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Abstract

Metapopulation models that incorporate both spatial and temporal structure are studied in this paper. The existence and stability of

equilibria are provided, and an extinction threshold condition is derived which depends on patch dynamics (patch destruction and

creation) and metapopulation dynamics (patch colonization and extinction). These results refine threshold conditions given by previous

metapopulation models. By comparing landscapes with different spatial heterogeneities with respect to weighted long-term patch

occupancies, we conclude that the pattern of a landscape is of overwhelming importance in determining metapopulation persistence and

patch occupancy. We show that the same conclusion holds when a rescue effect is considered. We also derive a stochastic differential

equations (SDE) model of the Itô type based on our deterministic model. Our simulations reveal good agreement between the

deterministic model and the SDE model.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

When studying populations for which local interactions
are relevant, the spatial components of the system are at
least as important as average birth and death rates,
competition, or predation (Hanski, 1998). Destruction
and fragmentation of native habitats are widespread and
viewed as the most important threats to biodiversity
worldwide (Wilcox and Murphy, 1985). Agriculture, urban
sprawl, deforestation, and other human activities change
the composition and physiognomy of landscapes, often
altering individual behavior (Sheperd and Swihart, 1995;
Zollner, 2000), population dynamics (Hanski, 1998),
genetic structure (Gaines and Lyons, 1997), and commu-
nity composition (Wright et al., 1998) of organisms. Thus,
the notion of spatially structured populations is increas-
ingly relevant for many species, heightening the importance
of spatial ecology in recent years.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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From a conservation perspective, there is considerable
interest in predicting the sensitivity of species to land-use
change and habitat fragmentation as a function of a
general suite of ecological (Ims et al., 1993) or behavioral
(Laurance, 1995; Wolff, 1999) characteristics. The classic
metapopulation model (Levins, 1969) emphasizes changes
in patch occupancy as a function of rates of patch
colonization and extinction processes. Hanski (1994)
proposed using a generalized incidence function model to
describe patch colonization and extinction dynamics as
functions of patch area and isolation. Hanski and
Ovaskainen (2000) and Frank and Wissel (1998, 2002)
defined an index of metapopulation capacity for a
landscape containing patches that varied in size and
connectivity.
Real landscapes exhibit three characteristics not incor-

porated in most metapopulation models. First, real land-
scapes are not static; temporal changes in habitat patches
occur (e.g. logging or vegetative succession can alter forest
patches) and can have important effects on metapopulation
persistence (Gu et al., 2002). Disturbance regimes, such as
the distribution of anomalous weather events, often drive
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changes in the suitability of patches for occupancy. Second,
the distribution and magnitude of disturbances in real
landscapes have both a stochastic component (e.g. the
timing of occurrence of a drought year) and a deterministic
component (e.g. the predictable effects of drought on
wetlands that vary in depth and size), both of which
contribute to the legacy of a disturbance (sensu Turner and
Dale, 1998) by altering the spatial structure of patches.
Marquet and collaborators (see for example Marquet et al.,
1997, 2003; Keymer et al., 1998, 2000) recognized the
importance of patch dynamics and developed mean field
and spatially explicit version models which provide
estimates of metapopulation persistence as a function of
the rate of habitat destruction. Third, real landscapes are
structured spatially. The important role of spatial structure
(i.e. heterogeneity) has been supported by many authors
(Durrett and Levin, 1994; With and Crist, 1995; Moilanen
and Hanski, 1995; Bascompte and Solé, 1996; Hanski,
1998; Bevers and Flather, 1999), who have concluded that
spatial features such as connectivity of patches, patch size
and dispersal are essential to understand the dynamics of a
population. In addition to the spatial structure of the
landscape, recent research has focused on the effects of
temporal changes in landscape structure (Merriam et al.,
1991; Fahrig, 1992; Brachet et al., 1999; Marquet et al.,
1997, 2003; Keymer et al., 1998, 2000). The general
consensus is that temporal components interact with the
spatial components to determine metapopulation persis-
tence (Keymer et al., 2000). Since complex landscapes are
indeed dynamic in nature, the role of patch dynamics
should not be neglected. We have developed a model (Feng
and DeWoody, 2003; DeWoody et al., 2005) that combines
the features of the spatially realistic Levins model (SRLM)
(Moilanen and Hanski, 1995) with dynamic changes in
patch quality (Marquet et al., 1997, 2003; Keymer et al.,
2000).

In this article, we consider a more general model of
which the model by DeWoody et al. (2005) is a special case.
Our analytical results provide not only criteria for the
persistence of metapopulation, uniqueness and global
attractivity of the positive interior equilibrium, but also
the global attractivity in the case of multiple positive
interior equilibria, in which metapopulation size depends
on the initial values. We compare the implications of these
criteria with both the SRLM and the model of the Keymer
et al. (2000). We have conducted numerical simulations of
the models applied to landscapes with different spatial
structures and compared the outcomes in terms of
weighted long-term patch occupancies. In parallel to the
analytical and numerical studies of the deterministic
models, we also have derived corresponding stochastic
differential equations (SDE) of the Itô type. Significantly,
our results improve the metapopulation extinction thresh-
olds provided by the SRLM and the model of Keymer et al.
(2000). By highlighting differences between our model and
previous models, we identify key factors that may change
predictions derived by either the SRLM or the Keymer
et al. (2000) model. Our stochastic simulations agree nicely
with the deterministic models, allowing extension of our
model to include more realistic features that are difficult to
analyse with deterministic models, and to examine the
effects of the increased realism on metapopulation
dynamics.
This paper is organized as follows. In Section 2 we

describe the SRLM, the model of Keymer et al. (2000), and
our deterministic model. Analytical results and numerical
studies of the deterministic model are given in Section 3.
Simulations using an SDE model are presented in Section
4, and the simulation results are compared with those
obtained from our deterministic model. In Section 5 we
discuss our results and their implications.

2. Deterministic metapopulation models

The original single-species metapopulation model (Le-
vins, 1969) has the form

dpðtÞ

dt
¼ cpðtÞð1� pðtÞÞ � epðtÞ,

where pðtÞ denotes the proportion of the occupied patches
at time t, c is the colonization rate of the empty patches, and
e is the extinction rate of the occupied patches. This model
assumes an infinite network of homogeneous patches and is
spatially implicit. A classic result provided by this model is
that metapopulation persistence is possible if and only if the
colonization rate exceeds the critical threshold set by the
extinction rate. Following Levins’ framework, a large body
of metapopulation theory has been developed in recent
years (Moilanen and Hanski, 1995; Hanski and Gilpin,
1997; Bascompte and Solé, 1998; Hanski, 1999; Hanski and
Ovaskainen, 2000, 2003; Dieckmann et al., 2000; Ovaskai-
nen and Hanski, 2001). Developments have ranged from
models of single species metapopulations (Levins, 1969,
1970; Hanski, 1985; Hanski and Gyllenberg, 1997; Keymer
et al., 1998, 2000; Murrell and Law, 2000; Hanski and
Ovaskainen, 2000, 2003; Ovaskainen and Hanski, 2001) to
interactions of two species (Horn and MacArthur, 1972;
Levin, 1974; Hanski, 1983; Nee and May, 1992; Nee et al.,
1997) or multiple species (Levin, 1974; Hastings, 1980;
Tilman, 1994; Holt, 1997).
The SRLM (Moilanen and Hanski, 1995; Hanski and

