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Abstract

In this paper, we consider a system of delay differential equations which describes a structured
single species population distributed over a two-patch environment. For a large class of birth functions,
we obtain sufficient conditions for uniform persistence and global stabilities of equilibria. A Hopf
bifurcation in this system is also discussed when the birth function takes a specific form, and the
stability of the bifurcated periodic solutions and the bifurcation direction are investigated in detail.
Finally, some numerical simulations of the system are given.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In general, a single species population in a homogeneous environment is modelled by a
logistic equation. If a delayed growth of the species is considered, a time delay is added
to the equation. The delayed growth may be caused by different hatching times, different
rates of maturation and/or gestation. Moreover, when we consider a single species living
in ann-patch and non-homogeneous environment, the dynamics of the population is very
complicated. To describe the dynamics, Smith and Thigfheerived a system of delay
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differential equations as follows:

() =Y ojeui(t) + > (€M bt — ), j=1.2.....n, (1.1)
k=1 k=1

whereA = (i), With

n
%jk = Djg — <ZDU‘ +dj> Ok

i=1

andé j; are Kronecker symbolg,; andb; denote the death rates of the individuals and the
birth function in thejth patch, respectively.; represents the maturation age in pgteind
D, corresponds to the migration rate from pakdio patchj. Under certain assumptions,
Smith and Thiem§7] established the generic convergence for system (1.1) by applying the
theories of monotone dynamical systems.

Whenn = 2, assuming that; = 72 = r, and

dj(a), 0<a<r,
dj = constant, a>r,

Dj(a), 0<a<r,
D; = constant, a>r,

dj(a)={ Djk(a)={

wherej, k=1, 2, j # k, and by applying the method similar fé], So, Wu and Zoy9]
derived the following system:

d”;t(’) — — dwa(t) + Daua(t) — Dyua(t)
+e* |:1 - / e Ji b 4 p1(6) dO] bi(ui(t —r))
0
+ e*/ e Ji D@ 4 Dy (0) dOba(ua(t — 1)),
0
d”jt(” — — dou(t) + D1ua(t) — Daua(t)

+e* fr e i D@dapy () dOby(us(r — r))
0
+ ¢ [1 — / "o Ji D@ 4 P, (0) dé)} bo(ua(t —r)), (1.2)
0

where D(a) = D1(a) + D2(a), ando = (e*)~1 represents the immature death rate. So,
Wu and Zou9] analyzed the dynamics of system (1.2) in the case where two patches are
identical and the birth functions talkeu) = u2eFu. They showed that the immature death
rate o significantly affects the dynamics of the mature population. The variations of the
immature death rate not only result in the variation of positive homogeneous equilibria,
but also may lead to stable periodic solutions.

This paper deals with system (1.2) in the case of identical patches with a large class
of birth functions. In Section 2, we obtain sufficient conditions for uniform persistence
and the global stability of equilibria by appealing to persistence theory and the theory of
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monotone dynamical systems. In Section 3, in the case where the birth function is of the
form b(u) = ue P, we give some formulas to determine the type of Hopf bifurcation, and
provide some numerical simulations to illustrate the Hopf bifurcation.

2. Global dynamics for two identical patches

In this section, we consider system (1.2) in two identical patches; namely, we assume
thatd; =d, D; =D, b;(u) =b(u), D;(a)=D(a) fora € (0, r), wherei =1, 2. Then system
(1.2) reduces to

dr
duo(r)

dr
where

[ da®) _ —Aua(t) + D(ua(t)—u1(®)) + e*(A=r")b(ur(t—r)) + e r*buz(t—r)), @

= —du2(t) + D(ua(t)—u2(t)) + e*r*b(us(t—r)) + e*(L=r")b(uz(t—r)),

= /O e o D(a) daD(H) do = %(1—e_2f<§ D(a) da).

Thenr* € (0, 3).
We assume that

H) b)) =ug), gu)>0, g’'(u) <0 for all u>0.
Hencep(u) < ug(0) for u > 0, andg () is a strictly decreasing function.

Letz be the number such thbt(ir) = g (i) + g’ (1) = 0. i denotes the unique solution of
g(i)=dointhe case of (c0) < do < g(0), wherex=(¢*) ! represents the death rate of the
immature population. Thei, iz > 0,5'(u) > 0if u € [0, &), andb’(u) <0if u € (&, +00).

In addition, itis easy to see that system (2.1) has a positive homogeneous equilibrim
in the case 0f(c0) < dua < g(0).

