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ABSTRACT
In general, media coverage would not be implemented unless the
number of infected cases reaches some critical number. To reflect
this feature, we incorporate the media effect and a critical number
of infected cases into the disease transmission rate and consider
an susceptible-infected-susceptible epidemic model with logistic
growth. Our model analysis shows that early media alert and strong
media effects are preferable to decrease the numbers of infected
cases at endemic equilibria. Furthermore, we noticed that themodel
may have up to three endemic equilibria and bi-stability can occur
in a threshold interval for the critical number. Note that the interval
depends on parameters for the focal disease and the media effect. It
is possible to roughly estimate the interval for re-emerging diseases
in a given region. Therefore, the result could be useful to health pol-
icymakers. Global stability is also obtained when the model admits a
unique endemic equilibrium.
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1. Introduction

Media has been utilized as a disease control measure, especially for epidemics associated
with emerging and re-emerging infectious diseases [19] such as HIV/AIDS, SARS, H1N1,
Ebola virus disease (EVD),Middle East Respiratory Syndrome. During the outbreak of the
influenza A (H1N1) in 2009, mass media was extensively used by the Centers for Disease
Control and Prevention of United States andWHO to keep the public aware of information
related to the pandemic [6]. It is believed that media use contributed to the control of the
pandemic. WHO also indicated that media played an important role in controlling the
spread of H7N9 in China in 2013 [31]. Media does not only alert the general public on the
hazard from the infectious diseases but also informs the public of the requisite preventive
measures like wearing protectivemasks [25], vaccination, voluntary quarantine, avoidance
of congregated places, etc. Therefore, the extensive use of media may bring in changes
in public behaviour and reduce the frequency and probability of contacts with infected
individuals so that the severity of a disease outbreak would be diminished [4, 9, 10, 13, 14,
21, 24].
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2 L. WANG ET AL.

In order to study the impact of media-like control measures on disease transmis-
sion dynamics, several types of media function forms have been proposed to describe
reduced disease transmission rates due to media use and compartmental models with
these rates have been analysed (e.g. [9, 10, 13–17, 23, 24]). The deduction in the transmis-
sion rate was described by the form of β(1 − e−mI) with the parameter m>0 reflecting
how strongly media coverage can affect contact infection [9]. With the rate, the analysis
of a susceptible–exposed–infected model (SEI) shows that the model may exhibit peri-
odic oscillations for weak media effects while it may have three endemic equilibria for
strong media effects [9]. The form of β − β1I/(ν + I) was also used as the transmission
rate with the deduction β1I/(ν + I) due to media use [10, 13, 24]. A threshold dynamics
was obtained for an SIS epidemic model. It is also shown that media coverage can lower
infection and delay the arrival of the infection peak [10, 13]. However, the study of a sus-
ceptible–vaccinated–infected–recovered epidemic model with a vaccinated class indicates
that media effects could be complicated and simplified understandings may evenmake the
disease worse due to possible public panic [24]. The third function type with psycholog-
ical/media effects is of the form β/(1 + αI2), identified by Collinson and Heffernan (see
[8, 33] and the references therein). Using a simple susceptible-exposed-infected-recovered
model, Collinson and Heffernan [8] found that important measurements of an epidemic
outbreak (such as peak magnitude of infection, peak time of infection peak and end of the
outbreak) depend on the chosen media function. Their sensitivity analysis also showed
such dependence for the sensitivities of model parameters. This makes it difficult to iden-
tify effective disease control strategy and calls for more study on the effects of mass media
on disease transmission dynamics.

Theoretical studies usually assume thatmedia coverage affects disease transmission dur-
ing the whole time period of the disease spread (e.g. [9, 10, 14, 24]). In the reality, media
coverage generally does not occur in the beginning stage of a disease spread. For instance,
the early suspected cases of EVD died in December 2013 while the first notification by
WHO on the outbreak [32] was not issued until 21 March 2014. In general, media deliv-
ers alerts and timely reports infected cases only when certain number of infected cases is
reached [28, 34, 38]. To include such feature of media/psychological effect, Xiao et al. [34]
introduced a critical number of infected cases Ic and proposed a piecewise and discon-
tinuous control function [7, 26] for disease control strategy (sliding mode control). Wang
and Xiao [28] further constructed a Filippov SIR epidemic model to describe media effects
using the following transmission rate

β(I) =
{

β , I < Ic,
β exp (−αI), I > Ic.

(1)

Their analysis shows that the model system can stabilize at either one of the equilibria
for the resulted subsystems or the new endemic state induced by the on-off media effect,
depending on the critical level Ic. They also demonstrated that proper combinations of
critical levels and control intensities can lead to the desired case number. The transmission
rate (1) was then generalized in a time-dependent way to study an influenza outbreak in
Shannxi, China [35].

