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Abstract

The interaction between multiple parasite strains within different host types may influence the evolutionary trajectories of parasites. In

this article, we formulate a deterministic model with two strains of parasites and two host types in order to investigate how

heterogeneities in parasite virulence and host life-history may affect the persistence and spread of diseases in natural systems. We

compute the reproductive number of strain i (Ri) independently, as well as the (conditional) ‘‘invasion’’ reproductive number for strains i

(R
j
i , jai) when strain j is at a positive equilibrium. We show that the disease-free equilibrium is locally asymptotically stable if Rio1 for

both strains and is unstable if Ri41 for one stain. We establish the criterion R
j
i41 for strain i to invade strain j. Subthreshold

coexistence driven by coinfection is possible even whenRi of one strain is below 1. We identify conditions that determine the evolution of

parasite specialism or generalism based on the life-history strategies employed by hosts, and investigate how host strains may influence

parasite persistence.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding the interaction between parasite infection
and host life-history responses is critical for predicting the
persistence and spread of diseases in natural systems.
Because of this, mathematical models have been developed
to explore the evolutionary dynamics that arise when
variation occurs in these parameters (May and Anderson,
1979, 1990; Anderson and May, 1981, 1982; Levin, 1982;
Bremermann and Pickering, 1983; Frank, 1992).

Under natural conditions, parasites can co-occur within
both host populations and host individuals. In the absence
of coinfection within individual hosts, it is often assumed
that parasite strains expressing higher exploitation (i.e.,
more virulent) will outcompete those expressing lower
exploitation (i.e., a more ‘prudent parasite’) (Minchella,
1985). However, when parasites coinfect the same host,

patterns should emerge that are more complex than when
parasite strains occur independently (Bremermann and
Pickering, 1983; Mosquera and Adler, 1998; Nowak and
May, 1994; Davies et al., 2002). For example, Tanaka and
Feldman (1999) found that the process of coinfection
actually facilitated the invasion and establishment of a
novel parasite strain, even though the invader’s reproduc-
tive value was less than that of the resident parasite.
Moreover, empirical work by Gower and Webster (2004)
demonstrated that coinfection among multiple parasite
strains could favor the evolution of less, rather than more-
virulent parasites.
Hosts have evolved life-history strategies that mitigate

infection and the subsequent damage caused by parasitism
(Minchella, 1985). In some cases, some host strains may
actively resist parasite attack by altering morphological,
physiological or immunological factors (Sandland and
Minchella, 2003a). However, these strategies can generate
fitness trade-offs with other host traits such as growth,
reproduction and survival (Beck et al., 1984; Bowers et al.,
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1994; Boots and Bowers, 1999; Sandland and Minchella,
2003b). Alternatively, other host strains may express
strategies that increase fitness through early reproductive
enhancement (termed ‘fecundity compensation’) (Minchella
and Loverde, 1981; Sandland and Minchella, 2004) or
suppression of immunological responses that can cause
pathology (termed ‘tolerance’). Recently, a study by Miller
et al. (2005) investigated the evolutionary consequences of
hosts employing two different strategies in the face of
infection: control, in which hosts reduced infection
pathogenicity by actively reducing parasite replication
rates, and tolerance, where hosts accommodated infection
but did not reduce pathogen replication rates.

Few studies have mathematically investigated the inter-
actions between multiple strains of hosts and parasites
while allowing for coinfection. Mosquera and Adler (1998)
developed a unified framework for coinfection and super-
infection which considered the association between one
host type and two strains of parasites. Their coinfection
model favored the evolution of increased virulence and
promoted the coexistence of more virulent parasites. Using
a two host/multiple parasite strain model that allowed for
coinfection, Regoes et al. (2000) suggested that virulence
would evolve to intermediate values, and that host
heterogeneity itself was sufficient to explain the pattern.
This model incorporated virulence trade-offs between host
strains as opposed to the more traditional approach of
trading off parasite virulence with infectivity (May and
Anderson, 1979, 1990; Anderson and May, 1981, 1982;
Frank, 1992). Although this work provides insight into the
coevolutionary dynamics of host–parasite interactions,
assumptions within these models may prevent direct
comparisons with empirical studies. Thus, additional
research is required to determine the generality of
parasite-virulence evolution and host strategies favored
for mitigating parasitic attack.

In this study we expand on previous research and
develop a general framework for assessing the interaction
between two-host strains and two-parasite strains while
allowing for coinfection. In our model we explore the
different scenarios that can arise when the coinfection
process is introduced into a two-host/two-parasite strain
model. For this investigation, host strains are assumed to
have different recruitment rates when infected (i.e., parasite
virulence influences the host) and parasite strains vary in
both their infectivity and virulence for each host type.

In Sections 2 and 3, we introduce the model and outline
the equilibrium analysis. In Section 4, we utilize simula-
tions to demonstrate that coinfection can actually allow for
the persistence of parasite strains that would otherwise go
extinct if hosts were only infected separately. Additionally
in Section 4, we assess whether specialist or generalist
parasites evolve when hosts employ different defense
strategies (control, tolerance or threshold strategies—
Miller et al., 2005). We investigate also in this section
how variation in host strains, and the differential ability of
parasites to reproduce in these strains, interact with

coinfection to drive parasite evolution. Finally, we discuss
our results in Section 5.

2. Two-host and two-parasite strain model

Consider a host population that consists of two sub-
populations with different genotypes, k ¼ a; b. Each of the
two sub-populations is divided into four epidemiological
classes: uninfected (Sk), infected with parasites of strain i

only (Iki, i ¼ 1; 2), and coinfected with both strains (Ik12).
Let Pi denote the density of parasites of strain i. Assume
that Pi is proportional to the number of hosts infected
with parasites of strain i (both singly and doubly infected
hosts), i.e.,

Pi ¼
X

k¼a;b

ðckiIki þ dkiIk12Þ; i ¼ 1; 2,

where cki and dki denote the rates at which strain i parasites
are produced from the infection of hosts of type k which
can be singly and doubly infected (coinfected) with
parasites of strain i. It is also assumed that the uninfected
hosts cannot become infected with both strains directly
(i.e., they always become infected with a single strain of
parasite first before coinfection of both strains can occur)
and that an infected host with strain i parasite will remain
infected for life (i.e., no recovery). Finally, we assume that
the infection rate of susceptible hosts of type k by parasites
of strain i is proportional to both the number of uninfected
hosts of the same type (Sk) and the density of parasites of
the same strain (Pi), and that the rate at which a host of
type k that is already infected with strain j becomes
infected with strain i (iaj) is proportional to both Ikj and
Pi. Under the above assumptions our model reads:

d

dt
Sk ¼ Lk � rk1P1Sk � rk2P2Sk � mSk,

d

dt
Ik1 ¼ rk1P1Sk � r0k2P2Ik1 � ðmþ dk1ÞIk1,

d

dt
Ik2 ¼ rk2P2Sk � r0k1P1Ik2 � ðmþ dk2ÞIk2,

d

dt
Ik12 ¼ r0k1P1Ik2 þ r0k2P2Ik1 � ðmþ dk12ÞIk12; k ¼ a; b,

Pi ¼
X

k¼a;b

ðckiIki þ dkiIk12Þ; i ¼ 1; 2,

Skð0Þ ¼ �Sk; Ikið0Þ ¼ �Iki; Ik12ð0Þ ¼ �Ik12. ð1Þ

Lk is the recruitment rate of hosts of type k (k ¼ a; b for all
parameters defined below except where otherwise speci-
fied); rki is the rate at which a susceptible host of type k is
infected by a parasite of strain i (i ¼ 1; 2 for all parameters
defined below except where otherwise specified); r0ki is the
rate at which a type k host, that is already infected with
strain j parasites, is infected by a parasite of strain i (iaj);
m is the per-capita natural death rate of hosts (of both
types); dki is the disease-induced death rate of hosts of type
k due to parasite infection by strain i; dk12 is the disease-
induced death rate of hosts of type k coinfected with both
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strains of parasite. Here we have assumed that the order of
infection with different parasite strains does not play a role
in parasite establishment. All variables, parameters, and
their definitions are listed in Table 1. �Sk; �Iki and �Ik12 are all
non-negative constants.