Gyllenberg, 1997; Hanski and Ovaskainen, 2000; Ovaskai-
nen and Hanski, 2001) incorporates the effects of the
spatial characteristics of landscapes into the classical
metapopulation dynamics of the Levins type. Assuming a
finite number n of patches in a fragmented landscape, the
model is an n-dimensional system, with one equation for
each habitat patch giving the rate of change in the
probability of that patch being occupied:

dpi2

dt
¼ ciðp2Þð1� pi2Þ � eiðp2Þpi2, (2.1)

where ciðp2Þ is the colonization rate in patch i when it is
empty, eiðp2Þ gives the extinction rate in patch i when it is
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occupied, and p2 is the n-dimensional vector of the
occupancy probabilities (see Table 1). Under the assump-
tion that the colonization rate of each patch is proportional
to patch connectivity, which is dependent upon the patch
areas, inter-patch distances, incidence of patches and a
species’ intrinsic dispersal ability (Adler and Nüernberger,
1994; Hanski, 1994, 1998, 1999), and that extinction rates
decrease as a function of patch area, reflecting the belief
that larger areas support larger populations and extinction
risk should decrease as a population grows, the rates in
(2.1) are quantified as

ciðp2Þ ¼ c
X
jai

e�adij Ajpj2ðtÞ; eiðp2Þ ¼
e

Ai

, (2.2)

where Ai and dij are landscape parameters representing,
respectively, the area of patch i and the distance between
patches i and j. All other parameters are related to the life
history characteristic of the focal species: a�1 is the average
migration distance; c and e are the background species
colonization and extinction rates, respectively. After a
rigorous analysis of the model, Ovaskainen and Hanski
(2001) concluded that a quantity oM , involving only the
spatial landscape and the focal species, sets the condition
for metapopulation persistence and can be used to rank
Table 1

Definitions of frequently used symbols

Symbol Definition

ci The colonization rate of patch i when empty

c� The colonization rate of patches in the mean field model

(Keymer et al., 2000)

ei The extinction rate of patch i

e� The extinction rate of patches in the mean field model

(Keymer et al., 2000)

bi The destruction rate of patch i

b� The destruction rate of patches in the mean field model

(Keymer et al., 2000)

Ei A general extinction or destruction function of patch i

Ai The area of patch i

1=a The average migration distance

d The long-term habitat loss

B The vector of the long-term habitat loss,

ðB1;B2; . . . ;BnÞ; Bi ¼ bi=ðli þ biÞ

lH1D1 The leading eigenvalue of matrix H1D�11

oM The leading eigenvalue of matrix M

pi2 The probability of the ith patch occupied by a focal species

p2 The n-dimensional vector of patch occupancies pi2

pm
2 , p

M
2

The minimal and maximal equilibria (componentwise)

p�2 Denoting the unique positive equilibrium

po The average of patch occupancies weighted by patches’

relative values UR
i

p̂ The average of patch occupancies weighted by patches’

absolute values VR
i

pA The average of patch occupancies weighted by patches’ areas

Ai

p̄ p̂=ð1� dÞ, the long-term proportion of occupied suitable

habitat

O n-cube fx ¼ ðxiÞ 2 Rn : 0pxip1;8ig
S Occupancy space fx ¼ ðxiÞ 2 Rn : 0pxip1� Bi; 8ig
landscapes and examine the relative roles of habitat loss
and fragmentation on metapopulation persistence. They
termed oM the metapopulation capacity of a landscape.
Model (2.1) provides an essential framework for under-

standing responses of species to habitat fragmentation.
Nonetheless, Ovaskainen and Hanski (2001) assumed that
landscapes are static, despite the fact that complex land-
scapes often are dynamic. Keymer et al. (2000) recognized
the importance of patch dynamics and developed a mean
field model with which they estimated metapopulation
persistence as a function of the rate of habitat destruction.
However, the model of Keymer et al. (2000) ignored spatial
structure.
Combining the features of both the SRLM and the

Keymer et al. model, we developed the following model:

dpi0

dt
¼ biðpi1 þ pi2Þ � lipi0,

dpi1

dt
¼ lipi0 � ciðp2Þpi1 þ eiðp2Þpi2 � bipi1,

dpi2

dt
¼ ciðp2Þpi1 � ðeiðp2Þ þ biÞpi2. ð2:3Þ

This model considers a landscape of n patches, each of
which may be at one of the three stages i ¼ 0; 1; 2
(uninhabitable, habitable yet empty, and occupied).
pi0ðtÞ; pi1ðtÞ; pi2ðtÞ denote the probabilities of patch i being
in three states at time t. bi and li give the destruction and
creation rates of patch i, respectively. For the case when
ciðp2Þ and eiðp2Þ have the same forms as given in (2.2) with
p2 representing the vector of n occupancy probabilities,
DeWoody et al. (2005) discussed some of the properties of
the model (2.3) without detailed proofs. We provide these
proofs and allow ciðp2Þ and eiðp2Þ to have more general
forms. Denote by Eiðp2Þ a general extinction rate of patch i.
Then, for the model (2.3), Eiðp2Þ ¼ eiðp2Þ þ bi. In the next
section, Theorem 3.1 can be applied to the model (2.1) by
replacing 1� Bi by 1 and Ei by ei in system (3.3) while
Theorem 3.2 aims at the model (2.3). Suppose that ci and
Ei are smooth functions, and that:
(H1)
 cið0Þ ¼ 0; ciðp2Þ40 in Onf0g, and cijðp2Þ:¼
qciðp2Þ

qpj2
X0 in

S if iaj. In biological terms, there is no immigration
from external sources, there are no completely
isolated patches, and the occupied patches in the
network make either a positive or zero contribution
to the colonization rate of an empty patch.
(H2)
 Eiðp2Þ40 in O; Eijðp2Þ:¼
qEiðp2Þ

qpj2
p0 in S for iaj. In

biological terms, it is assumed that each local
population has a positive rate to go extinct, the
extinction rate of an extant local population is
independent of or reduced by the presence of other
local populations.
Here, O ¼ fp2 ¼ ðpi2Þ 2 Rn : 0ppi2p1; 8ig; and S ¼ fp2 ¼
ðpi2Þ 2 Rn : 0ppi2p1� Bi; 8ig; and Bi ¼

bi
biþli

represents
the long-term destruction probability of patch i. In
assumption (H2), if Eijðp2Þo0 for some iaj, the biological
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rational is that the populations in the neighborhood of a
given local population may send migrants which enter the
focal patch and thus elevate its local population size such
that the extinction rate of the given population is reduced.
This has been termed a rescue effect. Assumption (H2) has
no requirements on Eiiðp2Þ. Actually, we may have
Eiiðp2Þo0 because the extinction rate of a local population
decreases with increasing population size. We also call this
phenomena a rescue effect. Usually, rescue effects will lead
to multiple positive equilibria for models. Later, we will
provide an example.