It was demonstrated that compartmentalmodels can exhibit distinct dynamics, depend-
ing on the chosen incidence rate (e.g. [20, 33]). To explore the media effect on disease
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transmission dynamics we here propose a new transmission rate. Following the idea of the
critical number of infected cases Ic, we consider the following non-smooth but continuous
transmission rate:

β(I) =
⎧⎨
⎩

β , 0 ≤ I ≤ Ic,

β

(
Ic
I

)p
, I > Ic,

(2)

where p ≥ 0 represents the intensity of the media effect on contact infection. If p=0, β(I)
is equal to the background transmission rate β , implying that media coverage does not
occur. With this rate, we shall consider an SIS endemic model.

Classical compartmental models with media effects assume either a constant size of the
total population or constant recruitment rate for the susceptible class. The assumption of
varying total populations may be more reasonable for a relatively long-lasting disease or
for a disease with high mortality rates. In fact, varying total populations were discussed
before (e.g. [1, 3, 5, 9, 11, 22, 29, 36]). Here, we assume that the population of a commu-
nity follows the logistic growth. For the sake of mathematical simplicity, we assume that
newborns directly enter into the susceptible class and infected persons do not contribute
to births and deaths in the susceptible class. Following works in [2, 9, 28], our SIS model
reads

dS
dt

= rS
(
1 − S

a

)
− β(I)IS + γ I,

dI
dt

= β(I)IS − (d + ε + γ )I,
(3)

where r is the intrinsic growth rate of the susceptible population, a denotes the carrying
capacity of the community in the absence of infection, d is natural death rate, γ represents
the recovered rate, and ε is the disease-induced death rate. The analysis of model (3) with
the transmission rate (2) shows that there exists a threshold interval� for the critical num-
ber Ic in which the model may be stabilized at one of two stable equilibria with different
levels of infected cases. This implies that the policymaker may have to choose the critical
number Ic according to the focal disease in order tominimize infected cases and also avoid
unnecessary public panic. The global stability was also obtained for Ic not in the threshold
interval. In the following, the analysis of existence of equilibria is presented in Section 2
while the local and global stabilities are given in Sections 3 and 4, respectively. A discussion
section comes to the end of the work.

2. Existence of equilibria

For our convenience, denote b =: r/a. Model (3) with the transmission rate (2) can be
decomposed into two sub-systems

dS
dt

= bS(a − S) − βIS + γ I,

dI
dt

= βIS − (d + ε + γ )I,
0 ≤ I ≤ Ic, (4)
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4 L. WANG ET AL.

and

dS
dt

= bS(a − S) − β

(
Ic
I

)p
IS + γ I,

dI
dt

= β

(
Ic
I

)p
IS − (d + ε + γ )I,

I > Ic. (5)

The origin O(0, 0) and the disease-free equilibrium E0(a, 0) always exist. The basic repro-
ductive number can be easily calculated, given by

R0 = βa
d + ε + γ

,

from which one can see that media coverage does not change the basic reproduction
number (e.g. [9, 10, 13, 15–17, 23, 24]). To obtain the existence of endemic equilibria,
denote

a0 � a
R0

, a2 � a0 + d + ε

a0b
Ic, I∗ � a20b

d + ε
(R0 − 1),

and consider two cases: 0 ≤ I ≤ Ic and I > Ic, separately.
In the case of 0 ≤ I ≤ Ic, the sub-system (4) has a unique positive equilibrium E∗(S∗, I∗)

if and only if 0 < I∗ ≤ Ic, that is, a0 < a ≤ a2, where S∗ = a0.
In the case of I > Ic, the I component of a positive equilibrium for the sub-system (5)

satisfies the following equation

f (I) =
(
a0
Ipc

)2
bI2p−1 − a0

Ipc
abIp−1 + (d + ε) = 0. (6)

From (a0/I
p
c )

2bI2p−1 − (a0/I
p
c )abIp−1 = −(d + ε) < 0, positive solutions to Equation (6)

satisfy

I < R
1/p
0 Ic � In. (7)

That is, the positive solutions of Equation (6) must be in the interval (Ic, In). Also, f (I−n ) =
d + ε > 0. Therefore, we must have a > a0 due to In > Ic. Next, we discuss the existence
of positive solutions to Equation (6) in (Ic, In) in two cases, 0 < p ≤ 1 and p>1.

Case I. 0 < p ≤ 1. In this case, f (I) is strictly increasing. In fact, the derivative of f (I) is
given by

f ′(I) = a0
Ipc
bIp−2

[
a0
Ipc

(2p − 1)Ip − a(p − 1)
]
, for I ∈ (Ic, In), (8)

and we can show that f ′(I) > 0 for 0 < p ≤ 1. If 1
2 ≤ p ≤ 1, one clearly derives f ′(I) > 0.