3. Analysis of the model

Let Nk ¼ Sk þ Ik1 þ Ik2 þ Ik12 denote the total popula-
tion size of the type k host (k ¼ a; b). Thus we see that
NkðtÞpLk=m for all tX0 as

dNk
dt

pLk � mNk. Hence, the
total host population as well as each of the sub-classes
remain bounded for all time. It is clear that all solutions of
model (1) are defined on t 2 ½0;1Þ and remain non-
negative for all time t40.

3.1. Reproductive numbers and parasite extinction

As in most epidemiological models, the model behaviors
are largely determined by reproductive numbers of parasite
strains. The reproductive number for strain i in model (1) is

Ri ¼
cairai

ðmþ daiÞ

La

m
þ

cbirbi

ðmþ dbiÞ

Lb

m
; i ¼ 1; 2. (2)

These quantities have a clear biological interpretation.
Consider the case when a parasite of strain i is introduced
into a purely susceptible host population in which the two
sub-populations have sizes La=m and Lb=m, respectively.
The number of susceptible hosts that will become infected
per unit of time is rki

Lk
m from which the number of new

parasites ckirki
Lk
m will be produced (k ¼ a; b). 1=ðmþ dkiÞ is

the mean life span of a parasite of strain i within a host of

type k. Thus,
ckirki
ðmþdkiÞ

Lk
m is the number of new parasites of

strain i produced by a typical parasite during its life time
through hosts of type k. Therefore, Ri gives the total

number of secondary parasites of strain i produced in a
susceptible host population. The basic reproductive num-
ber for the full model is

R0 ¼ maxfR1;R2g. (3)

Arrange the variables in the following order:
E ¼ ðSa;Sb; Ia1; Ib1; Ia2; Ib2; Ia12; Ib12Þ. The parasite-free
equilibrium is E0 ¼ ðLa=m;Lb=m; 0; 0; 0; 0; 0; 0Þ. The follow-
ing result shows that the basic reproductive number R0

provides a threshold condition for parasite extinction.

Result 1. The parasite-free equilibrium E0 is locally

asymptotically stable (l.a.s.) if R0o1, and it is unstable if

R041.

A proof of Result 1 can be found in Appendix A. The
global stability of E0 cannot be obtained when R0o1.
Notice that the reproductive number Ri is the number of
secondary parasites of strain i produced in the host
population when there are no other strains of parasites
and hence no coinfection in the population. When another
strain of parasite is introduced into the host population,
the new secondary reproduction number of strain i

parasites could be larger than the original Ri due to
coinfections (if two strains of parasites are affiliated within
infected hosts). Therefore, coinfection may lead to some
coexistence states and hence a global property of E0 cannot
be followed when R0o1. Fig. 1 illustrates this point
clearly. In the figure, the parameter values are chosen such
that R1 ¼ 0:972o1, R2 ¼ 0:945o1, and hence R0o1. It
shows time plots of the fraction of infected hosts I=N,
where I ¼ Ia1 þ Ib1 þ Ia2 þ Ib2 þ Ia12 þ Ib12 is the total
number of infected hosts and N ¼ Sa þ Sb þ I is the total
number of hosts. For the purpose of demonstration all
coinfection rates are assumed equal, i.e., r0ki ¼ r (k ¼ a; b
and i ¼ 1; 2). We see that for low coinfection rate r the
fraction of infected hosts I=N converges to zero (Fig. 1(a)),
whereas for large r the fraction I=N converges to a positive
value (Fig. 1(b)), implying the persistence of parasites.
To see the role of coinfection in the coexistence of two

parasite strains, we trace the change of positive equilibria
as the parameter r varies while holding all other
parameters fixed. The fraction I1=N of infected hosts by
strain 1 parasites at positive equilibria is plotted versus the
parameter r in Fig. 2. At about r ¼ 0:00012, a saddle-node
bifurcation occurs. For r40:00012, besides the parasite-
free equilibrium E0, the model (1) has two positive
equilibria, one of which is stable (the solid curve in the
figure) and the other one is unstable (the dashed curve).
Therefore, depending on the initial parasite population
sizes, the population either goes extinct (i.e., converges to
E0) or is stabilized at the stable positive equilibrium. For
ro0:00012, the parasite population goes extinct due to the
stability of E0.
Next we investigate what happens when a novel parasite

is introduced into a host population (via mutation or
immigration) infected with a resident parasite strain at its
positive equilibrium. More specifically, we assess whether
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Table 1

Definitions of variables and parameters (k ¼ a; b and i ¼ 1; 2)

Sk Number of susceptible hosts of type k

Iki Number of hosts of type k infected with parasites of strain i

Ik12 Number of hosts of type k coinfected with both strains of

parasites

Pi Number of parasites of strain i

Lk Recruitment rate of hosts of type k

rki Rate at which a susceptible host of type k is infected by a strain

i parasite

r0ki Rate at which a type k host that is already infected with strain j

is infected by a parasite of strain i (jai)

cki Reproduction rate of strain i parasite in a singly infected host

of type k

dki Reproduction rate of strain i parasite in a coinfected host of

type k

m Per capita natural death rate of all hosts

dki Per capita disease-induced death rate of singly infected hosts of

type k

dk12 Per capita disease-induced death rate of coinfected hosts of

type k
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strain j parasites can invade a resident strain i (iaj). To
study this question we first consider the dynamical
properties of a reduced system of model (1) in which only
one parasite strain is present.

3.2. Reduced model with a single-parasite strain

Without loss of generality, we assume that parasite strain
1 is the resident strain. To explore the possibility of
invasion by parasite strain 2 we first consider the following
model which is a reduction of (1) when parasite strain 2 is
absent:

d

dt
Sa ¼ La � ra1P1Sa � mSa,

d

dt
Sb ¼ Lb � rb1P1Sb � mSb,

d

dt
Ia1 ¼ ra1P1Sa � ðmþ da1ÞIa1,

d

dt
Ib1 ¼ rb1P1Sb � ðmþ db1ÞIb1,

P1 ¼ ca1Ia1 þ cb1Ib1. ð4Þ

We need to find the condition under which parasite strain 1
can establish itself. The formula for R1 defined in (2) also
gives the basic reproductive number of parasite strain 1 for
the reduced model. It is easy to show that, for the reduced
model (4), the parasite-free equilibrium (which we denote
by U0) is locally stable if R1o1. In fact, a stronger result
can be obtained for the reduced model. That is, U0 is
globally attractive for the reduced system (4), implying that
the parasite population will go extinct as long as R1o1.
Let Ū ¼ ðS̄a; S̄b; Ī a1; Ī b1Þ denote an interior equilibrium
(i.e., all components are positive). The existence and
stability of Ū is given in the following result.

Result 2. The parasite-free equilibrium U0 for the model (4)
is globally asymptotically stable if R1o1, and unstable if

R141. The interior equilibrium Ū exists and is unique if and

only if R141. Moreover, Ū is stable if conditions (34) are

satisfied.