In the following sections we will focus on system (2.3).
We show that species persistence is determined by a
threshold condition which generalizes the threshold condi-
tions provided by either the SRLM or the model of
Keymer et al. (2000).

3. Model analysis

Note that for model (2.3), pi0 þ pi1 þ pi2 ¼ 1: Therefore,
instead of model (2.3), we can study the following
equivalent system:

dpi0

dt
¼ bið1� pi0Þ � lipi0, (3.1)

dpi2

dt
¼ ciðp2Þð1� pi0 � pi2ðtÞÞ � Eiðp2Þpi2,

i ¼ 1; 2; . . . ; n, ð3:2Þ

with a general extinction function Ei satisfying assumption
(H2).

3.1. General theorems

Under assumptions (H1) and (H2) system (3.1)–(3.2)
admits a trivial equilibrium

O ¼ ðB; 0Þ:¼ðB1;B2; . . . ;Bn; 0; . . . ; 0Þ,

where pi0 ¼ Bi, pi2 ¼ 0, i ¼ 1; 2; . . . ; n. The stability of the
equilibrium O is determined by the eigenvalues of the
matrix H1 �D1; where D1 ¼ diagðEið0Þ � ð1� BiÞciið0ÞÞ,
and

H1 ¼

0 ð1� B1Þc12ð0Þ � � � ð1� B1Þc1nð0Þ

ð1� B2Þc21ð0Þ 0 � � � ð1� B2Þc2nð0Þ

� � � � � � � � � � � �

ð1� BnÞcn1ð0Þ ð1� BnÞcn2ð0Þ � � � 0

0
BBBB@

1
CCCCA.

As proven by Diekmann et al. (1990), H1 �D1 has at least
one eigenvalue with positive real part if and only if

lH1D1
¼ the leading eigenvalue of H1D�11 41.

Note that Eq. (3.1) can be decoupled, and the solution
pi0ðtÞ always converges to Bi as t goes to infinity. Therefore,
we first consider the limiting system

dyi

dt
¼ ciðyÞð1� Bi � yiÞ � EiðyÞyi :¼ f iðyÞ, (3.3)
where y ¼ ðyiÞ
n
i¼1 2 O: This is actually an extension of

model (2.1). Let fðyÞ ¼ ðf iðyÞÞ
n
i¼1. For any x; y 2 Rn, we

write xpy if the components satisfy xipyi, xoy if xipyi

and xay, x5y if xioyi. Then we have:

Theorem 3.1. For any y 2 O; let ~FðtÞy denote the solution

of system (3.3) with ~Fð0Þy ¼ y. The following statements

hold.
(i)
 There exists a maximal equilibrium pM
2 2 S such that

for any y 2 O; oðyÞ � ½0; pM
2 �, where oðyÞ is the omega

limit set of the orbit gþ ¼ f ~FðtÞy : tX0g, and ½0; pM
2 � ¼

fp2 2 R
n : 0pp2ppM

2 g: Moreover, for each y 2 S with

yXpM
2 ; limt!1

~FðtÞy ¼ pM
2 :
(ii)
 If H1 is irreducible and lH1D1
41, then there exists an

equilibrium pm
2 with 05pm

2 ppM
2 such that for any

y 2 Onf0g, oðyÞ 2 ½pm
2 ; p

M
2 �. Moreover, limt!1

~FðtÞy ¼
pm
2 for each 0oyppm

2 . In particular, if pm
2 ¼ pM

2 , then

pm
2 is globally attractive with respect to Onf0g.
(iii)
 Suppose that the Jacobian matrix DfðyÞ is irreducible

for every y 2 S, and

(1) f is sublinear, i.e. fð�yÞX�fðyÞ; 8� 2 ½0; 1�; yX0, then

for any two equilibria p�2; p
��
2 2 S with p�2; p

��
2 b0 (if

existing), there is x40 such that p�2 ¼ xp��2 . More-

over, every solution ~FðtÞy (tX0) will converge to an

equilibrium.
(2) f is strictly sublinear, i.e. fð�yÞ4�fðyÞ;8�
2 ð0; 1Þ; yb0, then if lH1D1

p1; zero is globally

asymptotically stable, while if lH1D1
41; system

(3.3) admits a unique positive equilibrium p�2b0 and

p� is globally asymptotically stable.
2
Proof. It is easy to check that S is a positive invariant set
for the solution semiflow ~FðtÞ, and for any y 2 OnS;
~FðtÞy 2 S for all sufficiently large t. Therefore, in order to
know the behavior of ~FðtÞy in O, we only need to study the
semiflow ~FðtÞ : S! S:
Assumptions (H1) and (H2) imply that system (3.3) is a

cooperative system on S. By Proposition 3.1.1 of Smith
(1995), ~FðtÞ is monotone, i.e. ~FðtÞxp ~FðtÞy; 8tX0 if xpy.
Moreover, if DfðyÞ is irreducible on S, ~FðtÞ is strongly
monotone, i.e. ~FðtÞx5 ~FðtÞy;8t40 if xoy (see Theorem
4.1.1 of Smith (1995)).
(i) The result is a direct consequence of the continuous

version of Theorem 2.1.1 of Zhao (2003).
(ii) By Corollary 3.1 of Zhao and Jing (1996), there exists

an equilibrium pm
2 b0 such that limt!1

~FðtÞy ¼ pm
2 for each

0oyppm
2 ; and for any y 2 Snf0g, lim inf t!1

~FðtÞyXpm
2 .

Combining these results with (i), we obtain (ii) immedi-
ately.
(iii) For any fixed t40, consider the map ~FðtÞ. Then the

equilibria of system (3.3) are fixed points of map ~FðtÞ.
Therefore, Lemma 2.3.1 of Zhao (2003) gives conclusion
(1). Conclusion (2) is a direct result of Corollary 3.2 of
Zhao and Jing (1996) and Theorem 2.1 of Wang and Zhao
(2003). &
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Remark 3.1. The irreducibility condition of the theorem
actually means that there are no completely isolated
patches. Thus, under our assumptions, the conditions are
always satisfied.

Remark 3.2. Let F iðyÞ ¼
ð1�BiÞciðyÞ

ciðyÞþEiðyÞ
;FðyÞ ¼ ðFiðyÞÞ

n
i¼1. Con-

sider the iteration equation

ynþ1 ¼ FðynÞ. (3.4)

Then the equilibria of system (3.3) are fixed points of F.
Moreover, the iteration orbits have the same dynamical
behavior about pM

2 as implied in Theorem 3.1. Thus, to
obtain pM

2 ; one just needs to iterate (3.4) from B. If the
Jacobian matrix DFð0Þ is strongly positive and F satisfies
certain monotonicity and sublinearity conditions, we
can obtain the same conclusion about the discrete
dynamical system (3.4) as in Theorem 3.1(ii) and (iii).
Therefore, we can compute pm

2 by iterating (3.4) from any
point in a small neighborhood of zero. Note that if a point
p2 is an equilibrium of (3.3), then ðB; p2Þ is an equilibrium
of system (3.1)–(3.2). Therefore, by the iteration, we
actually obtain the corresponding equilibrium of
(3.1)–(3.2).