If 0 < p < 1
2 , we can calculate the zero point of f ′(I) as

Ie �
(

p − 1
2p − 1

R0

)1/p
Ic > 0. (9)
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JOURNAL OF BIOLOGICAL DYNAMICS 5

which, obviously, Ie is the unique maximum point of f (I). Since

Ipe − Ipn = p
1 − 2p

R0I
p
c , (10)

we have In < Ie for 0 < p < 1
2 , and hence f

′(I) > 0 on (Ic, In). To sum up, we always have
f ′(I) > 0 if 0 < p ≤ 1. Meanwhile, note that

f (Ic) = a0b(a2 − a)
Ic

(11)

may be positive, negative or zero. If f (Ic) ≥ 0, which is equivalent to a ≤ a2, then
Equation (6) has no positive real root in (Ic, In). If f (Ic) < 0, which is equivalent to a > a2,
thenEquation (6) admits a unique positive root, denoted by I1, satisfying Ic < I1 < In. That
is, in the case of 0 < p ≤ 1, the sub-system (5) has a unique positive equilibrium, denoted
by E1(S1, I1), if and only if a > a2, where S1 = a0(I1/Ic)p and I1 ∈ (Ic, In).

The following lemma is needed to discuss the case of p>1.

Lemma 2.1: Let p > 1, then a1 < a2 always holds, where

a1 �
[

(2p − 1)2p−1

pp(p − 1)p−1
(d + ε)pIpc

a0bp

]1/(2p−1)

.

Proof: Consider the concave functionH(x) = ln x, x > 0. Assign

x1 = 2p − 1
p − 1

a0, x2 = 2p − 1
p

d + ε

a0b
Ic,

λ1 = p − 1
2p − 1

, λ2 = p
2p − 1

.

Note that λ1 + λ2 = 1, andH(x) is a strictly concave function. This implies thatH(λ1x1 +
λ2x2) > λ1H(x1) + λ2H(x2), and we have

ln
(
a0 + d + ε

a0b
Ic

)
= ln

(
p − 1
2p − 1

2p − 1
p − 1

a0 + p
2p − 1

2p − 1
p

d + ε

a0b
Ic

)

>
p − 1
2p − 1

ln
2p − 1
p − 1

a0 + p
2p − 1

ln
2p − 1

p
d + ε

a0b
Ic

= ln
[
2p − 1
p − 1

a0
](p−1)/(2p−1)

·
[
2p − 1

p
d + ε

a0b
Ic

]p/(2p−1)

= ln

[
(2p − 1)2p−1

pp(p − 1)p−1
(d + ε)pIpc

a0bp

]1/(2p−1)

.

The monotonicity ofH(x) leads to a1 < a2. The proof is completed. �

Case II. p>1. By Lemma 2.1, a1 < a2 holds. It follow from the formula (10) that Ie < In.
Note that the derivative f ′(I) given by Equation (8) is positive. Ie is the unique minimum

D
ow

nl
oa

de
d 

by
 [

So
ut

he
rn

 I
lli

no
is

 U
ni

ve
rs

ity
] 

at
 0

8:
05

 0
6 

M
ay

 2
01

6 



6 L. WANG ET AL.

point of f (I). Clearly, f (0+) = f (I−n ) = d + ε. Next, we want to compare the sizes of Ic and
Ie and determine the signs of f (Ic) and f (Ie). The following six cases are considered. Let us
denote

I0c � p
p − 1

a20b
d + ε

.

Case 1. Ic ≥ I0c and a ≥ a2. It follows from Ic ≥ I0c that

a2 ≥ a0 + d + ε

a0b
I0c ≥ a0 + d + ε

a0b
· p
p − 1

a20b
d + ε

= 2p − 1
p − 1

a0.

Since a ≥ a2 > a1, we have f (Ic) ≤ 0, and a ≥ ((2p − 1)/(p − 1))a0. Furthermore, from
Equation (9) one can get Ic ≤ Ie. Thus f (Ie) ≤ f (Ic) ≤ 0. Direct calculation shows that a >

a1 ⇔ f (Ie) < 0 holds. If f (Ic) = 0, we have Ic < Ie. Thus, Equation (6) has a unique pos-
itive root I1, satisfying Ie < I1 < In. If f (Ic) < 0, the conclusion is still true. Accordingly,
the sub-system (5) has a unique positive equilibrium E1(S1, I1).

Case 2. Ic ≥ I0c and a1 < a < a2. It follows from Ic ≥ I0c that

a1 ≥
[

(2p − 1)2p−1

pp(p − 1)p−1
(d + ε)p

a0bp
(I0c )

p
]1/(2p−1)

=
[

(2p − 1)2p−1

pp(p − 1)p−1
(d + ε)p

a0bp

(
p

p − 1
a20b
d + ε

)p]1/(2p−1)

= 2p − 1
p − 1

a0,

that is, a > ((2p − 1)/(p − 1))a0. Thus, we have Ic < Ie from Equation (9) and f (Ic) >

0 because of a < a2. Moreover, one can show that a > a1 ⇔ f (Ie) < 0. Therefore, when
a1 < a < a2, Equation (6) has two different positive roots in (Ic, In), denoted by I2, I3,
where I2 ∈ (Ic, Ie), I3 ∈ (Ie, In). That is, the sub-system (5) admits two different positive
equilibria Ei(Si, Ii), where Si = a0(Ii/Ic)p, i=2,3.