LetX =C(-r,0], Ri). Then, for anyp € X, there exists a unique solutiadiz, @) =
(u1(t, @), uz(t, @)) (t =0) of system (2.1) withu (s, @) = ¢(s), s € [—r, O] (see e.g[5]).
Let u, (@) be the solution semiflow of system (2.1), wher€p)(s) = u(r + s, @), s €
[—r, 0], t>0. Note that every solution(z, ¢) of system (2.1) is non-negative fore X
(see[6, Theorem 5.2.2] Hereafter, by a solution(z, ¢) of system (2.1) we always mean
a non-negative solution(z, ¢).

Theorem 2.1. AssumgH) holds

() If do> g(0) (i.e.d > e*g(0)), the trivial equilibrium of systerf2.1)is globally asymp-
totically stable

(i) If do < g(0), system(2.1) is uniformly persistent in the sense that there exists a
0> 0 such that each solutiou1(z, @), uz(t, @)) of system2.1) with ¢ € X satisfies
liminf;_ o u; @, @)=0, i =1, 2.1f, in addition, da > g(c0) andi < i, then the positive
homogeneous equilibriula, i2) is globally asymptotically stable

Biologically, case (i) implies that the species will die out, while case (ii) implies that the
species in two patches will be persistent, and will stabilize at the positive equililgfiLin
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under the additional conditions. Obviously, the immature deathwratel the mature death
rated jointly determine the eventual states of the mature populations. Note that the global
stability in Theorem 2.1 is very different in spirit from the one[M. This stability result
holds for all delays, but makes certain restrictions. The res{iffiprovides global stability
without these restrictions provided that the delay is small enough.

Proof of Theorem 2.1. (i) Clearly, system (2.1) has a trivial equilibriu(d, 0). Letu =
u1 + uo, then

w(t) = —du +e*(bur(t —r)) + buz(t —r)))
< —du+e*gOu(t —r).

The zero solution is globally asymptotically stable for the linear equation= —dx(¢) +
e*g(0)x(r — r) whend > ¢*g(0). Therefore, by the standard comparison theorem[Gee
Theorem 5.1.7)] every solution of system (2.1) goes to zerd gees to infinity. Thus, the
trivial equilibrium of system (2.1) is globally asymptotically stable whkes ¢* g (0).

(i) In what follows, we assumd < e*g(0). To obtain that system (2.1) is uniformly
persistent, we will apply Theorem 4.6 0] and Theorem A.2 ifig]. Let

Xi1={o=(01,02: 0 € X, 0; #0,Vi =1, 2},

and®(r): X — X, t>0, be the solution semiflow generated by system (2.1); that is,
O(t)p = u;(¢). DenoteX, = X\ X1. Then, for all nonzer@ € X, ®(t)¢ € X1 holds for
t>0.

In the following, we want to show thab(¢) is point dissipative inX [2]. Let u,, =
maxi, u}, L >u,,, andu(t) = u1(t) + u2(¢). Then, by our assumption (H), we have

i(t) = —du + e*(b(ur(t —r)) + b(uz(t —r)))
< —e*g()u +2Le*g(L), foru;(t—r)>=L.

Note that the ordinary differential equation= —e*g(u)u + 2Le*g(L) has a globally
asymptotically stable equilibriumiZ (L) /g (u). By the standard comparison theorem, each
solution of system (2.1) is ultimately bounded. Heng¢,) is point dissipative irX.

Claim. There exists smadl; > 0 such that the solution semifloir) satisfiesim sup._, o,
2@l =01, Vo € X1.

We use an argument similar {@2, Claim 1] Choose 0< d1 < min{u, u}. Suppose
that, by contradiction, lim syp, ., [|2(t)¢| < d1 for somep € X1. Then there exists
T > 0 such that|®@(r)p|| <1, Vi=T. Letu(t) = u1(t) + u2(t), where(ui(t), uz(t)) =
(@(t)p)(0), t>0. By the monotonicity ofg(u), we have

u(t) =u1(t) + uz(t) = —du + e* (b(ur(t — r)) + b(ua(t — r)))
= —e"gu + e (ur(t —r)gus(t —r)) +uz2(t —r)guz(t —r)))
> —e*g(u+e*g(du(t —r), fort>T.
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Clearly, the linear delayed differential equation
X(t) = —e*g)x (1) + e*g(dp)x(t —r) (2.2)

is cooperative and irreducible. By Smi, Corollary 5.5.2] the stability of zero for (2.2)
is the same as that for the following ordinary differential equation (obtained by simply
ignoring the delay in (2.2)).