Theorem 3.2. Let O2 ¼ fðpi0; pi2Þ 2 R2n
þ : pi0 þ pi2p1; 81p

ipng: For any p 2 O2 denote by FðtÞp ¼ ðF0ðtÞp;F2ðtÞpÞ the

solution of system (3.1)–(3.2) with Fð0Þp ¼ p. Then we have

the following statements.
(i)
 For any p 2 O2; oðpÞ � B� ½0; pM
2 �, where oðpÞ is the

omega limit set of the orbit gþ ¼ fFðtÞp : tX0g;

(ii)
 If H1 is irreducible and lH1D1

41, then oðpÞ � B�

½pm
2 ; p

M
2 � for each p 2 O2nf0g. In particular, if pm

2 ¼ pM
2 ,

then ðB; pm
2 Þ is globally attractive with respect to O2nf0g;
(iii)
 Suppose that DfðyÞ is irreducible for every y 2 S, and f

is strictly sublinear. If lH1D1
p1; the trivial equilibrium

ðB; 0Þ is globally attractive, while if lH1D1
41; the unique

positive equilibrium ðB; p�2Þ is globally attractive with

respect to O2nf0g;
where pm
2 ; p

M
2 and p�2 are defined in Theorem 3.1.

Proof. Here, we only give the proof of (ii). (i) and (iii) can
be proved using the same arguments.

Note that O2 is a positive invariant set for the solu-
tion semiflow FðtÞ. For any p 2 O2nf0g, since FðtÞp is
bounded, oðpÞ is a compact, invariant, internally chain
transitive and nonempty set for semiflow FðtÞ. Since
limt!1F0ðtÞp ¼ B; we can set oðpÞ ¼ B� G. Then there
holds

FðtÞx ¼ ðB; ~FðtÞyÞ; 8x ¼ ðB; yÞ 2 oðpÞ.

It follows that G is a compact, invariant and internally
chain transitive set for ~FðtÞ. Since ~FðtÞ has a global
attractor in ½pm

2 ; p
M
2 � with respect to Onf0g, by Lemma 1.2.8

of Zhao (2003) and the fact G � O (more precisely, G � S),
we have G � ½pm
2 ; p

M
2 � or G ¼ f0g. We need to exclude the

second case.
Suppose, by contradiction, that there exists a point p 2

O2nf0g such that G ¼ f0g. Then, for any e40, there exists a
t140 such that kF2ðtÞpkoe for all tXt1: Set
ȳðtÞ ¼ ðȳiðtÞÞ

n
i¼1 ¼ F2ðtÞp. Consider the following system:

dyi

dt
¼ ciðyÞð1� Bi � e� yiÞ � EiðyÞyi,

y ¼ ðyiÞ
n
i¼1 2 O. ð3:5Þ

By the continuous dependence of solutions on parameters
and Theorem 3.1, for sufficiently small e40, the solutions
of (3.5) with positive initial values are greater than pm

2 =2
for all large t. Let us fix such an e. Without loss of
generality, we may choose eokpm

2 k=2: Then there exists a
t0 ¼ t0ðeÞ40 such that F0ðtÞppBþ eI ; kȳðtÞkoe;8tXt0,
where I ¼ f1; 1; . . . ; 1g 2 Rn. Therefore,

dȳiðtÞ

dt
XciðȳðtÞÞð1� Bi � e� ȳiðtÞÞ � EiðȳðtÞÞȳiðtÞ,

8tXt0. ð3:6Þ

Note that ȳiðtÞ40 for all t40. By the comparison
theorem and the monotonicity of system (3.5), ȳðtÞX

yeðtÞ4pm
2 =2 for all tXt0, where yeðtÞ is the solution of (3.5)

with yeðt0Þ ¼ ȳðt0Þ, a contradiction. Therefore, we estab-
lished (ii). &

3.2. Effect of patch dynamics

The theorems imply that the focal species goes extinct if
lH1D1

o1 and the species persists if lH1D1
41. In the special

case when there is no patch destruction, this threshold
condition has been derived in Hanski and Ovaskainen
(2000) and Ovaskainen and Hanski (2001). Clearly, our
threshold condition allows for an assessment of the impact
of patch dynamics on species persistence as the matrix H1

involves parameters bi and li, which represent patch
destruction and creation, respectively.

3.2.1. Threshold for metapopulation persistence

To illustrate the effects of patch dynamics, we now
consider specific forms of colonization and extinction rates
ci; ei as used by Hanski and Ovaskainen (2000), Ovaskai-
nen and Hanski (2001). That is, for system (3.1)–(3.2),

Ei ¼ ei þ bi ¼ e=Ai þ bi,

ciðp2Þ ¼ c
X
jai

e�adij Ajpj2ðtÞ. ð3:7Þ

Similarly we assume that patch creation and destruction
also depend on patch areas:

li ¼
l
Ai

; bi ¼
b
Ai

; i ¼ 1; 2; . . . ; n,

where l and b are the corresponding background rates. In
this case Bi ¼

b
bþl for all i. Straightforward calculations
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show that H1D
�1
1 ¼

l
bþl

c
eþb M, where

M ¼

0 e�ad12A2
2 � � � e�ad1nA2

n

e�ad12A2
1 0 � � � e�ad2nA2

n

� � � � � � � � � � � �

e�ad1nA2
1 e�ad2nA2

2 � � � 0

0
BBBB@

1
CCCCA.

Let oM denote the leading eigenvalue of M. Then,
according to our theorems, the trivial equilibrium ðB; 0Þ of

the system (3.1)–(3.2) is globally attractive if oMo eþb
c

lþb
l .

In this case, species extinction will occur. Noticing that for
the functional forms given in (3.7) the right hand side of
system (3.1)–(3.2) is strictly sublinear, from our theorems
we know that system (3.1)–(3.2) admits a unique positive
equilibrium ðB; p�2Þ and it is globally attractive if

oM4ō ¼
eþ b

c

� �
lþ b
l

� �
. (3.8)

In this case species persistence is expected. In the special
case of a static landscape (b ¼ 0), the threshold condition
(3.8) reduces to that obtained by Ovaskainen and Hanski
(2001).

To assess how dynamic landscapes may affect the
persistence threshold we introduce the notation d ¼ b

bþl,
which represents the expected fraction of destroyed
habitat. Then 1� d ¼ l

bþl represents the expected fraction
of suitable habitat. Rewrite the threshold expression ō as

ō ¼
eþ b

c

� �
1

1� d

� �
. (3.9)

This provides an explicit description of the threshold value
as a function of d, and therefore the dependence of
extinction risk of the metapopulation on the expected
fraction of destroyed habitat. Furthermore, noticing that
ō ¼ eþb

c
ð1þ d þOðd2

ÞÞ for small d, we see that the
dependence of ō on d is almost linear with the slope
dependent on the patch destruction rate b when d is small.
We remark that for fixed b, the value of d is determined by
the patch creation rate l.