The proof of Result 2 can be found in Appendix B. It is
not obvious how the stability condition (34) for Ū is related
to the existence condition R141, nevertheless, conditions
(34) are satisfied for all parameter values used (which are
biologically realistic) in our simulations. Therefore, it is
reasonable to suspect that Ū is stable whenever it exists.
Fig. 3 illustrates the dependence on R1 of the stability of
U0 and Ū . In this figure, all parameter values are fixed
except ra1 and rb1. Different R1 values are obtained by
varying r ¼ ra1 ¼ rb1. It shows that the fraction of infected
hosts,

I1

N
¼

Ia1 þ Ib1

Sa þ Sb þ Ia1 þ Ib1
, (5)

goes to zero for R1o1 (see Fig. 3(a)), and it stabilizes at a
positive level for R141 (see Fig. 3(b),(c)) and the fraction
of infected hosts at the equilibrium increases with R1.

3.3. Invasion criterion

In this section, we focus on the possibility of invasion by
parasite strain 2 in an environment in which strain 1 is at
the positive equilibrium Ū (note that this is true if and only
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Fig. 1. Time plots of the fraction of infected hosts I=N for the case when R1 ¼ 0:972o1 and R2 ¼ 0:945o1 (i.e., R0o1). It shows that I=N converges to

zero when the coinfection rate r is low (see (a)), and that I=N converges to a positive value when r is high enough (see (b)). The parameter values used are:

La ¼ 150, Lb ¼ 120, cki ¼ 150, dki ¼ 200, rk1 ¼ 0:000018, ra2 ¼ 0:000015, rb2 ¼ 0:000018, m ¼ 0:5, dk1 ¼ 1, dk2 ¼ 0:9 and dk12 ¼ 1:2. The coinfection

rates in (a) and (b) are r ¼ 0:00004 and r ¼ 0:00012, respectively.
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Fig. 2. The existence of positive equilibria for the coinfection model (1) in

the case of Rio1, i ¼ 1; 2. The y-axis is the fraction I1=N of infected hosts

by strain 1 parasites over the total population size. At r ¼ 0:00012, a
saddle-node bifurcation occurs. Here the parameter values except r are the

same as those in Fig. 1.
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if R141). Clearly, this positive equilibrium Ū of the
reduced model (4) corresponds to the boundary equili-
brium, Ē ¼ ðS̄a; S̄b; Ī a1; Ī b1; 0; 0; 0; 0Þ, of the full model (1).

Our invasion criterion is derived as follows. Consider the
full system (1) and assume that it is at the equilibrium Ē.
Suppose that a small number of parasites of strain 2 is
introduced into the population. Then whether the strain 2
parasite can invade is determined by its invasion reproduc-
tive number, R1

2, which is the secondary number of strain 2
parasites produced by an average strain 2 parasite when its
‘‘susceptible’’ host population size is S̄a þ S̄b þ Ī a1 þ Ī b1.
Thus, to derive a formula for R1

2, we consider another
reduced system of the full system (1) by assuming that Sa,
Sb, Ia1, Ib1 are fixed at Ē and only Ia2, Ib2, Ia12 and Ib12 are
changing with time:

d

dt
Ik2 ¼ rk2P2S̄k1 � r0k1P1Ik2 � ðmþ dk2ÞIk2,

d

dt
Ik12 ¼ r0k1P1Ik2 þ r0k2P2Ī k1 � ðmþ dk12ÞIk12; k ¼ a; b,

P1 ¼
X

k¼a;b

ðck1Ī k1 þ dk1Ik12Þ,

P2 ¼
X

k¼a;b

ðck2Ik2 þ dk2Ik12Þ, ð6Þ

with the initial conditions Ik2ð0Þ ¼ �Ik, Ik12ð0Þ ¼ �Ik12. Let
the vector of variables in (6) be denoted by x ¼

ðIa2; Ib2; Ia12; Ib12Þ. Then an invasion criterion can be
determined by the condition under which the strain 2
parasite-free equilibrium, x0 ¼ ð0; 0; 0; 0Þ, of the reduced
system (6) is unstable.

Using the method developed in van den Driessche and
Watmough (2002) we obtain the following formula (see
Appendix C for the derivation):

R1
2 ¼

X
k¼a;b

ck2rk2S̄k

Tk2
þ

wk1dk2rk2S̄k

Tk12
þ

dk2r0k2Ī k1

Tk12

� �
, (7)

where

wk1 ¼
r0k1P̄1

r0k1P̄1 þ mþ dk2

; Tk2 ¼ r0k1P̄1 þ mþ dk2,

Tk12 ¼ mþ dk12,

S̄k, P̄1, Ī k1 satisfy (16)–(20) in Appendix C.

The biological interpretation of the formula (7) is clear.
For type k host, the three terms in R1

2 represent contribu-
tions of parasite strain 2 from hosts in the following three
categories: (1) singly infected hosts with parasite strain 2 (the
term ck2rk2S̄k=Tk2), (2) doubly infected hosts that were
infected by parasite strain 1 first (the term wk1dk2rk2

S̄k=Tk12) and (3) doubly infected hosts that were infected
by parasite strain 2 first (the term dk2r0k2Ī k1=Tk12). Notice
that wk1 is the fraction of hosts in the Ik2 class that will
survive and become doubly infected. Notice also that the
mean time a host of category 1 stays in the Ik2 class is
1=Tk2 ¼ 1=ðr0k1P̄1 þ mþ dk2Þ, while the mean time a doubly
infected host stays in the Ik12 class is 1=Tk12 ¼ 1=ðmþ dk12Þ.
Therefore, the formula forR1

2 in (7) gives the total number of
new (secondary) parasites of strain 2 generated by a typical
strain 2 parasite during its life time.
The following result shows that the quantity R1

2

determines the stability of the boundary equilibrium Ē ¼

ðS̄a; S̄b; Ī a1; Ī b1; 0; 0; 0; 0Þ of the full model (1) and hence
provides an invasion criterion.

Result 3. Let R141 and let the positive equilibrium Ū be

stable for the system (4). The boundary equilibrium Ē of the

system (1) is l.a.s. if R1
2o1 and unstable if R1

241.

A proof of Result 3 is given in Appendix D. This result
suggests that the threshold condition, R1

241, can be used as
an invasion criterion for the full system (1). Some numerical
simulations are shown in Fig. 4. In the figure, I i represents the
total number of hosts infected with strain i parasites, i.e.,
I i ¼ Iai þ Ibi þ Ia12 þ Ib12; i ¼ 1; 2. Different values of R1

2

are obtained by varying the coinfection rates r0a2 and r0b2
which for simplicity are assumed equal, i.e., r0a2 ¼ r0b2 ¼ r.
Our simulations also suggest that the competitive ability

of parasite strain 2 increases with the invasion reproductive
number R1

2. Fig. 5 is a bifurcation diagram for the full
system (1), which plots the steady-state value of the
fraction of infected hosts by each of the two strains
(I�1=N or I�2=N) as a function of the parameter R1

2. The
solid curves represent a stable steady state and dashed lines
represent an unstable steady state. It shows that the
fraction of hosts infected by parasite strain 2 becomes
positive as R1

2 passes 1 and strictly increases with R1
2.

ARTICLE IN PRESS

60 120

t

0.1

0.2

I
1 N

60 120

t

60 120

t

0.1

0.2

I
1 N 0.1

0.2

I
1 N

Fig. 3. Time plots of the reduced system (4) for different values of R1. It shows that the fraction of infected hosts I1=N (see (5)) converges to zero for

R1o1 and it converges to a positive value for R141. Here, La ¼ 150, Lb ¼ 120, ca1 ¼ cb1 ¼ 150, m ¼ 0:5, da1 ¼ db1 ¼ 1. r is chosen to be 0:000018,
0:00002, and 0:000025 in (a), (b) and (c), respectively. The time unit is year.