Case 3. Ic ≥ I0c and a = a1. Similar to the argument in Case 2, it follows that
((2p − 1)/(p − 1))a0 ≤ a < a2, and hence we have Ic ≤ Ie and f (Ic) > 0. Note that
the equivalent relationship a = a1 ⇔ f (Ie) = 0. We must have Ic < Ie. This suggests
that Equation (6) only has one positive solution Ie ∈ (Ic, In). Accordingly, for the sub-
system (5), there exists exactly one positive equilibrium Ee(Se, Ie), where Se = a0(Ie/Ic)p.

Case 4. Ic ≥ I0c and a0 < a < a1. Recall that a < a1 ⇔ f (Ie) > 0 and Ie is the unique
minimum point of f (I) in (Ic, In). One immediately deduces that Equation (6) has no pos-
itive root in (Ic, In) no matter Ic ≤ Ie or Ic > Ie. Hence, the sub-system (5) has no positive
equilibrium.

Case 5. Ic < I0c and a > a2. From a > a2 > a1, one deduces that f (Ic) < 0 and f (Ie) < 0.
Hence, Equation (6) only has one positive solution I1 ∈ (Ic, In) nomatter Ic ≤ Ie or Ic > Ie,
where Ie < I1 < In. That is, the sub-system (5) has only one positive equilibriumE1(S1, I1).

Case 6. Ic < I0c and a0 < a ≤ a2. Clearly, one can have a2 < ((2p − 1)/(p − 1))a0 from
Ic < I0c and a ≤ a2 < ((2p − 1)/(p − 1))a0. Hence, Ie < Ic. Notice that f (I) is an increas-
ing function on the interval (Ic, In), and f (Ic) ≥ 0. Equation (6) has no positive root in the
interval (Ic, In). Namely, the sub-system (5) has no positive equilibrium.

D
ow

nl
oa

de
d 

by
 [

So
ut

he
rn

 I
lli

no
is

 U
ni

ve
rs

ity
] 

at
 0

8:
05

 0
6 

M
ay

 2
01

6 



JOURNAL OF BIOLOGICAL DYNAMICS 7

Now, one summarizes the existence of the equilibria of model (3) as follows:

Theorem 2.2: Model (3) always admits an equilibrium O(0, 0) and a disease-free equilib-
rium E0(a, 0). If a ≤ a0 (i.e.R0 ≤ 1), then model (3) has no endemic equilibrium. If a > a0
(i.e. R0 > 1), we have the following conclusions.

(1) Assume that 0 < p ≤ 1.
(i) If a0 < a ≤ a2, then E∗ is a unique endemic equilibrium;
(ii) If a > a2, then E1 is a unique endemic equilibrium.

(2) Assume that p>1 and Ic ≥ I0c .
(i) If a0 < a < a1, E∗ is a unique endemic equilibrium;
(ii) If a = a1, there are two endemic equilibrium, E∗ and Ee;
(iii) If a1 < a < a2, there exist three endemic equilibria, E∗, E2 and E3;
(iv) If a = a2, both E∗ and E1 exist;
(v) If a > a2, E1 is a unique endemic equilibrium.

(3) Assume that p>1 and Ic < I0c .
(i) If a0 < a ≤ a2, E∗ is a unique endemic equilibrium;
(ii) If a > a2, E1 is a unique endemic equilibrium.

Remark 1: From (ii) of (1), (v) of (2) and (iii) of (3) in Theorem 2.2 one can deduce that
E1 is a unique endemic equilibrium if a > a2.

By Theorem2.2, if 0 < p ≤ 1,model (3) only has one endemic equilibrium, eitherE∗ (in
the case of a0 < a ≤ a2), or E1 (in the case of a > a2). The existence of positive equilibria
for the model in the case of p>1 is illustrated in Figure 1. Here, we define the follow-
ing different curves and regions for parameters a and Ic as follows: L0 = {(a, Ic) | a = a0},
L1 = {(a, Ic) | a = a1 and Ic ≥ I0c }, L2 = {(a, Ic) | a = a2 and Ic ≥ I0c }, Q1 = {(a, Ic) |

Figure 1. The existence of the endemic equilibria of model (3) in the case of p> 1. There are equilibria
E∗ and Ee on the curve L1, E∗ and E1 on L2, three equilibria E∗, E2 and E3 in the region Q2, a unique
equilibrium E1 in the region Q1, a unique equilibrium E∗ in the region Q3, and no endemic equilibrium
in Q4. See the content for the definitions of these regions.
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8 L. WANG ET AL.

a > a2}, Q2 = {(a, Ic) | a1 < a < a2 and Ic ≥ I0c }, Q3 = CU(Q2 ∪ L1 ∪ L2) (where U =
{(a, Ic) | a0 < a ≤ a2}), and Q4 = {(a, Ic) | 0 < a ≤ a1}.