We next discuss how dynamic landscapes may change
the earlier conclusion (Hanski and Ovaskainen, 2000;
Ovaskainen and Hanski, 2001) about the influence of the
structure of a landscape on metapopulation growth and
size at equilibrium. The metapopulation size at the
equilibrium ðB; p�2Þ can be defined by a weighted average
of p�2. There are various ways to weight the contribution of
each individual patch to the long-term metapopulation
persistence. Following Hanski and Ovaskainen (2001) we
adopt the concept of ‘‘relative value of a patch’’ to measure
the contribution of a patch. Let Q be a landscape with a
patch q 2 Q. Define the relative value of patch q by

UR
q ¼

oMðQÞ � oMðQnfqgÞ

oM ðQÞ
.

Thus, UR
q describes the relative decrease in oMðQÞ due to

removal of patch q from the landscape. Define the absolute
value of patch q by VR
q ¼ UR

q oMðQÞ. According to
Proposition 5.3 of Ovaskainen and Hanski (2001), we can
easily obtain that the total fraction (or probability) of
occupied patches weighted by relative values at the
equilibrium is

po ¼
X

i

UR
i p�i2 � 1�

eþ b
c

� �
1

ð1� dÞoM

� �
, (3.10)

where p�2 ¼ ðp
�
i2Þ. Again, in the case of static landscapes

(b ¼ 0), estimate (3.10) reduces to that of Hanski and
Ovaskainen (2000), i.e.

po � 1�
e

c

� � 1

oM

� �
. (3.11)

We observe from (3.10) and (3.11) that, in comparison with
the Levins model which gives an estimate for the
metapopulation persistence at the equilibrium to be
p� ¼ 1� e=c, the SRLM provides an improved estimate
(see (3.11)) by incorporating the role of landscape capacity
(oM). Our model provides a further improved estimate (see
(3.10)) by accounting for both the landscape capacity (oM)
and the expected suitable habitat (1� d).
In Keymer et al. (2000), the condition for metapopula-

tion persistence (p240) is also expressed in terms of the
reproduction number R�0. If we denote the colonization,
extinction and patch destruction rates by c�; e�;b�,
respectively, then R�0 can be expressed as

R�0 ¼
c�ð1� dÞ

e� þ b�
, (3.12)

which gives the average number of propagules a local
population produces during its life span (analogous to the
basic reproduction number in epidemiology). The (mean
field) metapopulation persists if R�041, and metapopula-
tion extinction is expected if R�0o1. We also can derive a
formula for the reproduction number R0 for our model.
Using the expression in (3.9) we can rewrite our threshold
condition for metapopulation persistence as R041, where

R0 ¼
cð1� dÞoM

eþ b
. (3.13)

Similar conclusions hold, i.e. metapopulation persists if
R041, and we have metapopulation extinction if R0o1.
Note that in the case of homogeneous landscape
ða ¼ 0;Ai ¼ A; i ¼ 1; . . . ; nÞ,

cnA ¼ c�; bi ¼ b=A ¼ b�,

ei ¼ e=A ¼ e� and oM ¼ ðn� 1ÞA2 ð3:14Þ

(see DeWoody et al., 2005). We have R0 ¼ R�0ðn� 1Þ=n,
and hence our reproduction number R0 approaches R�0 as
the number n of patches gets large. Clearly, our formula for
R0 allows us to assess the influence of landscape struc-
ture (represented by the matrix M) on metapopulation
persistence.
All of the threshold conditions mentioned above involve

the quantity oM , for which we do not have an explicit
expression due to the high dimension of the matrix M (it is



ARTICLE IN PRESS
D. Xu et al. / Journal of Theoretical Biology 239 (2006) 469–481 475
possible to derive a formula for small n41). For large n we
have to compute the value oM numerically for a given set
of landscape characteristics.

3.2.2. Numerical studies

Our numerical studies focus on the sensitivity analysis of
model outcomes to changes of three factors: landscape
structure (distribution of patches), species dispersal ability
(a) and long-term habitat destruction (d). We consider
three hypothetical landscapes that allow us to compare our
model results with the results of other models. As pointed
out in DeWoody et al. (2005), the SRLM and the model of
Keymer et al. (2000) are two extreme cases of our model.
That is, our model reduces to the SRLM when b ¼ 0, and
it approaches the model of Keymer et al. (2000) when
a ¼ 0, Ai ¼ A; i ¼ 1; 2; . . . ; n for large n. Some comparisons
of predictions of these three models can be found in
DeWoody et al. (2005). We extend findings of DeWoody et
al. (2005) by comparing landscapes with different patterns.
To make the comparison transparent, the landscapes we
chose have the same total areas (the sum of areas of all
patches), and one of the landscapes has all patches with
equal areas. For purposes of illustration we consider the
three landscapes shown in Fig. 1 (n ¼ 50). In Landscape I
0 2 4 6 8 10
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0 2 4
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Fig. 1. Three hypothetical landscapes used in numerical simulations: Landsca

total area. Landscape I has all patches with equal areas; Landscape II has the sa

Landscape III has a clustered distribution of patches with variable sizes.
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Fig. 2. Graphs of po, pA and p̂ in (a), (b) and (c), respectively, representing th

relative values, areas and absolute values of patches, vs the long-term patch de

for Landscape II, and the solid line for Landscape III. Here, a ¼ 0:2; c� ¼ 1;
the patches have equal areas and are distributed randomly.
Landscape II has the same patch locations as in Landscape
I, but the sizes of the patches are randomly produced (with
the same total area). Patches in Landscape III occur in
clusters. In our numerical simulations, parameters are
assigned values comparable to those used by Keymer et al.
(2000). For example, we always set c� ¼ 1 and e� ¼ 0:1.
Then, for a given value of A we determine values of c and e

by using relation (3.14). When patches have different areas,
there are various ways to measure metapopulation
occupancies at the equilibrium by using different weighs
for the components of p�2. For example, we can consider the
following three weighted average probabilities of occu-
pancy: po (weighted by relative values of individual

patches, see (3.10)), pA ¼
1Pn

i¼1
Ai

Pn
i¼1 Aip

�
i2 (weighted by

areas) and p̂ ¼ 1Pn

i¼1
VR

i

Pn
i¼1 VR

i p�i2 (weighted by patch

values). In Fig. 2, these three averages are plotted against
the expected destroyed habitat d. According to our
computations, although both po and p̂ tend to yield an
overestimate to pA (which is also observed by Hanski and
Ovaskainen, 2000), p̂ provides a more accurate approxima-
tion to pA. Based on observations we used p̂ for our
numerical investigations. Following Keymer et al. (2000),
6 8 10
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e average probability of patch occupancies at the equilibrium weighted by

struction d. The short dashed line is for Landscape I, the long dashed line

e� ¼ 0:1; b� ¼ 0:001:
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Fig. 3. p̄, the long-term proportion of suitable habitat occupied by the focal species, vs the long-term destruction rate d. The patterns of lines in these

figures and the following figures have the same meaning as in Fig. 2. In these cases, c� ¼ 1; e� ¼ 0:1; b� ¼ 0:001:

200 400 600 800 1000
τ τ τ

0.2

0.4

0.6

0.8

1

p− p− p−

200 400 600 800 1000

0.2

0.4

0.6

0.8

1

200 400 600 800 1000

0.2

0.4

0.6

0.8

1

(a) (b) (c)

�=0 �=0.4 �=0.6

Fig. 4. p̄ vs the basic patch lifespan t ¼ 1=b. In these cases, the long-term habitat loss d is fixed at 0:2, and c� ¼ 1.
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we also computed p̄ ¼ p̂=ð1� dÞ, the long-term proportion
of suitable habitat occupied (which we henceforth call
weighted occupancy) in the three landscapes for various
sets of parameter values.