X(1) =e*(g(61) — g@)x(®), t=>T.

So, the stability modulus of (2.2) is positive sincer(01) > g(u). Hence, by SmitH6,
Theorem5.5.1]Eq. (2.2) has a solution of the fortii (1) =€e*’ xo with xg > 0. Since solutions
of system (2.1) are positive, we can chooge-a0, such thati(t) = u1(¢) + u2(t) > kx*(z)
fort € [T —r, T]. By the comparison theoref, Theorem 5.5.1Jwe haveu(¢) > kx*(z),
forallr >T.Hence, lim_, o u(t) =00, which contradicts the boundednes$wf(z), u(t))
on [0, co).

From the above claim, it follows thdD, 0) is an isolated invariant set ¥, and is a
weak repeller forX1. By Thieme[10, Theorem 4.6]X> is a uniform strong repeller for
X1. That is, there is @; > 0 such that lim inf_, .o dist (@), X2) >4 for all ¢ € X;.
Then, by Smith and Zhaf8, Theorem A.2Jwith Z = X ande = (1, 1), there exists a
0 > 0 such that every solutioqu1(z, @), uz(z, ¢)) of system (2.1) withp € X, satisfies
lim inf,;— o u; (z, @) > 0.

In order to obtain the global stability for the positive equilibriufn= (i, i), we further
assume thag(co) < du, andi <i. Let| represent the order interval

[0, it] = {p(s) = (91(5). 92(5)) : @; € C([—r, 0], [0, @), i =1, 2}.

Then,(it, u) € I.

First, we show that system (2.1) is cooperative and irreduciblelpgedl is an invariant
setfor system (2.1). Denote the right side of system (2.%) by (¢), u2(2), u1(t—r), uz(t—
r)), i =1, 2. Theng;(x1, x2, y1, y2) satisfies

1 _ 982 _

D=>0
Oxp2  0Ox1

and

0(g1, 82) _ (e*(l —r*b'(y1) e*r b’ (y2) )
d(y1, y2) e*r b’ (y1) e (L—=r*b'(y2) )’

which is a nonnegative matrix whenever y, € [0, i]. Moreover, ifG; (x1, x2)=g; (x1, x2,
x1, x2), then the Jacobian matrix

J = 0(G1,G2) _ (—d—D+e"(1—r*)b'(x1) D + e*r*b/(x2)
0t D +e*r*b'(x1) —d — D+ e*(1—r*)b'(x2)

is irreducible forx1, x2 € [0, i]. Thus, system (2.1) is cooperative and irreduciblé.on
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Letting f; denote the right sides of system (2i551, 2, and if o= (¢4, @5) € 1=[0, ﬁ],
and¢4(0) = u, then we have

filp) = —dp1(0) + D(p2(0) — ¢41(0))
+ e (1 —r")b(@1(—r)) + e r*b(py(—r))
< —di +e*b() = —e*iu(g(n) — g(i)) <O0.

Similarly, if ¢ = (¢4, ¢5) € I, andp,(0) = i, then we also havgz(¢) <0. Hence| is
positively invariant for system (2.1) by Smiif, Remark 5.2.1]That is, for anyp € I,
the unique solutioriu1(t, @), uz(t, ¢)) satisfies & u; (¢, ¢) <u for all  >0. By the same
argument, it is easy to check that the order intefyak [0, L] is positively invariant for all
L>u.

Next, we prove that there is a globally stable equilibriunt.ihet f = (f1, f2) and
0(s) = (0, 0) for s € [—r, O], then the Fréchet derivatiif at0 is given by

0
DfOp= [ dn(s)p(s),

wheren(s) = M) and

0, s=-r

7711(5) = ’722(S) = !e*(l - r*)b/(o)’ s € (_rv O)v
—d—D+e*(1—r*b'(0), s=0,

0, s=-r,

N12(8) = n21(s) = :E*V*b/(o)a s € (—r,0),
D+ e*r*b'(0), s=0.

Note thatf; is strictly sublinear, and the maximal eigenvalifeof the Jacobian matrix
Jat(0,0) is g = —d + ¢*g(0). Therefore, when! < ¢*g(0), system (2.1) satisfies all
the conditions off11, Theorem 3.2]and hence, system (2.1) admits a unique positive
equilibriumu* = (i, 1) which is globally asymptotically stable in\{0}.