Note that the condition a1 ≤ a ≤ a2 with Ic > I0c in Theorem 2.2 is equivalent to I1c ≤
Ic ≤ I2c , where

I1c = max{I∗, I0c }, I2c =
[
pp(p − 1)p−1

(2p − 1)2p−1
a2p−2

R0

]1/p b
d + ε

.

In the case of R0 > 1 and p>1, multiple endemic equilibria exist if the critical number Ic
is in the threshold interval

� := [I1c , I
2
c ]. (12)

The existence region in Figure 1 is given by the union of L1, L2 and Q2.

3. Local stability of equilibria

This section focuses on the local stability of equilibria. Corresponding to the equilibria
O(0, 0), E0 and E∗, the Jacobian matrix of the sub-system (4) reads

J =
(
ab − 2bS − βI −βS + γ

βI βS − (d + ε + γ )

)
. (13)

At O(0, 0) the determinant det(J(O)) = −ab(d + ε + γ ) < 0. Thus O(0, 0) is a saddle
point. At E0(a, 0) it can be shown that

det(J(E0)) = −βab(a − a0),

tr(J(E0)) = β(a − a0) − ab.
(14)

If a > a0, then det(J(E0)) < 0, which means that E0 is a saddle point. If a < a0, then
det(J(E0)) > 0 and tr(J(E0)) < 0. Hence E0 is locally asymptotically stable. Since

[−tr(J(E0))]2 − 4 det(J(E0)) = [β(a − a0) + ab]2 ≥ 0, (15)

E0 is a stable node or critical node or degenerate node. If a = a0, it follows from
det(J(E0)) = 0, tr(J(E0)) < 0 that E0 is a saddle-node (see Theorem 7.1 in [37] or
Theorem 2.11.1 in [18]).

The Jacobian matrix at E∗(S∗, I∗) can be written as

J(E∗) =

⎛
⎜⎝ −γ b(a − a0)

d + ε
− a0 −(d + ε)

b(d + ε + γ )(a − a0)
d + ε

0

⎞
⎟⎠ . (16)

And hence,

det(J(E∗)) = b(d + ε + γ )(a − a0),

tr(J(E∗)) = −γ b(a − a0)
d + ε

− a0.
(17)

Recall that a > a0 holds when E∗ exists. We have det(J(E∗)) > 0, tr(J(E∗)) < 0. Thus, E∗
is asymptotically stable.
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JOURNAL OF BIOLOGICAL DYNAMICS 9

In the following, we discuss the stability of the equilibria Ei, i = e, 1, 2, 3. The Jacobian
matrix of the sub-system (5) at Ei is given by

M =

⎛
⎜⎝ab − 2a0b

(
Ii
Ic

)p
− βIpc I

1−p
i p(d + ε + γ ) − (d + ε)

βIpc I
1−p
i −p(d + ε + γ )

⎞
⎟⎠ . (18)

By Equation (6), we have

I1−p
i = a0

Ipc (d + ε)

(
a − a0

(
Ii
Ic

)p)
. (19)

Hence,

tr(M(Ei)) = a − 2a0
(
Ii
Ic

)p
− βIpc I

1−p
i − p(d + ε + γ )

= a0[γ − (d + ε)]
d + ε

(
Ii
Ic

)p
− γ a + p(d + ε + γ )(d + ε)

d + ε
. (20)

If γ ≤ d + ε, then tr(M(Ei)) < 0 always holds. If γ > d + ε, from Ii < In = R
1/p
0 Ic, it

follows that

tr(M(Ei)) <
a[γ − (d + ε)]

d + ε
− γ a + p(d + ε + γ )(d + ε)

d + ε

= −[a + p(d + ε + γ )]

< 0. (21)

Therefore, we always have tr(M(Ei)) < 0.
From formula (19), one can have

det(M(Ei)) = 2a0(d + ε + γ )

(
Ii
Ic

)p
− βIpc (d + ε)I1−p

i − pa(d + ε + γ )

= a0(d + ε + γ )

[
(2p − 1)

(
Ii
Ic

)p
− (p − 1)R0

]
. (22)

Let us first determine the sign of det(M(Ei)) at the equilibriumE1. If 12 ≤ p ≤ 1, both terms
in the bracket of formula (22) are positive and hence det(M(E1)) > 0. If 0 < p < 1

2 , from
Case I in Section 2 we know I1 < In < Ie. Therefore,

det(M(E1)) > a0(d + ε + γ )