In Fig. 3, the weighted occupancy p̄ is plotted against the
habitat loss d for various a and for all three landscapes
with other parameter values fixed. The three landscapes
exhibit very different outcomes in terms of sensitivities of
the weighted occupancy to changes in species dispersal
ability (a), with Landscape I being most sensitive (the short
dashed curves gets lowered dramatically with increasing a).
Landscape III was least sensitive and Landscape II was
intermediate. As dispersal ability declines (a increases), the
ability to compensate for fragmentation of a landscape
declines, and the species becomes increasingly sensitive to
the dispersion and connectivity of patches, which can even
become predominant determinants of patch occupancies
and species persistence. For instance, when a ¼ 0:8 (Fig.
3(c)), the weighted occupancy (p̄) for Landscape III is much
higher than for Landscape II at the same level of habitat
loss (d); a metapopulation can endure much greater levels
of habitat loss on Landscape III than on Landscape II. No
patches are occupied in Landscape I when a ¼ 0:8, because
the threshold condition for species persistence on Land-
scape I cannot be satisfied (notice that the threshold
condition in terms of how much destruction a species can
tolerate is given by dod̄ ¼ 1� ðeþ bÞ=ðcoM Þ and that, for
Landscape I, d̄o0 due to a smaller value of oM

corresponding to this landscape). The pattern of a
landscape thus can greatly affect the persistence of species,
and clustered landscapes with heterogeneous patch sizes
may support higher occupancy levels, greater persistence,
and hence greater tolerance to habitat loss. Fig. 3(a) also
shows that when a ¼ 0 the species can endure high levels of
habitat loss (d) on all three landscapes. This implies that,
for a species with well-developed dispersal ability, the
heterogeneity of a landscape contributes little to the
species’ persistence.
Examining the impact of patch life span, t ¼ 1=b, on the

weighted patch occupancy (p̄), leads to a similar conclu-
sion. That is, for large a it is more likely for a species to
persist in clustered landscapes (type III) with heteroge-
neous patch sizes, especially when t is large (see Fig. 4).

3.3. Rescue effect

Section 3.2 considers a special case of our model in
which colonization and extinction rates have the forms
given in (3.7), where the per-capita local extinction rate is
assumed to be independent of the metapopulation size. In
some ecological systems density-dependent extinction rates
may be more appropriate, such as the rescue effect
considered by Hanski (1982, 1983). Here, to illustrate our
theorems about multiple interior equilibria, we assume that
eiðp2Þ ¼ ð1� yipi2Þ~ei. That is, we biologically assume that
the extinction rate ei is independent of the populations in
the neighborhood of patch i, and high probability of patch
occupancy reduces the extinction rate ei of patch i. In this
case, the function Eiðp2Þ in system (3.1)–(3.2) becomes

Eiðp2Þ ¼ eiðp2Þ þ bi ¼ ~eið1� yipi2Þ þ bi. (3.15)

As in Section 3.2, we make the same assumptions on the
colonization rate (ci), extinction rates (~ei), and patch
dynamics parameters (bi and li). Suppose that yi ¼ y for
all patches. Then the right-hand side of system (3.1)–(3.2) is
no longer strictly sublinear, and hence, instead of an
attracting equilibrium, we may have an attracting basin. In
fact, our numerical simulations show that the system may
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have two positive equilibria. This confirms the analytic
results given in Section 3.1: every solution ðp0; p2Þ of system
(3.1)–(3.2) is attracted to the set B� ½pm

2 ; p
M
2 � if oM4ō,

where pm
2 and pM

2 are the minimal and maximal equilibria
(componentwise) and pm

2 and pM
2 may not be equal.

Hence, if oM4ō we have metapopulation persistence.
Ovaskainen and Hanski (2001) termed pM

2 the principal
equilibrium, however, they did not find a pm

2 and verify the
attractivity.

A difference between assumptions (3.15) and (3.7) on Ei

is the case where oMoō. Under assumption (3.7), if
oMoō, the trivial equilibrium ðB; 0Þ is globally attractive
and hence the metapopulation will definitely disappear. On
the other hand, under assumption (3.15), if oMoō, the
trivial equilibrium is locally asymptotically stable, there
exist attractivity basins of equilibria B� pm

2 and B� pM
2 ,

and hence the metapopulation may still persist, depending
on initial values.

In the case of persistence, although we cannot predict the
exact size of the metapopulation analytically, we can get a
range of the population size by computing pm

2 and pM
2

numerically. Consequently we can compute various
weighted probabilities of occupancy at pm

2 and pM
2 (e.g.

p̄m and p̄M). Our simulations show that the difference
between p̄m and p̄M is small (see Fig. 5). We have also
conducted numerical simulations using other averaged
occupancies, and in most cases the maximal and minimal
occupancies are not very different (see Fig. 6). Note that
the average probabilities of patch occupancy at two
equilibria pm

2 , pM
2 still decrease almost linearly with the

increased destruction d when d is not large. We also
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Fig. 6. After introducing the rescue effect (o ¼ 0:8), the average probabilities
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Fig. 5. In the case of rescue effect (y ¼ 0:8), the weighted occupancies p̄ (minim

values of a on three landscapes. Here, c� ¼ 1; e� ¼ 0:1; b� ¼ 0:001, the same
observed from the simulations that although the introduc-
tion of a rescue effect does not change the threshold
condition for species persistence, it greatly increases patch
occupancies, especially for species with small dispersal
distance (compare Figs. 3 and 5). We also performed
simulations for different values of y, which imply that the
patch occupancies increase nonlinearly with increasing o.