It remains to prove the global attractivity of in X. We claim that the omega limit set
of each solution iX is contained inl. Indeed, for any givew € X, there existd. > i such
thaty € Ip. Thenu,(¢p) € I for all t >0. Thus, the omega limit set(¢) of u,(¢) is
nonempty, compact and invariant for system (2.1).Gcet {y(s) : Y € w(p), s € [—r, 0]}.
Then,G is a compact subset aﬁﬁ because of the compactnessugfp) and[—r, 0]. Define
Lo=inf{L>0:G < [0, L)%}. Then, there exisfy € w(p) andsg € [—r, 0] such that
Y (so) = (Y1 (s0), Yo (s0)) satisfies eithey (so) = Lo or Y»(sg) = Lo. Thus,&; (s) <4 (so)
or &; (s) <io(so) for all &€ = (&4, &) € w(g). Sincew(e) is invariant, we can assume that
s0=0, and there exists= ({3, {») € w(p) suchthai, ()=, i.e.,u;(r+s, H)=y;(s), s €
[—r, O]. Supposd.g > i. Then, ify1(0) = Lo, we have

ur(r, ) = —dy1(0) + D(Y,(0) — ¥r1(0))
+ e (A —r")b(Y1(—r)) + e r*b((—r))
< —e*g(u)Lo + e*b(it) <e*(ig(i) — Log(u)) <O.
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This inequality implies that there exists some r such that

ui(t, ) >us(r, ) =y1(0) = Lo,

which contradicts that, ({) € w(p) < I1,. By the similar argument, if/,(0) = Lo, then,
we get the same contradiction. Thds,<u, andw(e) C 1.

Itis easy to see th&0, 0) and(i, iz) are two isolated invariant sets, and there is no cycle
among them fo(r): I — 1. Clearly,w() is internally chain transitive fob(¢): I — I
(se€3, Lemma 2.1}. By the continuous version §8, Theorem 3.2]we haven(p) = (0, 0)
or (i, ). By the uniform persistence of system (2.1), it follows thsitp) = (iz, i) for all
nonzerop € X. Consequentlyi, i) is globally asymptotically stable for system (2.1) in
X\{0}. This completes the proof.[]

If we takeg (u)=eP“ i.e.,b(u)=ue P wheref > 0, therb(u) satisfies our assumption.
Moreover,i = —(1/f) In(dx), andi = 1/f. Henceji <ii if e <do. In addition, it is not
difficult to see that system (2.1) admits a positive homogeneous equilibrfum (i, ir)
whendo < 1.

The following result, as a consequence of Theorem 2.1, shows how the death rates of the
immature and the mature determine the long-term behavior of the species.

Corollary 2.1. Letb(u) = ue P If do> 1, the trivial equilibrium is globally asymptot-
ically stable for systenf2.1).If do < 1, system(2.1) is uniformly persistent and admits a
positive homogeneous equilibriun = (i, i1). If 1 <du < 1, the positive equilibrium is
globally asymptotically stable

3. Hopf bifurcation

In this section, we assume the birth function takas = ue 5" for somep > 0. There-
fore, we can investigate Hopf bifurcations of system (2.1) considering the dedaya
bifurcating parameter. We follow the algorithm of Kazarinoff and WWéhto determine
Hopf bifurcations.

In the last section, we have shown that system (2.1) has a positive homogeneous equi-
librium u* = (i1, u) whendo < 1. Its local stability can be determined by the roots of the
following characteristic equation.

J4d+D—e*(L—rb @e* —D — & r*b (n)e

—D — e*r*b (e M J4d+ D —e*(L—r*b (e
=[A+d+D—e*1—rb@e P —[D+ e r b (e ?
=(h+d—eb@e "V +d~+2D — e*(1— 2r*)b (i)e ™),

0:

which can be reduced to
i+d—e*b (e =0 (3.1)
and

Ji+d+2D—e*(1—2r"b ()e ™ =0, (3.2)
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whereb' (i) = e — Bie P = do(1 + In(dw)).
Egs. (3.1) and (3.2) are of the form

A4 714 7,677 =0.
We know that the above equation has negative real parts if and only if
11+1>0, p1+7,>0, yor<&siné—yr cosé, (3.3)

whereé is aroot ofé = —ypjr tané, O< < mif 91 # 0, andé = /2 if y; = 0 (se€[1,
Theorem A.5).
Leté =¢(u) € (n/2, m) be a function defined by &/ur = tan £. Define

o ¢(d) sin({(d)) — dr cos<(d))
0= d(1+In(dw))

_ &(d +2D) sin(E(d + 2D)) — (d + 2D)r cosE(d + 2D))
o d(1+ In(da) (1 — 2r%)) '

The monotonicity of implies O< rg < r1. Applying result (3.3), if O< r < ro, then all zeros
of Egs. (3.1) and (3.2) have negative real parts. THus (iz, i) is locally asymptotically
stable.

