasitol. 85, 436–441.
Sire, C., Langand, J., Barral, V., Theron, A., 2001. Parasite (Schistosoma mansoni) and

host (Biomphalaria glabrata) genetic diversity: population structure in a

fragmented landscape. Parasitology 122, 545–554.
Sturrock, R.F., 2001. Schistosomiasis epidemiology and control: how did we get

here and where should be go? Mem. Inst. Oswaldo Cruz 96 (Suppl.), 17–27.
Svennungsen, T.O., Eva Kisdi�, 2009. Evolutionary branching of virulence in a

single-infection model. J. Theor. Bio. 257, 408–418.
Thieme, H.R., 2003. Mathematics in Population Biology. Princeton University Press,

Princeton.
Torella, J.P., Chait, R., Kishony, R., 2010. Optimal drug synergy in antimicrobial

treatments. PLoS Comput. Biol. 6 (6), e1000796.
van Baalen, M., Sabelis, M.W., 1995. The dynamics of multiple infection and the

evolution of virulence. Am. Nat. 146, 881–910.
Wargo, A.R., Huijben, S., de Roode, J.C., Shepherd, J., Read, A.F., 2007. Competitive

release and facilitation of drug-resistant parasites after therapeutic che-

motherapy in a rodent malaria model. Proc. Natl. Acad. Sci. USA 104,

19914–19919.
Webster, J.P., Gower, C.M., Blair, L., 2004. Do hosts and parasites coevolve?

Empirical support from the Schistosoma system. Am. Nat. 164, S33–S51.
Webster, J.P., Gower, C.M., Norton, A.J., 2008. Evolutionary concepts in predicting

and evaluating the impact of mass chemotherapy schistosomiasis control

programmes on parasites and their hosts. Evol. Appl. 1, 66–83.
WHO, Progress in the Assessment of Morbidity due to Schistosomiasis. Geneva

World Health Organization, 1989.
Xu, D., Curtis, J., Feng, Z., Minchella, D.J., 2005. On the role of schistosome mating

structure in the maintenance of drug resistant strains. Bull. Math. Biol. 67,

1207–1226.
Yang, Y., Feng, Z., Xu, D., Sandland, G., Minchella, D.J. Evolution of host resistance

to parasite infection in the snail-schistosome-human system. J. Math. Biol.,

http://dx.doi.org/10.1007/s00285-011-0457-x, in press.
Zhang, P., Sandland, G., Feng, Z., Xu, D., Minchella, D.J., 2007. Evolutionary

implications for interactions between multiple strains of host and parasite.

J. Theor. Bio. 248, 225–240.

D. Xu et al. / Journal of Theoretical Biology 304 (2012) 197–210210