4. Stochastic metapopulation model

A new stochastic metapopulation model is derived that is
consistent with model (3.1)–(3.2). In particular, a system of
Itô SDEs is derived, where Pi0 and Pi2 are continuous
random variables for the probability that patch i is either
uninhabitable or occupied, respectively.
First, we express the differential equations (3.1)–(3.2) in

terms of the patch area that is uninhabitable, habitable yet
empty, and occupied by the focal species. For a landscape
with n patches, assume that a unit area of a patch can be
divided into N smaller units or micropatches, where the
number of micropatches N can be chosen according to the
landscape heterogeneity and the range of the focal species.
Then a patch with area Ai units has Ni ¼ AiN micro-
patches within patch i. The constant N may be considered a
scaling factor. For example, if a unit area of a patch is
defined as 1000m2, subdivision into smaller units of size
1m2 leads to N ¼ 1000. Then a patch area Ai ¼ 1000
square units has Ni ¼ ðAiÞðNÞ ¼ ð1000Þð1000Þ ¼ 106 m2.
On the other hand, if a unit area of patch is defined as
1m2 so that N ¼ 1, then the patch area Ai ¼ 106 square
units and Ni ¼ ðAiÞðNÞ ¼ ð10

6Þð1Þ ¼ 106 m2. The value of
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of occupancies at the minimal and maximal equilibria first weighted by

t linearly with increased d. Here, a ¼ 0:6; c� ¼ 1; e� ¼ 0:1; b� ¼ 0:001:
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al p̄m and maximal p̄M ) are plotted against the habitat loss (d) for various

values as in Fig. 3.
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Ni is the same in either case and equals the area of Ai

expressed in the units of the microhabitat size. For the
stochastic model to agree with the deterministic model, the
units of Ai must be expressed in terms of the microhabitat
size. In particular, Ai should be in terms of Ni in the
colonization rate and extinction rate for patch i, i.e.,

ciðp2Þ ¼ cN
X
jai

e�adij Ajpj2ðtÞ; eiðP2Þ ¼
e=N

Ai

.

The factor N can be included in the coefficients, that is, cN

and e=N can be relabeled as c and e, respectively. But
notice that the colonization rate increases and the
extinction rate decreases with N.

Assume that N, Ni, and Ai are constants. In addition,
assume that each of the Ni micropatches can be classified
as uninhabitable, habitable yet empty and occupied by the
focal species so that Ni0 ¼ Nipi0; Ni1 ¼ Nipi1; and
Ni2 ¼ Nipi2. Then Ni0; Ni1; and Ni2 are the numbers of
micropatches in patch i that are uninhabitable, inhabi-
table yet empty and occupied, respectively, and
Ni ¼ Ni0 þNi1 þNi2. It follows from the differential
equations (3.1)–(3.2) that

dNi0

dt
¼ biðNi �Ni0 �Ni2Þ þ biNi2 � liNi0, (4.1)

dNi2

dt
¼ ciðp2ÞðNi �Ni0 �Ni2Þ � ðeiðp2Þ þ biÞNi2, (4.2)

for i ¼ 1; 2; . . . ; n: The destruction rate in model (4.1)–(4.2),
biðNi �Ni0Þ, is written as the sum of two rates biðNi �

Ni0 �Ni2Þ þ biNi2 (destruction rate for a patch in states
1 and 2, respectively). These rates need to be con-
sidered separately when formulating the stochastic
model. A system of SDEs is derived based on model
(4.1)–(4.2).
4.1. Derivation of the stochastic model

Let Ni0 and Ni2 denote continuous random vari-
ables for the number of micropatches in patch i that
are in states 0 and 2, respectively. Let the random
vectors N0 ¼ ðNi0Þ

n
i¼1; N2 ¼ ðNi2Þ

n
i¼1, X ¼ ðN0;N2Þ

and DX ¼ ðDN0;DN2Þ; where DNj denotes the change
in the random vector from time t to tþ Dt, j ¼ 0; 2. In
addition, define the random variables Pi0 ¼Ni0=Ni, and
Pi2 ¼Ni2=Ni (Ni is constant), and the random vectors
P0 ¼ ðPi0Þ

n
i¼1 and P2 ¼ ðPi2Þ

n
i¼0. Assume, for small Dt,

that DX can be approximated by a normal distribution and
that the random variability is due to colonization and
extinction of species, and destruction and creation of
patches.

To derive the system of SDEs, we apply a method
developed by Allen (1999). This method is based on a
continuous time Markov chain formulation. The infinite-
simal transition probabilities for a Markov chain model
based on the differential equations (4.1)–(4.2) satisfy

ProbfðDNi0;DNi2Þ ¼ ðj; kÞjðNi0;Ni2Þg

¼

biðNi �Ni0 �Ni2ÞDtþ oðDtÞ; ðj; kÞ ¼ ð1; 0Þ;

biNi2Dtþ oðDtÞ; ðj; kÞ ¼ ð1;�1Þ;

liNi0Dtþ oðDtÞ; ðj; kÞ ¼ ð�1; 0Þ;

ciðP2ÞðNi �Ni0 �Ni2ÞDtþ oðDtÞ; ðj; kÞ ¼ ð0; 1Þ;

eiðP2ÞNi2Dtþ oðDtÞ; ðj; kÞ ¼ ð0;�1Þ;

1� ½biðNi �Ni0Þ þ liNi0 þ eiðP2ÞNi2�Dt

�½ciðP2ÞðNi �Ni0 �Ni2Þ�Dtþ oðDtÞ; ðj; kÞ ¼ ð0; 0Þ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð4:3Þ

for i ¼ 1; 2; . . . ; n. For example, the term biNi2Dtþ oðDtÞ

is the probability an occupied micropatch (state 2) of patch
i is destroyed and replaced by an uninhabitable one (state
0). The probabilities for all other transitions are oðDtÞ.
The transition probabilities (4.3) are used to compute the

expectation vector and the covariance matrix for the
change in the random variables to order Dt (Allen, 1999,
2003; Kirupaharan and Allen, 2004). The conditional
expectation to order Dt is

EðDX jðN0;N2ÞÞ � ðE1;E2; . . . ;EnÞDt ¼ EDt,

where

Ei ¼
biðNi �Ni0 �Ni2Þ þ biNi2 � liNi0

ciðP2ÞðNi �Ni0 �Ni2Þ � ðeiðP2Þ þ biÞNi2

 !

¼
biðNi �Ni0Þ � liNi0

ciðP2ÞNi2ðNi �Ni0 �Ni2Þ � ðeiðP2Þ þ biÞNi2

 !
.

The conditional covariance matrix is given by

CV ðDX jðN0;N2ÞÞ

¼ EðDX ½DX �T Þ � EðDX Þ½ � EðDX Þ½ �
T ,

where the expectations are conditional on ðN0;N2Þ. The
second term ½EðDX Þ�½EðDX Þ�T is order ðDtÞ2. Thus, applying
the transition probabilities (4.3), the covariance matrix to
order Dt is

CV ðDX jðN0;N2ÞÞ � EðDX ½DX �T Þ

¼ diagfV1;V2; . . . ;VngDt ¼VDt,

where

Vi ¼
biðNi �Ni0Þ þ liNi0 �biNi2

�biNi2 ciðP2ÞðNi �Ni0 �Ni2Þ þ ðeiðP2Þ þ biÞNi2

 !
.

Matrix V is symmetric and positive definite and therefore,
has a unique square root, B ¼

ffiffiffiffiffi
V
p

, where B ¼
diagðB1;B2; . . . ;BnÞ and Bi ¼

ffiffiffiffiffiffiffi
Vi

p
(Ortega, 1987).