Regarding the time delayas a bifurcation parameter, we now check the usual Hopf
bifurcation assumptions at= rq (see e.g[4]). Whenr = rg, Eq. (3.1) has simple roots

’

ri

+wgi = :I:\/dz(l +In(du))? — d?i, wp>0

and the other roots of (3.1) and the roots of Eq. (3.2) have negative real parigr) be
the root of (3.1) withi(rg) = woi. Differentiating both sides of (3.1) with respectrtove
then obtain

w3 0

> > > U.
(1+ rod)* + (rowo)
Consequently, we have the following result.

Re(X (ro)} =

Theorem 3.1. When the delay r crossegeither from left or from rightand ifdo < 1, then
the homogenous equilibriunt undergoes a Hopf bifurcation

In order to determine the stability of the bifurcated periodic solutions and the bifurcating
direction, we proceed with four steps.

Stepl: Change system (2.1) info(zr) = ffl dn(0, WX+ 0)+ F(X(r — 1)) by certain
transformations.

By the transformation (t) = u1(rt) — i, y(t) = u2(rt) — it, we can change system (2.1)
into

dx (1) * * * .k

e rl=dx(@®)+D () — x(1)+e* (1 —r*)B(x(t — 1)+e*r*B(y(t — )],

dy(r) .. . . (3.4)
o r[—=dy@)+D(x(t) — y(£))+e*r*B(x(t — 1))+e* (1 — r*)B(y(t — 1))],




D. Xu / Nonlinear Analysis: Real World Applications 6 (2005) 461—-476 469
where
B(u) = biu+3bou’+§bau’+0 (),
and
b1 =b'(w*) = da(1+ In(dw)),
by =b"(u*) = —fdo(2+In(dw)),
b3=b" (") = fPdau(3+In(dw)).

Letr = ro + u, and rewrite system (3.4) as a systemXar) = (x(¢), NN
0
X() =/ dn0, WXt +0)+ F(X(t — 1)), (3.5)
-1

whered is the integration variablef (X (r — 1)) = (F1, F2)", 50, ) = (11,-,]-(9, w), and

0, 0=-1,
11100, W) =np2(0, ) = | (+ro)e* (L —r*)by, 0e (=10,
(u+ro)(—=d — D +e*(1—r*)b1), 0=0,
0, 0=-1,
N1.200, 1) =110, ) = { (w+ro)e*r*b, 0e (=10,

(u+ro)(D + e*r*b1), 0=0,

Fr= (u+ro)le*(1— r*)(3box?(t — 1) + $bax3(t — 1))
+e*r* (3bay?(t — 1) + £bay3 — )1+,

Fo= (u+ro)le*r* (3bax?(t — 1) + 3b3x3(t — 1))
+e* (L —r*)(3bay?(t — D) + b3yt — 1)1+ - -.

The eigenvalues for system (3.5) are given by
J+d(u+ro) — e*br(u+ro)e * =0 (3.6)
and
i+ (d +2D)(u+ ro) — e*b1(1 — 2r*) (u + ro)e™* = 0. (3.7)
Therefore, ajt = 0, system (3.5) has eigenvalugsoroi, and all other eigenvalues have
negative real parts.

Step2: Compute the eigenvectoig0)) and ¢*(s) for the operatoA and the adjoint
operatorA* corresponding toxgroi, and—woroi, respectively, where operatohkandA* are
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defined by

de

A<p<9>={d_g’ isr=o ¥ o(0) € C(I-1.01. R?).
Jo dn(s, 0)e(s),  0=0,

dy

A*xp(s)z{_$’ Oss <1, Y(s) € C([0, 1], R?).

1%, dnT(s, O(—s), s=0,
It is easy to see that(0) andg*(s) satisfy
dg(6) . dg* .
G —ioorog®), L = imorog* o)

0 0
/1d11(s,0)q(S)=iworoq(0), /1dnT(s,0)q*(—s)=—iworoq*(0).