P. Zhang et al. / Journal of Theoretical Biology 248 (2007) 225–240 229



Author's personal copy

Notice that the magnitude of R1
2 depends on several

parameters related to coinfections including cki, dki, r0ki and
dk12 (k ¼ a; b and i ¼ 1; 2). Therefore, the assumptions
underlying these parameters may have significant influence
on the outcomes of the host–parasite interaction. This will
be considered next.

3.4. Effect of coinfection on parasite persistence

To make it transparent of the effect of coinfection on the
persistence of a parasite strain, when the two parasite
strains are competing for the same source of hosts, we first
consider the special case where ra1 ¼ rb1. In this case, S̄k

are given by (33) in Appendix B. If we set all coinfection
rates to be zero, i.e., r0ki ¼ 0 (k ¼ a; b and i ¼ 1; 2), then

R1
2 ¼

R2

R1
. (8)

Therefore, the boundary equilibrium Ē (recall that Ē exists
only if R141) is stable if R2oR1 and unstable if R24R1.
A symmetric result holds for the boundary equilibrium
representing strain 2 only in the host population. This

implies that, if the two parasite strains do not specialize on
different type of hosts, i.e.,

rai ¼ rbi; i ¼ 1; 2, (9)

then the usual principle of competitive exclusion holds
when coinfection is not permitted. Thus, the following
result holds, which is also confirmed by numerical
simulations (see Fig. 6).

Result 4. Let condition (9) hold and Ri41 ði ¼ 1; 2Þ. In the

absence of coinfection, the parasite strain i will exclude

strain j (jai) if and only if Ri4Rj . That is, coexistence of

both parasite strains is impossible if coinfection is not

permitted.

It is also interesting to notice from (7) that R1
2 is an

increasing function of the coinfection rate r0k2 (k ¼ a; b). In
the case of ra1 ¼ rb1, from (8) and R141 we have

R1
2oR2 if r0ki ¼ 0. (10)

This implies that if R2o1 (i.e., parasite strain 2 cannot
persist in the absence of strain 1), then the invasion of
strain 2 is impossible when r0k2 ¼ 0 (i.e., parasite strain 2
cannot infect hosts that are already infected by strain 1 in
the absence of coinfection). Since R1

2 increases with r0k2, it
is possible that r0k2 is large enough so that R1

2 exceeds 1.
That is, if coinfection is allowed then the following
conditions may hold:

R1
241; R2o1. (11)

In this case, parasite strain 2 is able to invade, but only in
the presence of parasite strain 1.
This is confirmed by our numerical simulations shown in

Fig. 7. In this figure r ¼ r0a2 ¼ r0b2, and the equilibrial
fractions of infected hosts, I i=N, are plotted as a function
of ~r ¼ 104r, where I i ¼ Iai þ Ibi þ Ia12 þ Ib12, i ¼ 1; 2. It
shows that when the coinfection rate is low (i.e., ~ro0:8 for
the chosen set of parameter values) I2=N ¼ 0 at the
equilibrium, and when ~r40:8 there is a stable equilibrium
at which I2=N40 (the solid curve). Other parameter values
used in this figure are the same as those in Fig. 4.
From the above observations we know that if R2o1, a

bifurcation occurs as r0k2 increases from 0. That is, there
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exists a threshold value r̂ such that

R1
2o1 if ror̂;

R1
241 if r4r̂:

(

Hence, parasite strain 2 can invade if r4r̂ and it cannot
invade if ror̂.

3.5. Co-existence of both strains

Similarly to the derivation of the invasion criterion
R1

241 for parasite strain 2 to invade strain 1, we can also
derive an equivalent condition under which parasite strain
1 can invade strain 2, which is R2

141, where R2
1 is the

invasion reproductive number of parasite strain 1 given by

R2
1 ¼

X
k¼a;b

ck1rk1
~Sk

Tk1
þ

wk2dk1rk1
~Sk

Tk12
þ

dk1r0k1 ~Ik2

Tk12

� �
, (12)

where

wk2 ¼
r0k2 ~P2

r0k2 ~P2 þ mþ dk1

; Tk1 ¼ r0k2 ~P2 þ mþ dk1,

Tk12 ¼ mþ dk12.

~Sk and ~Ik2 are components of the equilibrium for strain 2,
~U ¼ ð ~Sa; ~Sb; ~Ia2; ~Ib2Þ. The components satisfy the same
equations as in (16)–(20) for Ū with the switch of index
from 1 to 2.
We can also show that for the full model (1) the

boundary equilibrium

~E ¼ ð ~Sa; ~Sb; 0; 0; ~Ia2; ~Ib2; 0; 0Þ,

where only parasite strain 2 is present, is stable if R2
1o1

and unstable if R2
141. Combining this with Result 3 and

some numerical simulations we have the following result.
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Result 5. (a) If Ri
jo1 then parasite strain j cannot invade

strain i (i; j ¼ 1; 2; jai). (b) If both of the invasion

reproductive numbers exceed 1, i.e., R2
141 and R1

241, then

the coexistence of two parasite strains is possible due to the

instability of both boundary equilibria, Ē and ~E.

We remark that the part (b) of Result 5 on coexistence is
shown only via numerical computations (e.g., see Fig. 7).
The results obtained in this section will be applied to the
study of evolutionary consequences of the two-parasite and
two-host interaction.

4. Host life-history strategies and parasite evolution

In this section we investigate numerically the evolu-
tionary outcomes of the host–parasite interaction mediated
by coinfection. We consider three scenarios characterized
by the defense mechanisms adopted by the hosts.
Differences in the mechanisms are generated by varying
the relationship between parasite virulence and parasite
reproduction within hosts. Two of the cases are termed
tolerance and control (see Miller et al., 2005), and an
additional case is the one that we term threshold.

For the tolerance case, it is assumed that there is no
correlation between parasite reproductive rate cki and the
infection-induced host death rate dki. For the control case,
we assume a correlation between infection-induced death
rate and parasite reproductive rate, whereby reductions in
host pathology is achieved by constraining parasite release
(i.e., exploitation) via defense mechanisms. A particular
form we consider here is

cki ¼ fdki; dki ¼ fdk12,

k ¼ a; b; i ¼ 1; 2, ð13Þ

where f is a positive constant. Unlike the model by Miller
et al. (2005) we do not assume a life-history cost associated
with host defense. Finally, for the threshold case, we
assume that parasite release rates saturate with increasing
rates of disease-induced mortality. Initially, a positive
correlation exists between parasite release rate and
mortality; however the release rate of the parasite
asymptotes when host mortality is large. In this case, we
see that contour curves are very similar when there is no
coinfection. We describe the threshold function as,

cki ¼
e1dki

e2 þ dki

; dki ¼
e1dk12

e2 þ dk12
,

k ¼ a; b; i ¼ 1; 2, ð14Þ

where e1 and e2 are positive constants. For ease of
reference we list the mathematical representations of the
three cases in Table 2.

The parasite strategies for invasion may depend on many
factors associated with both hosts and parasites. Our
model (1) is capable of incorporating many heterogeneities
in hosts and parasites. For demonstration purposes we
present only some of the possibilities. For example, our

numerical results presented in Fig. 8 have used the
following constraints on the parameters.

(i) ra14ra2 and rb1orb2, i.e., parasite strain 1 has a
higher infection rate in susceptible hosts of type a

while parasite strain 2 has a higher infection rate in
susceptible hosts of type b.

(ii) da1odb1, i.e., the virulence of parasite strain 1 (for a
singly infected host) is lower in hosts of type a then in
hosts of type b.