[
(2p − 1)

(
Ie
Ic

)p
− (p − 1)R0

]
= 0. (23)

If p>1, from the discussion ofCases 1 and 5 in Section 2 it follows that I1 > Ie, implying
that inequality (23) still holds. In summary, we have det(M(E1)) > 0 and tr(M(E1)) < 0.
Therefore, E1 is asymptotically stable. The stability of the equilibria Ee, E2 and E3 can be
determined similarly. At Ee, one can have det(M(Ee)) = 0, implying that Ee is a degenerate
node. At E2, it follows from I2 < Ie that det(M(E2)) < 0. Thus, E2 is a saddle point. At E3,
we have det(M(E3)) > 0 (since I3 > Ie). Hence, E3 is stable.
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10 L. WANG ET AL.

To sum up, one obtains the following result.

Theorem 3.1: For model (3), the local stability of the equilibria is stated as follows:

(i) The origin O(0, 0) is a saddle point;
(ii) If a < a0 (i.e. R0 < 1), then the disease-free equilibrium E0 is locally stable. If a = a0,

then E0 is a saddle-node. If a > a0 (i.e. R0 > 1), then E0 is a saddle point;
(iii) E∗, E1, E3 are locally asymptotically stable whenever they exist. E2 is a saddle point, and

Ee is a degenerate node.

To illustrate the existence and stabilities of multiple equilibria for model (3), we uti-
lize some parameter values estimated from the influenza A (H1N1). Set the recovered rate
γ = 0.0196 year−1 [12], the disease-induced death rate ε = 2.7397 year−1 [25], and fix the
natural death rate d = 1

75 year
−1, and b = 1.9237 × 10−3. The basic reproductive number

of influenza A was estimated as 1.5−3.1 [30]. For ease of demonstration, we naively set
p=3, β = 0.0139 and a=600, and hence the basic reproductive number R0 is equal to
3.0. We shall consider two examples. Both examples show the occurrence of bi-stability,
in which solutions may converge to one of two stable equilibria, depending on initial
conditions.

Example 3.1: Set Ic = 45.We can calculate I0c = 21 and a2 = 600. Therefore, Ic > I0c , and
a = a2. In this case (see Theorem 2.2(2)), model (3) admits two stable endemic equilibria
E∗ and E1, that is, bi-stability occurs (see the line L2 in Figure 1). Some solutions to the
model are illustrated in Figure 2. Note that a = a2 is equivalent to Ic = I∗. The endemic
equilibrium E∗ lies on the horizontal line I = Ic.

Example 3.2: Set Ic = 50. In this case, Ic > I0c = 21, a1 = 597 and a2 = 651. The con-
ditions of (iii) of (2) in Theorem 2.2 are satisfied. Hence, model (3) has three positive
equilibria E∗, E2 and E3. Figure 3 illustrates some numerical solutions to the model. The
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140
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I=I
c

Figure 2. Phase plot of I verses S showing that two stable endemic equilibria E∗, E1 coexist. Here, we fix
(a, b,β , d, γ , ε) = (600, 1.9237 × 10−3, 0.0139, 1

75 , 0.0196, 2.7397), and set Ic = 45 > I0c = 21.
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Figure 3. Phase plot of I verses S showing that bi-stability occurs for Ic > I0c and a1 < a < a2. Here, E∗
and E3 are locally stable while E2 is a saddle point. Ic = 50 > I0c = 21 and other parameters take the
same values as in Figure 2.

stablemanifolds of the saddle E2 split the phase plane into two regions. In the lower region,
solutions approach to E∗ while in the upper region solutions approach to E3 (see Figure 3).

4. Global stability analysis

In this section, we study the global stability of model (3). It can be shown that the state
variables of model (3) remain non-negative for non-negative initial conditions. Consider
the biologically feasible region

	 =
{
(S, I) ∈ R2

+ : N = S + I ≤ K0 = (ab + d + ε)2

4b2(d + γ )
+ 1

}
.

Choosing the straight line S+I−Ab=0, similar to the proof of Corollary in [36], we have
the following two results.

Lemma 4.1: The closed set 	 is a positively invariant set for model (3).

Theorem 4.2: E0 is globally asymptotically stable if 0 < a ≤ a0 and unstable if a > a0.

To the best of our knowledge, by precluding the existence of a limit cycle we are able to
prove global stability of the unique endemic equilibrium of model (3).

Theorem 4.3: There exist no limit cycles for model (3).

Proof: The following two steps are considered to achieve our conclusion.
Step 1. We shall prove that there are no limit cycles in the region below the line I = Ic

in the feasible region 	 and in the region above the line I = Ic. Denote these two regions
by 	1 and 	2.
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12 L. WANG ET AL.