At the same time, we require that*, g) = 1. By the definition of the inner produgt, -)
(see[4]), we have

0 0
(@*.q) =" (0) - 4(0) - / 1[ @ 0)T 0,00
e
— 3 (0)q(0) — & G*(0))Tn(~1, 0)4 (0),

whereg* denotes the conjugate gf. Therefore, we can obtaip(0) = q(0)e”0roli ang
q*(s) = g*(0)e”0"s' ‘and choosg (0) andg*(0) as follows:

go1=1,

iworo — A1 + B]_e_iwor0

qo2 = A, _ Byeioon
2
q* — éO
O (- Bie 00y (&8 ¢2) — 2Ba(A1 — Bae 1900 — irgwo)éo”
. éoe_iworo(iworo — A1+ Ble—io)oro)
902 =

(1~ B1e09) (&5 + &5) — 2Ba(A1 — Bae 900 —irgwo)éo’

wherego; andgg; (i =1, 2) are theth components af (0) and the conjugatg* (0) of g*(0),
respectively, and

A1=—ro(d + D), Ao=roD, Bi=—roe*(1—r")b1, Bo=—roe*r*by,

o= Ba — A0 ¢ = By — &P00(Aq — irguo).

Step3: Reduce system (3.5) to an ordinary differential equation for a single complex
variablez, and expand it in powers afandz.
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Letz=(¢*, X;), w(z,z, 0)=X,(0)—2Rez(t)q(0)}. Then, system (3.5) can be reduced
to an ordinary differential equation far At 1 = 0, this equation is

(1) = woroiz(t) + ¢*(0) - Fo,

whereFo = (F1, F»)" = F(w(z, Z, 0) + zq(0) + 23 (0)). In the followings, we expandin
powers ofzandz. Let

w(z, Z, 0) = 3wa0(0)2% + w11(0)2Z + Fwoa()Z% + - -,

wherew; () = (wi(’l;(Q), wji?(e))T e C([-1,0],%?), i, j = 0,1, 2 Then, Fy can be
expanded as follows:

1= Fl,zoz2 + Fr1122 + F1,0222 + F1,21222 + -

Fp = F2202% 4 F2112% 4 F2.002° + F2.012°7 4 - -,

where
F120———(qu1( 1)+quz( 1)),
Firi1= ——(31Q1(—1)6§1(—1) + B2g2(—1)g2(—1)),
F102———(qu1( 1)+32‘12( 1)) = F1.20,
b
Fro1= —2—231(11}(1)( Da1(~1) + 2w (~1ga(~1)
o ° Bigd(—Dgi(— 1)—582@(2)( 1)G2(—1)
b3
+2wld (~D)ga(— 1))——32612( 1)G2(—1),
P, 20———(qu1< 1) + Big3(-1)),

Fr11= —b—l(qul(—l)él(—l) + B1g2(—=Dgq2(=1)),

by _ _ _
Fro2= —2—191(326]%(—1) + B1g5(=1) = F220,

b
Foo1= —2—192132(11)(1)( Dg1(—1) + 20 (—Dgr(~1))
bs . 5 . b2 )
— —8B -1 -1) — —B 1 1
oy, BaE (DA = 52 Bu(wig (~Da2(-D)

b3
+ 203 (=1 ga(~1) — Bm( 1)ga2(-1),

whereg; (0) is theith component of the eigenvectg¢)), i =1, 2.
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Thus, we obtain
= woroiz + 38202 + 81127 + 3802%° + 38212°7 + -+
where
220 = 401F1.20 + 902 F2.20.
g11=qp1F1.11 + 902F2.11.
202 = 401F1.02 + 992F2.02,
g21=qp1F1.21 + qg2F2.21.
go1 is still unknown due taw(z, z, 0).
Step4: In order to get the coefficiegb; of 72z, we must first work outv(z, z, 0). Let
1 ) o1 S
> Hoo(0)z° + H11(0)zZ + > Ho2(0)z% + - -

_ { —2ReG*(0) - Fog(0)}, —1<0<0,
o —2Reg*(0) - Fog(0)} + Fp, 0=0.