(iii) r0ki ¼ r ðk ¼ a; b; i ¼ 1; 2Þ, i.e., all coinfection rates are
equal.

(iv) dk12 ¼ 0:8 ðdk1 þ dk2Þ, k ¼ a; b, i.e., the virulence in
coinfected hosts is higher than in singly infected hosts
but is lower than the sum.

The constraints outlined in (i)–(iv) are derived via
theoretical and empirical results. One of the key conceptual
ideas in evolutionary biology to help explain the occur-
rence of parasite polymorphism (i.e., virulence polymorph-
ism, infection polymorphism) in natural systems is the
occurrence of ‘‘specificity costs’’ where parasites adapted to
one particular host genotype (i.e., better able to infect
or exploit a particular host) necessarily exhibit reduced
fitness on the other host genotypes. In the absence of these
trade-offs, one would expect (all things being equal) a
single parasite genotype to emerge. Typically, however,
numerous parasite genotypes are found in host popula-
tions. Differential infectivity and virulence has been
demonstrated in a small number of animal parasite systems
(e.g., Decaestecker et al., 2003; Little et al., 2006).
We first examine the possible evolutionary consequences

of the host–parasite interaction under the three host life-
history strategies listed in Table 2. Consider the scenario in
which a new parasite strain (e.g., strain 2) is trying to
invade a population where a wild strain (e.g., strain 1) is
already established. Based on Results 4 and 5, we suspect
that the competitive ability of the strain 2 is determined by
the invasion reproductive number R1

2, not its basic
reproductive number R2. Therefore, we assume that
natural selection will favor the parasite strain that
maximizes its invasion reproductive number R1

2 under
particular virulence constraints. For example, in Fig. 8 we
have used the following constraint for ðda2; db2Þ:

da2

da1
þ

db2

db1
¼ c (15)

(c for constant, c40). Eq. (15) represents the straight line
in Fig. 8. Let ðd�a2; d

�
b2Þ denote the optimal virulence pair
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Table 2

Three host defense mechanisms (k ¼ a; b and i ¼ 1; 2)

Tolerance Control Threshold

Assumption for cki Constant cki ¼ fdki cki ¼ e1dki=ðe2 þ dkiÞ

Assumption for dki Constant dki ¼ fdk12 dki ¼ e1dk12=ðe2 þ dk12Þ
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which maximizes R1
2. Then ðd�a2; d

�
b2Þ are given by the

intersection point(s) of the line (15) and the level curve of
R1

2 with the largest value, which is represented by a
diamond in Fig. 8. Parameter values used are the same as
those in Fig. 4.

We observe in Fig. 8 that the three host defense
mechanisms may lead to very different ðd�a2; d

�
b2Þ. In the

case of tolerance described in Table 2, R1
2 is maximized

when ðd�a2; d
�
b2Þ ¼ ð0; cdb1Þ or ðcda1; 0Þ, i.e., the virulence is

the highest in one type of hosts and lowest in the other
(Fig. 8(a)). This pattern could ultimately result in the
selection of parasites that preferentially infect one host type
over another, allowing for the emergence of specialist
parasite strategies. In the control case, both d�a2 and d�b2 are
positive and have an intermediate value with similar
magnitudes (Fig. 8(b)), suggesting possible selection for
more generalist strategies. In the threshold case, both d�a2

and d�b2 are again positive but one may have a much larger
value than another (Fig. 8(c)).Clearly, this is intermediate
between the last two cases. In fact, it will resemble more the
tolerance case if e2 is small while it will resemble more the
control case if e2 is large.
Next, we examine the variation in invasion conditions

and coexistence regions when the coinfection rate is varied.
For simplicity we assume that all coinfection rates are
equal, i.e., r0a1 ¼ r0a2 ¼ r0b1 ¼ r0b2 ¼ r. For each graph
in Fig. 9, we again fix the virulence of parasite strain 1
(da1 and db1) and plot R

j
i as a function of the virulence of

parasite strain 2 (da2 and db2, or equivalently,
da2
da1

and
db2
db1

).
The curves determined by R2

1 ¼ 1 and R1
2 ¼ 1 are drawn,

which identify three possible regions representing coex-
istence (R2

141 and R1
241) or competitive exclusion (R

j
i41

and Ri
jo1, iaj). When there is no coinfection (i.e., r ¼ 0),

only one parasite strain will survive and persist, and
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coexistence does not occur (Fig. 9(a)). When the coinfec-
tion rate becomes positive and increases (Fig. 9(b), (c)), the
region of coexistence (R2

141 and R1
241) appears and

expands. It also suggests that coexistence is more likely to
occur when the ratios,

da2
da1

and
db2
db1

, are small, which means
that parasite strain 2 has a lower virulence in both types of
hosts. The parameter values used in this figure are
dki ¼ d ¼ 250, cki ¼ c ¼ 150, La ¼ 150, Lb ¼ 120, ra1 ¼

rb1 ¼ 6� 10�5, ra2 ¼ rb2 ¼ 5� 10�5, m ¼ 1, da1 ¼ db1 ¼ 1,
da2 ¼ db2 ¼ 1:1.

For the control case, the region of coexistence also
increases with the coinfection rate r, which is similar to the
case of tolerance (see Fig. 10). However, due to the
correlation between cki and dki (see (13)), it shows that
coexistence is more likely to occur when the ratios,

da2
da1

and
db2
db1

, are large, which means that parasite strain 2 has a
higher virulence in both types of hosts. This is opposite to
the case of tolerance. Values of other parameters are the
same as in Fig. 9 with f ¼ 150.

Finally, Fig. 11 is for the threshold case (see (14)). We
observe again that the coexistence region increases with the
coinfection rate r, which is the same as the last two cases.
However, unlike in the tolerance or control case, coex-
istence is now possible only for intermediate values of
virulence for both parasite strains and both host types.
Other parameter values are the same as in Fig. 9 with e1 ¼

160 and e2 ¼ 0:1.
Figs. 9–11 illustrate the influence of coinfection in the

outcomes of the host–parasite interaction. In these figures,
we have assumed that the parasite reproduction rates in
coinfected hosts (dki) are equal for both parasite strains and
both types of hosts. We can also examine the effect when we
vary dki which reflects the heterogeneity in differential
capacity of parasites to infect and exploit different host
types. Experimental evidence has demonstrated that sig-
nificant reproductive differences can occur in particular
parasite strains when they occur in coinfected hosts of
different genetic backgrounds (de Roode et al., 2004).
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In Fig. 12 we consider a case where parasites demon-
strate similar reproduction in coinfected hosts of type a

while parasite strain 2 specializes on (i.e., better exploits)
host type b, which leads to the condition da1 ¼ da2 and
db24db1. For the purpose of comparison, we assume for
(a)–(c) that db2 ¼ db1, but for (d)–(f) we assume that db2 ¼

4db1 with the constraint that db2 þ db1 is unchanged.
The coinfection rate r is fixed at the same positive
value for (a)–(f). To make it transparent of the role
of host heterogeneity, we use other parameters such
that R2oR1. We are interested in the region O deter-
mined by R2oR1 and R1

241 (i.e., the region between
the solid and dashed curves shown in Fig. 12) in
which coinfection is required for parasite strain 2 to
survive. We examine how this region will change due
to the heterogeneity described above. In the case of
tolerance, ((a) and (d)), the magnitude of the invasion
region O does not differ based on host heterogeneity.
Under the control ((b) and (e)) and threshold ((c) and (f))
scenarios, the invasion region O expands (although not
dramatically) if infection heterogeneity occurs in the
system.