Take the Dulac functionD(S, I) = S−1. In the case of 0 < I ≤ Ic, by the transformation

x = S, y = ln I, (24)

one can transfer sub-system (4) into

dx
dt

= bx(a − x) − (βx − γ ) ey,

dy
dt

= βx − (d + ε + γ ).
(25)

and D(x, y) = x−1. Let N1, N2 be the right-hand side functions of (25). Then

∂(DN1)

∂x
+ ∂(DN2)

∂y
= −γ ey

x2
− b < 0. (26)

Therefore, there are no limit cycles in the region below the line I = Ic.
In the case of I > Ic, we can extend subsystem (5) to the case of I ≥ Ic because of the

continuity of the transmission function β(I). That is, subsystem (5) can be rewritten into

dS
dt

= bS(a − S) − β

(
Ic
I

)p
IS + γ I,

dI
dt

= β

(
Ic
I

)p
IS − (d + ε + γ )I,

I ≥ Ic. (27)

Consider two cases p=1 and p 	= 1. If p=1, one can set x= S and y= I. With N1 and N2
being the right sides of system (27), direct calculations show that

∂(DN1)

∂x
+ ∂(DN2)

∂y
= −γ y

x2
− d + ε + γ

x
− b < 0. (28)

If p 	= 1, using the transformation

x = S, y = ln I1−p, (29)

one obtains
dx
dt

= bx(a − x) − βIpc x ey + γ ey/(1−p),

dy
dt

= (1 − p)[βIpc x e−py/(1−p) − (d + ε + γ )].
(30)

Therefore,

∂(DN1)

∂x
+ ∂(DN2)

∂y
= − γ

x2
ey/(1−p) − pβIpc e−py/(1−p) − b < 0. (31)

Consequently, for all p>0, one can have

∂(DN1)

∂x
+ ∂(DN2)

∂y
< 0. (32)

Hence, there is no limit cycle in 	2, the region above the line I = Ic. We should point out
that inequalities (26) and (32) hold for y ∈ (−∞,+∞).
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Figure 4. A limit cycle intersects with the line I = Ic at C1 and C2.

Step 2. We are now ready to show that model (3) has no limit cycle crossing the line
I = Ic. The idea is similar to that in [27, 28, 34].

Assume that � is a limit cycle across the line I = Ic. Let �1 be the part of the cycle
below I = Ic of the cycle �, and �2 be the part above I = Ic, with the direction designated
in Figure 4. Let both �1 and �2 include two intersection points C1, C2 of � with the line
I = Ic. The region enclosed by �1 and the segment C1C2 is denoted by G1, and the region
enclosed by �2 and the segment C1C2 is denoted by G2.

Let us choose two the directed-paths L1 :
−−→
C1C2 and L2 :

−−→
C2C1, as shown in Figure 4. It

can be seen that∮
�1∪�2

D(N1 dI − N2 dS) =
(∫

�1

+
∫

�2

)
D(N1 dI − N2 dS)

=
(∫

�1

+
∫

�2

+
∫
L1

+
∫
L2

−
∫
L1

−
∫
L2

)
D(N1 dI − N2 dS)

=
(∮

�1∪L1
+

∮
�2∪L2

−
∫
L1

−
∫
L2

)
D(N1 dI − N2 dS). (33)

Meanwhile, it is easy to obtain that

(∫
L1

+
∫
L2

)
D(N1 dI − N2 dS) = 0. (34)

Hence, from Green’s Theorem it follows that
∮

�1∪�2

D(N1 dI − N2 dS) =
(∮

�1∪L1
+

∮
�2∪L2

)
D(N1 dI − N2 dS)

=
(∫ ∫

G1

+
∫ ∫

G2

) [
∂(DN1)

∂S
+ ∂(DN2)

∂I

]
dS dI. (35)
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14 L. WANG ET AL.

Obviously, one can have ∮
�1∪�2

D(N1 dI − N2 dS) = 0. (36)

From Step 1, however, we know that there is no limit cycle in the regions Pi1 or Pi2, and

∫ ∫
G1

[
∂(DN1)

∂S
+ ∂(DN2)

∂I

]
dS dI < 0,

∫ ∫
G2

[
∂(DN1)

∂S
+ ∂(DN2)

∂I

]
dS dI < 0.

(37)
A contradiction to Equation (35). Therefore, there are no limit cycles crossing the line
I = Ic.

To sum up, model (3) has no limit cycles. �

From Theorems 2.2 and 4.3, we immediately have

Corollary 4.4: If model (3) admits a unique endemic equilibrium (either of E∗ or E1), then
it is globally asymptotically stable.