Comparing the coefficients of all powerszdindz, we can computéfoo(0) and H11(0) as
follows:

—2(q51F1.20 + qg2F2.2009 (0)

— 2(q51F1,02 + 45pF2,020(0), —1<0<0,
—2(q91F1.20 + q55F2.2009 (0)

— 2(451F1,02 + 45F2,0204(0) + hzo, 0=0,

—(g61F1.11 + q5oF2.11)q(0)

—(go1Fr11+ agoF210q(0), —1<0<0,
—(q01F1,11 + q02F2,11)9(0)

— (g1 F111+ G5oF2,10G(0) + h11, 0=0,

wherehog = (F1,20, F2.20)", h11 = (Fi11, F211)".
By the algorithm in4, Section 2] we have

Hpo(0) =

Hy(0) =

(2imoro — A)w20(0) = Hao(0),

—Aw11(0) = H11(0) (3.8)
Let

w20(0) = c19(0) + 24 (0) + EEE ",

w11(0) = c3q(0) + cag(0) + FF. (3.9)

Substituting (3.9) into Eg. (3.8), we can determing andw11. The unknown coefficients
are given by:

c1=— (961F1,20 + q92F2,20)

worol
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2= (@61F1,02 + G52 F2,02),

 Bworoi

1 .
c3 = - F111+ g2~ F: ,
3 worol (qo1F1.11+ qo2F2.11)

ca=— (@51F1,11 + GG F211),

worol

(= —(Az — Boe 2002 1 (A1 — B1e 200 — 2irgmo)?,
Ep =A% — A3 —2A1B1 + B? + 2A2B, — B2,

EE1 = (—A1 + B1&~ 2700 4 irgwmo) (F1.20 + A1c1g01 — Bicigoie™ 00

+ Azc1q02 — B2¢1g02€” "0 + 2Fy 20901981 + 2F2.209014985
— 2ic1g01r0m0 + c2(A2 — B2€"°%)go2 + Go1(c2(A1 — B1€70°

— 2irowo) + 2F1,02G81 + 2F2.0248)) + (A2 — Bae™2"090) (F g

+ Azc1901 — B2c1qo1€ 700 + A1c1qo2 — Bicigoze” 00

473

+ 2F1 20902981 + 2F2.2090298 — 2ic1902r0w0 + c2(A2 — B2€"0) oy

+ Goa(ca(A1 — B1€7°0 — 2irgwo) + 2F1,024381 + 2F2.0248))

EEp = (Ap — Bye 2"0%0)(Fy 50+ Ajciqor — Bicigore™ 0™
+ Azc1q02 — Bac1gooe™ 00

+ 2F1,20901961 + 2F2,20901902 — 2ic140170®0

+ c2(A2 — B2€"°™) oz + Go1(c2(A1 — B1€70™0 — 2irgeo)
+ 2F1,00G81 + 2F2,0208,)) + (—A1 + Byem2r00

+ 2irgwo) (F2,20 + A2¢1g01 — Bacigore™ "0

+ A1c1g02 — Bic1goze 0 + 2F1 20q0248,

+ 2F2 2090298, — 2ic1g0z2rowo + c2(Az — B2€0%)goy

+ Go2(c2(A1 — B1€70”0 — 2irgwo) + 2F1.02G8; + 2F2.0238)),

FF1=(—A1+ B1)(F111+ A2c3qoz — c3(B1go1 + B2qo2)€ 0“0 + go1(A1c3

— FL11981 — F2.1148) + Azcagoz — ca€"°™ (B1gor + B23o2)
+ Go1(A1ca — F1114%1 — F2.1143)

+ (A2 — B2)(F2,11 + A2c3qo1 — c3(B2qo1

+ B1go2)e 0" + gop(A1cs — FL1198

— F21198,) + Azcagor — c4€70”° (Bagor

+ B1402) + Go2(A1ca — F111G8 — F2,11382)).



474 D. Xu / Nonlinear Analysis: Real World Applications 6 (2005) 461—-476

r=28
10 11

10

ug
-
Uz
-

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
time time

Fig. 1. The solution of system (2.1) with initial valugsy (1), u2(¢)) = (10, 11) for ¢ € [—r, O], andr = 28.

FF2= (A2 — Bp)(F11 + Aacaqoz — c3(Bigo1 + B2qop)e "0

+ go1(A1es — F111q%1 — F2.11982) + Azcadoz — c4€"°™ (B1goy
+ B2Go2) + Go1(Arca — F111G81 — F2,11452)
+ (—=A1+ B1)(F2,11 + A2c3q01 — c3(B2qo01
+ B1go2)e "™ + goa(A1cs — F11195,
— F211q8) + Azcagor — ca€"°”°(Bagor
+ B1402) + Go2(A1ca — F111G81 — F2,11439)).

where EE; and FF; are theith components oEE and FF, respectively. Thus, we can

computegzi by g21 = g4, F1,21 + g, F2, 21
Define

[

o= —Re<2 (g20811 — 2811l — 3g021%) + %g21> .
woro

Then, by the theory if4], we can determine the type of Hopf bifurcation according to the

sign of .