5. Discussion

Understanding the establishment and transmission of
parasitic organisms is essential for predicting the manifes-
tation and spread of disease. Unfortunately, acquisition of
the empirical data necessary for such analysis is limited by
both temporal and financial constraints. Mathematical
models have been employed to circumvent these issues and
their utilization has broadened our knowledge of the
evolutionary outcomes that can occur between hosts and
parasites. In this study we assessed the evolutionary
dynamics in an interaction that included multiple strains
of host, of parasite, and the potential for coinfection by
different parasite strains.
Not surprisingly, in the case where the two parasite

strains are not specialized on different hosts and coinfec-
tion was not permitted in our study, the parasite strain with
the highest basic reproductive rate (R0) excluded those
expressing lower values. In the case where coinfection was
permitted, parasite strains with lower R0 could coexist in
the population, but only under particular conditions,
namely when rates of coinfection were above particular
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thresholds. Under these circumstances, even parasite
strains with R0 values less than 1 could invade and persist
in the population. In biological systems this could occur via
facilitation where the infection of hosts by one parasite
strain enhances the probability of infection by other
parasite strains. There is substantial empirical support for
this phenomenon at the species level (Christensen et al.,
1987). For example, the trematode species, Austrobilharzia

terrigalensis, is only able to infect its host snail (Valcuma-

nutus australis) if the snail has been previously infected by
other trematode species (Appleton, 1983). Less evidence
exists for infection facilitation within a species due to a lack
of tools required for genotype-level detection. However,
some empirical work has demonstrated that parasite
strains can co-occur within hosts suggesting that facilita-
tion may be occurring in host–parasite systems (Eppert
et al., 2002).

Our results in this paper demonstrate the possible effect
of coinfection on parasite persistence. To make this
transparent, we have considered in Result 4 the case where
the two-parasite strains do not specialize on different host
types. If, however, each parasite strain specializes on one
type of host, then coexistence may be possible even if there
is no coinfection and, e.g., R14R2 (see Regoes et al., 2000;
Li et al., 2003).

In this study, reductions in coinfection rates prevented
parasite strain i from invading host populations even in
circumstances where Ri41 (Result 4). In biological
systems, this pattern may be generated through a number
of processes involving parasites and hosts. Direct competi-
tion between parasite species and between strains of
parasite within species is one explanation that has been
well documented in a number of systems (Davies et al.,
2002; Paul et al., 2002; Gower and Webster, 2004;
Sandland et al., 2007). In these cases, parasites may (1)
physically interfere with each other (Loker, 1994), (2)
attempt to sequester more nutrients than their competitors
(Davies et al., 2002), or (3) produce allelopathic substances
to suppress the competitive ability of other parasites
(Sandland and Goater, 2000). Also, successful coinfection
could be reduced via host defense responses that respond
asymmetrically to different parasite strains (de Roode
et al., 2004).

Miller et al. (2005) assessed the effects of two host
defensive strategies on the evolution of host susceptibility
and resistance. In the case of tolerance, hosts reduced
parasite pathogenicity without influencing the growth rate
of the parasite. This could arise by reducing host immune
responses which can cause damage to not only the parasite,
but the host as well. Alternatively, control may arise when
hosts actively suppress parasite reproduction through
defense mechanisms. Results demonstrated that host
strategies were indeed important for determining evolu-
tionary outcomes. However, this study was performed
from the perspective of host evolution. In our study, we
incorporated the scenarios outlined in Miller et al. (2005)
(tolerance and control) and also investigated a third

process (threshold), but assessed the evolutionary re-
sponses of parasites under these scenarios in the presence
and absence of coinfection between parasite strains (see
Fig. 8). These results demonstrated how host life-history
decisions in combination with coinfection can influence the
evolution of either parasite specificity or generalist parasite
strategies.
Finally, this work also demonstrated how coinfection

and life-history strategies interact with host variability to
influence parasite evolution. For tolerant hosts, increasing
exploitation (parasite reproduction) in particular coin-
fected hosts did not alter the magnitude of the invasion
region, whereas under both control and threshold scenar-
ios, the capacity for strain 2 parasites to invade expanded
with the inclusion of host heterogeneity (see Figs. 9–12). In
all cases, in the absence of coinfection, the parasite strain
with the higherRi persisted in the population and the other
strain was driven to extinction. Introducing coinfection
into the models altered the evolutionary dynamics of the
system, often allowing for the coexistence of parasite
strains; however, the shape and the magnitude of the
coexistence regions varied based on life-history strategies
employed by hosts. These results suggest that host life-
history decisions in combination with coinfection can have
important implications for the persistence of parasite
strains. Thus, the results from our model (1) in combina-
tion with empirical patterns demonstrate the important
role that coinfection may play in the establishment of
parasite strains within host populations.
Through a unified model for coinfection and super-

infection, Mosquera and Adler (1998) concluded that
coinfection tends to favor higher virulence and support
greater coexistence than their single-infection model. In
addition, the authors assume that coinfection by less
virulent parasite strains is impossible. Furthermore, work
by Regoes et al. (2000) showed that the evolution of
parasite specialists or generalists depended on trade-offs in
virulence between different host types. Like the work by
Mosquera and Adler, our results demonstrate that coex-
istence between parasite strains can depend on coinfection.
However, unlike their work, coinfection was decoupled
from virulence in our study. This is an important
difference, and one that has biological ramifications,
especially in light of the fact that empirical research has
demonstrated coinfection between less and more virulent
parasite strains (de Roode et al., 2004; Gower and Webster,
2004). Moreover, we found that host strategies were also
important for the degree of host specialization expressed by
parasites, as opposed to virulence (Regoes et al., 2000).
We need to point out here that, although our model in

this study is a microparasite transmission model, it is also
useful for assessing the dynamics of macroparasite systems
(e.g., schistosome parasites which use an indirect life cycle).
Even though there is no direct inclusion of parameters
specifically associated with a second host species, we can, in
essence, include the effects of this host by altering
parameters such as rki, r

0
ki, cki and dki. For example, if
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the reproductive rate of a particular parasite genotype is
high (high cki) in Species a, but is low in Species b (the next
host in the life cycle), we can account for this by reducing
rki which equates to subsequent reductions in the infection
rate of Species a after passage through the other host.

Understanding the evolution and persistence of parasite
strains is crucial for predicting disease patterns in natural
systems. Yet very little is known about the degree to which
coinfection interacts with host attributes to determine
evolutionary outcomes. Results from this work demon-
strate that combinations of host life-history strategies and
coinfection levels can be important for parasite evolution,
both in terms of the persistence of parasite strains and for
the evolution of their tendencies toward specialism and/or
generalism.
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Appendix A. Proof of Result 1

The Jacobian of the system (1) at E0 has the following
block form

JðE0Þ ¼

M1 � � �

0 M2 � �

0 0 M3 �

0 0 0 M4

0
BBB@

1
CCCA,

where ‘‘*’’ represent a matrix that does not affect the proof,
and

M1 ¼
�m 0

0 �m

 !
,

M2 ¼
ra1ca1Ŝa � ðmþ da1Þ ra1cb1Ŝa

rb1ca1Ŝb rb1cb1Ŝb � ðmþ db1Þ

0
@

1
A,

M3 ¼
ra2ca2Ŝa � ðmþ da2Þ ra2cb2Ŝa

rb2ca2Ŝb rb2cb2Ŝb � ðmþ db2Þ

0
@

1
A,

M4 ¼
�ðmþ da12Þ 0

0 �ðmþ db12Þ

 !
,

where Ŝk ¼ Lk=m for k ¼ a; b. All eigenvalues of M1 and
M4 are negative. Let l

�
1 denote the dominant eigenvalue of

the positive matrix

H1 ¼

ra1ca1Ŝa

mþ da1
ra1cb1Ŝa

rb1ca1Ŝb

rb1cb1Ŝb

mþ db1

0
BBBB@

1
CCCCA.

Using the results in Diekmann and Heesterbeek (2000) we
know that all eigenvalues of M2 have a negative real part if
and only if l�1o1, and at least one eigenvalue of M2 has a
positive real part if and only if l�141. From Ŝk ¼ Lk=m it is
easy to check that

l�1 ¼ R1.