We can illustrate the global stability by numerical simulations. Set Ic = 40 and the
remaining parameters take the same values as in Figure 2. Then a > a2 = 549. From
Remark 1 and Corollary 4.4, the unique endemic equilibrium E1 (see the region Q1 in
Figure 1) of model (3) is globally asymptotically stable. Figure 5 shows that the number I
of infections is stabilized at the level I1. In the figure, it is also shown that the number I of
infected cases is stabilized at decreased levels as either the intensity p of the media effect
increases or the critical number Ic decreases. That is, stronger media effects and/or lower
critical numbers lead to a decreased number of infections at the endemic equilibrium E1.
In fact, such decreasing effects are also true for all endemic equilibria except E∗.
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Figure 5. The number of infected cases is stabilized at decreased levels as either p increases or Ic
decreases.
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5. Discussion

During a disease spread, only when the number of infected cases and/or the severity of
infection are high enough to draw the attention of media and public health organiza-
tions, alerts are issued and all related information is brought to the public through media
coverage. The information gradually changes public behaviour, which reduces the chance
of potential contact infection and eventually helps to curb the disease spread. Fast and
dramatic changes in public behaviour can also occur subject to some intensive controlmea-
sures such as closing school and distancing certain groups of persons. Previous studies have
introduced a critical number Ic to be the level for media and health organizations to take
action. Functions with jump-discontinuity at Ic were used to describe the changing trans-
mission rate due to the media effect [28, 34, 35]. With the rate functions, media effects on
disease outbreaks were studied through compartmental epidemic models. It turns out that
proper use of media coverage can curb disease outbreaks [28, 34]. In this paper, following
the idea of the critical number Ic, we proposed the non-smooth function (2) to describe
the transmission rate which is continuous at Ic. With this description, change in public
behaviour is continuous. Using a susceptible–infected–susceptible model with a logistic
growth in the susceptible class, we studied the media effect on the transmission dynamics
of an infectious disease in a given region.

Our model analysis shows that without the media effect or with relatively weak effect
(0 < p ≤ 1), the endemic equilibrium E∗ or E1 (depending on the chosen Ic) is globally
asymptotically stable. With relatively strong media effect p>1, the model may have up
to three endemic equilibria for the chosen critical number Ic in the threshold interval
� = [I1c , I2c ]. Otherwise, the model admits a unique endemic equilibrium (which is glob-
ally asymptotically stable, see Figure 1). In the former case, solutions to the model can
converge to either one of two stable endemic equilibria (see Figures 2 and 3), depending
on initial conditions. That is, bi-stability can occur. To avoid such uncertainty in practice,
it is necessary to choose the critical number Ic below the value I1c . It is worthwhile to point
out that the critical values I1c , I2c depend only on the basic reproduction number R0 and
the intensity p of the media effect and hence they are prescribed by the focal disease and
the population in the given region. Therefore, it is possible for policymaker to roughly esti-
mate the threshold interval for re-emerged diseases and then choose a reasonable critical
number Ic to initiate media coverage.

From the point of view of disease control, early media alerts (i.e. setting a small critical
number for Ic) and strong media effects (i.e. p>1) are definitely preferable. Our anal-
ysis shows that if Ic < I∗, equivalently a > a2, the endemic equilibrium E1 is globally
asymptotically stable. However, if Ic > I2c , model solutions approach the unique equilib-
rium E∗, causing that media coverage loses its impact on disease transmission. This should
be avoided by health policymakers.

Early media alerts and strong effect can decrease the numbers of infected cases at
endemic equilibria Ii, i = e, 1, 2, 3. For example, as the critical number Ic decreases, or the
intensity p of themedia effect increases, the number of infected cases can be stabilized at E1
with decreased numbers of cases (see Figure 5). Therefore, properly choosing the critical
number and strengthening the media effect can reduce disease prevalence. The analysis of
an SEI model also implies that media coverage can reduce the number of infected cases at
endemic equilibria [9].
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16 L. WANG ET AL.

The existence of multiple endemic equilibria was obtained in some previous studies
(see e.g. [9, 20]). Using the transmission rate β e−mI with media parameter m, Cui et al.
[9] found that the model may exhibit periodic oscillations for sufficiently small media
effects (smallm) and may have multiple endemic equilibria for strong media effects (large
m). Unfortunately, the stabilities of the equilibria are not available and hence the solution
behaviour is unknown for strong media effects. Media/psychological effects may be also
included in the incidence rate in a nonlinear and saturation way such as kI2S/(1 + αI2)
and simple compartmental models can exhibit complex dynamics. For instance, saddle-
node bifurcation, Hopf bifurcation and homocyclic bifurcation can occur in a simple SIR
epidemic model with the rate [20]. Therefore, the impact of media coverage on a dis-
ease transmission dynamics could be complicated and simplified understandingsmay even
make the disease worse (e.g. [24]). It needs to be further studied from distinct aspects [8].

In order to avoid the complexity of mathematical analysis we assumed that the logistic
growth in the susceptible class depends only on the number of the susceptible, instead of
the total population size. This is a significant simplification. As an end of the paper, we
would like to point out that this simplification is unlikely to change our major qualitative
results about the media effect, such as the existence of the threshold interval � and bi-
stability.
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