Theorem 3.2. Letda < 1. If ¢ > 0, a supercritical Hopf bifurcation occurs at=rg, which
means that syste(2.1) has a stable periodic solution neaf for r nearrg andr > rg. If
¢ < 0, a subcritical Hopf bifurcation occurs at= rg, which implies that syste(2.1) has
an unstable periodic solution nea¥* for r nearrg andr < rg.

From Theorems 3.1 and 3.2, it follows that the maturationragfea species may lead to
oscillatory behaviors of the mature populations. When the maturation@gesesg from
left (¢ > 0), the mature populations in the two patches will periodically oscillate m&ar
while the populations will be stabilized at whenr crossesg from right (¢ < 0).

In order to check our computation for Theorem 3.2, we perform some numerical simula-
tions. Letd =0.08, D =0.01, ¢*=0.9,r*=0.1, f = % In 2. We then havel/o. = 0.08889.
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r=30

11 r r r r r 11
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9 9
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6 6
5 5
4 4

3
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0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
time time

Fig. 2. The solution with the same parameters as thoBéginl exceptr = 30.

By Corollary 2.1, system (2.1) is uniformly persistent. Further computation shows that

ro=29.15 = gp0=0.0237+ 0.03423] go2 = —0.02435— 0.03378i|
g11=0.068—0.048i, go1=—0.0254— 0.00465] ¢ =0.01296

By Theorem 3.2, system (2.1) has some stable periodic oscillations:heai, i) for
r>ro = 29.15. We simulate the solutions of system (2.1) while ro andr > rgo. The
solutions inFigs. 1and2 have the same parameter values except for the valuesFof

r = 28, Fig. 1 shows the solution will eventually converge to a positive homogeneous
equilibrium, while, forr = 30, the solution shown ifig. 2 converges to a stable periodic
oscillation. These results coincide with our theoretical predictions.

Acknowledgements

The author would like to thank Professor Xingfu Zou for his suggestions and comments
on this project when | took his course on delay differential equations. | am also grateful to
my supervisor Professor Xiao-Qiang Zhao for his valuable advice and discussions.

References

[1] J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical
Sciences, vol. 99, Springer, New York, 1993.

[2] J.K. Hale, P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal. 20 (1989) 388—395.

[3] M.W. Hirsch, H.L. Smith, X.-Q. Zhao, Chain transitivity, attractivity and strong repellers for semidynamical
systems, J. Dyn. Differential Equations 13 (2001) 107-131.

[4] N.D. Kazarinoff, Y.H. Wan, Hopf bifurcation and stability of periodic solutions of differential-difference and
integro-differential equations, Inst. Maths Appl. 21 (1978) 461-477.

[5] Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press,
Cambridge, 1993.



476 D. Xu / Nonlinear Analysis: Real World Applications 6 (2005) 461—-476

[6] H.L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative
Systems, Mathematical Surveys and Monographs, vol. 41, American Mathematical Society, Providence, RlI,
1995.

[7] H.L. Smith, H.R. Thieme, Strongly order preserving semiflows generated by functional differential equations,
J. Differential Equations 93 (1991) 332—-363.

[8] H.L. Smith, X.-Q. Zhao, Microbial growth in a plug flow reactor with wall adherence and cell motility, J.
Math. Anal. Appl. 241 (2000) 134-155.

[9] J.W.-H. So, J. Wu, X. Zou, Structured population in two patches: modeling dispersal and delay, J. Math. Biol.
43 (2001) 37-51.

[10] H.R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J.
Math. Anal. 24 (1993) 407—-435.

[11] X.-Q. Zhao, Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential
equations, Canad. Appl. Math. Quart. 4 (1996) 421-444.

[12] X.-Q. Zhao, X. Zou, Threshold dynamics in a delayed SIS epidemic model, J. Math. Ana. Appl. 257 (2001)
282-291.



	Global dynamics and Hopf bifurcation of a structured population model
	Introduction
	Global dynamics for two identical patches
	Hopf bifurcation
	Acknowledgements
	References