We can show in a similar way that M3 has all eigenvalues
with a negative real part if and only if R2o1, and at least
one eigenvalue with a positive real part if and only if
R241. It follows that E0 is l.a.s. if R0o1 and unstable if
R041. This completes the proof. &

Appendix B. Proof of Result 2

Global stability of E0. The stability of the parasite-free
equilibrium E0 in the single-infection model (4) is
determined by the eigenvalues of matrix M2 in Appendix
A. Therefore, the local stability of the equilibrium follows
directly from the appendix. Notice that the equations for
Sk are always less than the equations

_Sk ¼ Lk � mSk; k ¼ a; b.

These two equations together with the equations for
Ik1 in system (4) consist of a monotone dynamic system.
By the comparison theorem, solutions of system (4) is
dominated by those of the monotone system, which are
attracted to E0 if R1o1. Therefore, E0 is globally
attractive for the system (4) and hence globally asympto-
tically stable if R1o1.

Existence of Ū . The components of an interior equili-
brium Ū satisfy the equations

La � ra1P̄1S̄a1 � mS̄a1 ¼ 0, ð16Þ

Lb � rb1P̄1S̄b1 � mS̄b1 ¼ 0, ð17Þ

ra1P̄1S̄a1 � ðmþ da1ÞĪ a1 ¼ 0, ð18Þ

rb1P̄1S̄b1 � ðmþ db1ÞĪ b1 ¼ 0, ð19Þ

P̄1 ¼ ca1Ī a1 þ cb1Ī b1. ð20Þ

From (16) and (18), we have

La � ðmþ da1ÞĪ a1 � m
ðmþ da1ÞĪ a1

ra1P̄1

¼ 0,

and hence

P̄1 ¼
mðmþ da1ÞĪ a1

ra1w
where w ¼ La � ðmþ da1ÞĪ a1. (21)

Using (20) and (21) we get

Ī b1 ¼
mðmþ da1Þ � ca1ra1w

cb1ra1w
Ī a1. (22)

From (19), (20) and (21) we have

S̄a ¼
w
m
,

S̄b ¼
mþ db1

rb1cb1mðmþ da1Þ
ðmðmþ da1Þ � ra1ca1wÞ. ð23Þ
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All components of Ū except Ī a1 were expressed in terms of
Ī a1. Substitution of (21)–(23) into (17) yields

Lbw�
mþ db1

ra1cb1
ðmðmþ da1Þ � ra1ca1wÞĪ a1

�
mþ db1

rb1cb1ðmþ da1Þ
ðmðmþ da1Þ � ra1ca1wÞw ¼ 0, ð24Þ

which can be rewritten as the following equation for
x ¼ Ī a1:

f ðxÞ ¼ A2x
2 þ A1xþ A0 ¼ 0, (25)

where

A2 ¼ ðmþ da1Þca1ðra1 � rb1Þ, ð26Þ

A1 ¼ mðmþ da1Þ 1�R1 �
rb1

ra1

þ
Laca1

mðmþ da1Þ
ðrb1 � ra1Þ

� �
,

ð27Þ

A0 ¼ LamðR1 � 1Þ. ð28Þ

Symmetrically we can obtain the following equation that
Ī b1 satisfies:

gðxÞ ¼ B2x
2 þ B1xþ B0 ¼ 0, (29)

where

B2 ¼ ðmþ db1Þcb1ðrb1 � ra1Þ, ð30Þ

B1 ¼ mðmþ db1Þ 1�R1 �
ra1

rb1

þ
Lbcb1

mðmþ db1Þ
ðra1 � rb1Þ

� �
,

ð31Þ

B0 ¼ LbmðR1 � 1Þ. ð32Þ

We separately discuss the existence of Ū .
Case i. Suppose that ra1 ¼ rb1. Then A2 ¼ 0, and from

Eq. (25) we can easily obtain the expression for Ī a1 and
hence all components of Ū as follows:

S̄a ¼
La

m
1

R1
; S̄b ¼

Lb

m
1

R1
; P̄1 ¼

mðR1 � 1Þ

ra1

,

Ī a1 ¼
La

mþ da1

� �
R1 � 1

R1

� �
; Ī b1 ¼

Lb

mþ db1

� �
R1 � 1

R1

� �
.

ð33Þ

Obviously, Ū exists uniquely if and only if R141.
Case ii. Suppose that ra1orb1. Then A2o0, and hence

f ðxÞ is concave down. Note that

f
La

m

� �
¼

da1

m2
L2

aca1ðra1 � rb1Þ � Laðmþ da1Þ
rb1

ra1

� Lada1ðR1 � 1Þ.

If R141, f ðLa
m Þo0 and f ð0Þ40. Therefore, f ðxÞ has a

unique zero point Ī a1 in the interval ð0;La=mÞ. Actually
Ī a1oLa=ðmþ da1Þ since f ðLa=ðmþ da1ÞÞo0. From (22), (24)
and (29), it follows that the corresponding Ī b1 is in the
interval ð0;Lb=ðmþ db1ÞÞ. Therefore, if R141, the
model (4) admits a unique positive equilibrium which is
biologically meaningful. From the global stability of the

parasite-free equilibrium we can exclude the existence of a
positive equilibrium if R1o1.

Case iii. In the case of ra14rb1, B2o0 and hence gðxÞ is
concave down. By the same arguments as in Case ii, the
unique existence of Ū can be followed.
Combining the above discussion, we have the existence

and uniqueness of Ū .
Stability conditions for Ū . The stability of the positive

equilibrium Ū is determined by the eigenvalues of the
Jacobian matrix:

JðŪÞ ¼

�ra1P̄1 � m 0 �ra1ca1S̄a1 �ra1cb1S̄a1

0 �rb1P̄1 � m �rb1ca1S̄b1 �rb1cb1S̄b1

ra1P̄1 0 ra1ca1S̄a1 � mda1
ra1cb1S̄a1

0 rb1P̄1 rb1ca1S̄b1 rb1cb1S̄b1 � mdb

0
BBBBB@

1
CCCCCA,

where mda
¼ mþ da1;mdb

¼ mþ db1. The characteristic
equation is given by

l4 þ C1l
3
þ C2l

2
þ C3lþ C4 ¼ 0,

where

C1 ¼ 2mþ mda
þ mdb

þ P̄1ra1 þ P̄1rb1 � ca1ra1S̄a � cb1rb1S̄b,

C2 ¼ m2 þ 2mmda
þ 2mmdb

þ mda
mdb
þ mP̄1ra1 þ mda

P̄1ra1

þ mdb
P̄1ra1 þ mP̄1rb1 þ mda

P̄1rb1 þ mdb
P̄1rb1

þ P̄
2
1ra1rb1 � 2ca1mra1S̄a � ca1mdb

ra1S̄a � ca1P̄1ra1rb1S̄a

� 2cb1mrb1S̄b � cb1mda
rb1S̄b � cb1P̄1ra1rb1S̄b,

C3 ¼ m2mda
þ m2mdb

þ 2mmda
mdb
þ mmda

P̄1ra1

þ mmdb
P̄1ra1 þ mda

mdb
P̄1ra1 þ mmda

P̄1rb1 þ mmdb
P̄1rb1

þ mda
mdb

P̄1rb1 þ mda
P̄
2
1ra1rb1 þ mdb

P̄
2
1ra1rb1 � ca1m2ra1S̄a

� 2ca1mmdb
ra1S̄a � ca1mP̄1ra1rb1S̄a � ca1mdb

P̄1ra1rb1S̄a

� cb1m2rb1S̄b � 2cb1mmda
rb1S̄b

� cb1mP̄1ra1rb1S̄b � cb1mda
P̄1ra1rb1S̄b,

C4 ¼ m2mda
mdb
þ mmda

mdb
P̄1ra1

þ mmda
mdb

P̄1rb1 þ mda
mdb

P̄
2
1ra1rb1

� ca1m2mdb
ra1S̄a � ca1mmdb

P̄1ra1rb1S̄a

� cb1m2mda
rb1S̄b � cb1mmda

P̄1ra1rb1S̄b.