To order Dt, the mean of DX is EDt and the covariance is
VDt so that DX � NðEDt;VDtÞ. Therefore, the following
approximation holds:

X ðtþ DtÞ ¼ X ðtÞ þ DX ðtÞ

� X ðtÞ þ EDtþB
ffiffiffiffiffi
Dt
p

s,
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where s�Nð0; IÞ and I is the 2n� 2n identity matrix. This
latter expression is an Euler approximation to a system of
Itô SDEs (Kloeden and Platen, 1992; Kloeden et al., 1997)
given by

dNi0

dt
¼ biðNi �Ni0Þ � liNi0

þ bi
11

dW i1

dt
þ bi

12

dW i2

dt
,

dNi2

dt
¼ ciðP2ÞðNi �Ni0 �Ni2Þ

� ðeiðP2Þ þ biÞNi2 þ bi
21

dW i1

dt
þ bi

22

dW i2

dt
,

for i ¼ 1; 2; . . . ; n. Matrix Bi ¼ ðbi
jkÞ ¼

ffiffiffiffiffiffiffi
Vi

p
and W i1 and

W i2 are independent Wiener processes. The preceding
system can be simplified by dividing each SDE by the
constant total number of micropatches Ni ¼ AiN,

dPi0

dt
¼ bið1�Pi0Þ � liPi0

þ
~b
i

11ffiffiffiffiffiffiffiffiffi
AiN
p

dW i1

dt
þ

~b
i

12ffiffiffiffiffiffiffiffiffi
AiN
p

dW i2

dt
, ð4:4Þ

dPi2

dt
¼ ciðP2Þð1�Pi0 �Pi2Þ � ðeiðP2Þ þ biÞPi2

þ
~b
i

21ffiffiffiffiffiffiffiffiffi
AiN
p

dW i1

dt
þ

~b
i

22ffiffiffiffiffiffiffiffiffi
AiN
p

dW i2

dt
, ð4:5Þ

for i ¼ 1; 2; . . . ; n. Matrix ~B
i
¼ ð ~b

i

jkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vi=AiN

p
; where

matrix

Vi=AiN ¼
bið1�Pi0Þ þ liPi0 �biPi2

�biPi2 ciðP2Þð1�Pi0 �Pi2Þ þ ðeiðP2Þ þ biÞPi2

 !
.

An explicit expression for the square root of Vi=AiN is
given by

~B
i
¼

1

hi

~vi
11 þ gi ~vi

12

~vi
12 ~vi

22 þ gi

 !
,

where ð~vi
jkÞ ¼Vi=AiN, gi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~vi
11 ~v

i
22 � ð~v

i
12Þ

2
q

and hi
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~vi
11 þ ~v

i
22 þ 2gi

q
(Allen, 1999).
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Fig. 7. Solutions to the ODE model (2.3) and two sample paths of the SDE

N ¼ 1000 (left), N ¼ 5000 (right). The top panels are the graphs of probabil

corresponding averages p̂ for all patch occupancies weighted by absolute valu
Note that the terms without the Wiener process in model
(4.4)–(4.5) have the same form as in model (3.1)–(3.2).
However, the terms with the Wiener process have a factor
of 1=

ffiffiffiffiffiffiffiffiffi
AiN
p

, that is, the random variables for the
probabilities of patches in states 0; 1, and 2 depend on
patch areas and the number of microhabitats N in a
unit area. The inclusion of N is not necessary in the
stochastic formulation if Aj is already expressed in species
appropriate units, the microhabitat size. In this case, we
let N ¼ 1. However, the inclusion of N shows the
importance of these units in the stochastic model and in
the coefficients of the original model (3.1)–(3.2), where ci

increases with N and ei decreases with N. The numerical
simulations in the next section show close agreement
between the deterministic and stochastic models when N is
large. The coefficients of the Wiener processes in the system
of SDEs become small as the product AiN increases which
result in a decrease in random effects as AiN increases.
4.2. Numerical simulations of the SDEs

We simulated the SDE and the ODE models and
compared their dynamics. All assumptions on the coeffi-
cients bi; li; ci and ei were the same as those made in
Section 3.2. We simulated models (4.4)–(4.5) and
(3.1)–(3.2) with Landscape structure II. The graphs in
Fig. 7 illustrate the solutions to the stochastic and the
deterministic models with the same initial values and the
same parameter values except for N. The top two panels in
Fig. 7 are graphs of the probabilities pi0 and pi2 in one
patch vs time t when N ¼ 1000 (left) and N ¼ 5000 (right),
whereas the bottom panels show the average p̂ of patch
occupancies weighted by absolute values of patches vs
time t. The stochastic results matched the deter-
ministic results very well, especially for large N. We
also simulated the average p̂ at the equilibrium with
varying levels of landscape loss d. Fig. 8 illustrates p̂ vs d

with one realization for each value of d. The average p̂

from the SDE model was very close to that from the ODE
model.
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There are several advantages in formulating a SDE
model over a Monte Carlo simulation or a continuous time
Markov chain model. First, it can be seen that the form of
the SDE model (4.4)–(4.5) is consistent with the determi-
nistic model (3.1)–(3.2). Second, the SDE model gives more
insight into the stochastic nature of the system. For
example, the coefficients of the Wiener process in the
SDE model show that variability decreases as the patch
area increases. Third, numerical approximations for Itô
SDEs are generally more efficient than those for Monte
Carlo simulations or for a continuous time Markov chain
model.
5. Conclusion

Hanski and Ovaskainen (2000, 2001) termed oM the
metapopulation capacity of a patch network, with which
one may rank different landscapes in term of their capacity
to support a viable metapopulation. However, when patch
dynamics (characterized by patch destruction rate b and
patch creation l) are considered, oM overestimates the
ability of a landscape to sustain a metapopulation. Under
the traditional assumptions in Section 3.2, ð1� dÞoM is
more appropriate to use as the metapopulation capacity.
That is, the long-term habitat loss d of the patches reduces
the metapopulation capacity of a landscape. The parameter
d also affects the threshold condition for species persistence
and patch occupancies. As shown in Section 3.2, the
threshold value ō and the weighted occupancies (p̂ and pA)
are decreasing functions of d and b.

Our numerical simulations showed that the dispersion of
patches and the distribution of patches in a landscape are
more important for species with poor dispersal ability, and
may be predominant determinants of long-term patch
occupancy and species persistence. More precisely, species
inhabiting landscapes with clustered and heterogeneous
patch sizes have stronger persistence and can tolerate
higher levels of habitat loss. Additional simulations of p̄ vs
the patch lifespan t ¼ 1=b for a given level of habitat loss d

(Fig. 4) reinforced our conclusions. The pattern of a
landscape is of overwhelming importance in determining
long-term metapopulation persistence and patch occu-
pancy, except for species with well-developed dispersal
ability. These results were also true when rescue effects
were considered. Although the rescue effect does not
change the threshold condition, oM4ō, it may produce
multiple nontrivial steady states: the minimal and maximal
equilibria. However, for the parameter values we used, the
difference between the corresponding minimal and max-
imal proportion p̄ was small for all landscapes considered.
Finally, we developed a new stochastic metapopulation

model based on the differential equations (3.1)–(3.2). Our
simulations revealed good agreement between the determi-
nistic and the stochastic metapopulation models. Future
work can use the stochastic metapopulation model to
explore impacts of stochastic factors which cannot be
investigated with deterministic models.
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