Using Eqs. (16)–(19) rewrite C1 as

C1 ¼ 2mþ ra1cb1S̄a

Ib1

Ia1
þ rb1ca1S̄b

Ia1

Ib1
þ P̄1ra1 þ P̄1rb1,

and C4 as

C4 ¼ m2mda
mdb

1� ca1
ra1S̄a

mda

� cb1
rb1S̄b

mdb

 !

þ mmda
P̄1ra1ðmdb

� cb1rb1S̄bÞ

þ mmdb
P̄1rb1ðmda

� ca1ra1S̄aÞ þ mda
mdb

P̄
2
1ra1rb1

¼ m2mda
mdb

1�
ca1Ia1

P̄1

�
cb1Ib1

P̄1

� �
þ mmda

P̄1ra1rb1ca1S̄b

Ia1

Ib1
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þ mmdb
P̄1rb1ra1cb1S̄a

Ib1

Ia1
þ mda

mdb
P̄
2
1ra1rb1

¼ mmda
P̄1ra1rb1ca1S̄b

Ia1

Ib1
þ mmdb

P̄1rb1ra1cb1S̄a
Ib1

Ia1

þ mda
mdb

P̄
2
1ra1rb1.

Notice that C140 and C440. From Routh–Hurwitz theo-
rem, it follows that the interior equilibrium Ū is stable if

C1C2 � C340; C1C2C3 � C2
3 � C2

1C440. (34)

In this paper, parameter values we take in all numerical
simulations satisfy the above conditions, i.e., Ū is stable.

In the case of ra1 ¼ rb1, the expressions for the
coefficients are given by

C1 ¼ 2mR1 þ
1

R1

mdb
ca1Lar

mmda

þ
mda

cb1Lbr
mmdb

 !
,

C2 ¼ 2mR1ðmda
þ mdb

Þ þ m2R2
1 � rðca1La þ cb1LbÞð1þ 1=R1Þ,

C3 ¼ m2R2
1ðmda

þ mdb
Þ þ mmda

mdb
ðR1 � 1Þ � ðca1La þ cb1LbÞmr,

C4 ¼ m2mda
mdb

R1ðR1 � 1Þ: &

Appendix C. Calculation of R1
2

Using the same notation as in van den Driessche and
Watmough (2002), the vector for the rate of new infections
(by parasite strain 2), FðxÞ, and the vector for the rate of
transfer of hosts, VðxÞ, are, respectively,

FðxÞ ¼

ra2P2S̄a

rb2P2S̄b

r0a2P2Ī a1

r0b2P2Ī b1

0
BBBBB@

1
CCCCCA,

VðxÞ ¼

r0a1P1Ia2 þ ðmþ da2ÞIa2

r0b1P1Ib2 þ ðmþ db2ÞIb2

�r0a1P1Ia2 þ ðmþ da12ÞIa12

�r0b1P1Ib2 þ ðmþ db12ÞIb12

0
BBBBB@

1
CCCCCA,

where S̄a, S̄b, Ī a1 and Ī b1 are the corresponding compo-
nents in Ē given by (33) in the case ra1 ¼ rb1. Let

V�ðxÞ ¼

r0a1P1Ia2 þ ðmþ da2ÞIa2

r0b1P1Ib2 þ ðmþ db2ÞIb2

ðmþ da12ÞIa12

ðmþ db12ÞIb12

0
BBBBB@

1
CCCCCA,

VþðxÞ ¼

0

0

r0a1P1Ia2

r0b1P1Ib2

0
BBBBB@

1
CCCCCA,

then V ¼V� �Vþ. The derivatives of F and V at x0 ¼

0 are, respectively,

F ¼ DFð0Þ ¼

ra2ca2S̄a ra2cb2S̄a ra2da2S̄a ra2db2S̄a

rb2ca2S̄b rb2cb2S̄b rb2da2S̄b rb2db2S̄b

r0a2ca2Ī a1 r0a2cb2Ī a1 r0a2da2Ī a1 r0a2db2Ī a1

r0b2ca2Ī b1 r0b2cb2Ī b1 r0b2da2Ī b1 r0b2db2Ī b1

0
BBBBB@

1
CCCCCA

¼

ra2S̄a

rb2S̄b

r0a2Ī a1

r0b2Ī b1

0
BBBBB@

1
CCCCCAðca2; cb2; da2; db2Þ,

and from (33)

V ¼ DVð0Þ ¼

Ta2 0 0 0

0 Tb2 0 0

�r0a1P̄1 0 Ta12 0

0 �r0b1P̄1 0 Tb12

0
BBBB@

1
CCCCA,

where

Tk2 ¼ r0k1P̄1 þ mþ dk2; Tk12 ¼ mþ dk12; k ¼ a; b. (35)

Clearly, all eigenvalues of V are positive. Hence, all
conditions (A1)–(A5) in van den Driessche and Watmough
(2002) can be verified. It follows that R1

2 is given by the
dominant eigenvalue of the matrix FV�1. Notice that

V�1 ¼

1

Ta2
0 0 0

0
1

Tb2
0 0

r0a1P̄1

Ta2Ta12
0

1

Ta12
0

0
r0b1P̄1

Tb2Tb12
0

1

Tb12

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

and

FV�1 ¼

ra2S̄a

rb2S̄b

r0a2Ī a1

r0b2Ī b1

0
BBBBB@

1
CCCCCA

�
ca2

Ta2
þ

da2r0a1P̄1

Ta2Ta12
;

cb2

Tb2
þ

db2r0b1P̄1

Tb2Tb12
;

da2

Ta12
;

db2

Tb12

� �
.

Therefore, R1
2 is equal to the only non-zero eigenvalue of

FV�1, i.e.,

R1
2 ¼

X
k¼a;b

rk2S̄k

ck2

Tk2
þ

dk2r0k1P̄1

Tk2Tk12

� �
þ r0k2Ī k1

dk2

Tk12

� �
, (36)

which is exactly the same as the formula given in (7).
Moreover, since all conditions (A1)–(A5) in van den
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Driessche and Watmough (2002) hold, x0 is l.a.s. if R1
241

and unstable if R1
2o1:

Appendix D. Stability of the boundary equilibrium Ē

The Jacobian of the system (1) at Ē has the following
block form

JðĒÞ ¼
JðŪÞ �

0 F � V

 !
,

where JðŪÞ, F and V are given in Appendices B and C, and

the block � is of no interests. Since Ū is assumed to be

stable for the system (4), the spectral bound sðJðŪÞÞo0.

The stability of Ē is determined by the spectral bound
sðF � V Þ. According to Diekmann and Heesterbeek (2000,

Chap. 6), sðF � V Þo0 is equivalent to sðFV�1Þo1. Notice

that sðFV�1Þ ¼ R1
2 (see Appendix C). The equilibrium is

stable if R1
2o1 and unstable if R1

241.
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