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Abstract

A model of the three node power system proposed by Rajesh and Padiyar [Electr. Power Energy Syst. 21 (1999) 375] is studied. As the

bifurcation parameter Pm (input power to the generator) is changed, the system including the effects of the non-linearity exhibits complex

dynamics emerging from static and dynamic bifurcations which link with the system collapse. The analyses for the model exhibit dynamical

bifurcations, including three Hopf bifurcations, cyclic fold bifurcations, torus bifurcations and period-doubling bifurcations, and complex

dynamical behaviors, including periodic orbits, period-doubling orbits, quasi-periodic orbits, phase-locked phenomena and two chaotic

regions between two Hopf bifurcations, i.e. in the ‘Hopf window’ and intermittency chaos. Moreover, one of the two chaotic regions results

from period-doubling bifurcations, and another results from quasi-periodic orbits emerging from a torus bifurcation. Simulations are given to

illustrate the various types of dynamic behaviors associated with the power system collapse for the model. In particular, we first shown that

the oscillatory transient may play a role in the collapse, and there are different critical points for different dominated state variables. Besides,

the hard-limits and increases of the damping factor widen the feasible operating region of the power system, and prevent the torus bifurcation

to occur so that some complex dynamical phenomena can be inhibited.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Rajesh and Padiyar investigated dynamical phenomena

of the ‘two-axis model’, the ‘one-axis model’ and the

classical model for power systems in Refs. [16,17]. In

the choice of bifurcation parameters, they indicated that the

reactive power demand at the load bus as a bifurcation

parameter is unrealistic and cannot characterize a wide

range of operating conditions. Hence, they took input power

to the generator ðPmÞ; the constant real and reactive powers

of the motor ðPld;QldÞ and the reference voltage to the AVR

ðVrefÞ as the bifurcation parameters, and found out the

conditions leading to chaotic behaviors. In particular, they

gave a comprehensive study of bifurcations for two-axis

model, and also found a torus bifurcation resulting in the

emergence of quasi-periodic solutions after a torus bifur-

cation (TR) induced by a Hopf bifurcation(HB) (corre-

sponding to TR5 and HB4 here) for the one-axis model.

However, there are still no detail analyses on the one-axis

model. In particular, some important behaviors involving

phase-locked phenomena and chaos are not given in Ref.

[17]. Therefore, Section 4 in this paper aims to investigate

the dynamical behaviors emerging from dynamic bifur-

cations for one-axis model in details. Specifically we first

present sustained oscillations and the two chaotic regions

via period-doubling and quasi-periodic routes, and show

phase-locked phenomena in which the quasi-periodic orbit

becomes a complex periodic orbit. Moreover this paper

indicates that global dynamic phenomena are drastically

affected by the bifurcation parameter Pm; and the state

variables dominating system behavior are different at

different critical points. In Section 5 of this paper, the

effects of the damping factor on the system are considered.

When the damping factor is greater than some value, the

Hopf bifurcation and the torus bifurcation will be inhibited

so that the complex behaviors resulted from the

bifurcations can be prevented. However, this role of the

damping factor is not as drastic as that of machine damping

reported in Ref. [19].

To tackle the problems of voltage stability, the power

industry utilizes an emerging control to set the control gains

of the excitation voltage profiles and faster voltage
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responses. However, such excitation control gains also

introduce some side-effect problems, and need to be

examined so as to better understand the role of excitation

voltage controls (especially the excitation hard-limits) in

voltage events [11]. Venkatasubramanian made preliminary

effort towards developing a formal stability theory for

analyzing the various types of hard-limits in Ref. [20].

Recently Ji and Venkatasubramanian [7] studied an inter-

connected power system modelled by an equivalent single-

machine infinite-bus system, and investigated the role of a

wind-up type hard-limit present in the excitation control.

They showed that at a subcritical Hopf bifurcation where the

operating point loses its local stability, the hard-limits could

force the transients to converge to a stable limit cycle.

Moreover, they illustrated that the limit cycle undergoes

further period-doubling cascades that eventually lead to

chaos. In Section 6 of this paper, we further introduce a

wind-up type hard-limit saturation [8,20] in the excitation

control to the one-axis model. We show that the torus

bifurcation will be prevented and thereby the complex

dynamics resulted from the bifurcation can be eliminated

when the saturation model is used.

The rest of the paper is arranged as follows. Section 2

contains a brief description of a power system model. In

Section 3, we review some basic bifurcation and chaos

theories that are relevant to our studies. The results of

bifurcation analyses with some numerical simulation are

given in Section 4. The effects of the damping factor on

bifurcations are included in Section 5. Section 6 investigates

the role of hard-limits in the system and Section 7 is the

conclusion of this paper.

2. System model

The power system considered in Ref. [17] is shown in

Fig. 1 where we neglect the damper winding on the q-axis

and describe the system by the following set of equations:

generator model, excitation system for the generator,

dynamic load model, and network model.

The dynamics of the generator are described by the rotor

mechanical equations and stator equations [14]. Rotor

equations for the generator model and the equation for the

field winding on d-axis are

_d ¼ wBSm; ð1Þ

_Sm ¼
2Pg þ Pm 2 dSm

2H
; ð2Þ

_E0
q ¼

Efd 2 E0
q þ idðxd 2 x0dÞ

T 0
d0

; ð3Þ

where d is the damping factor, wB is the system

frequency in rad/s, the generator slip Sm is defined by

Sm ¼ ðw 2 wBÞ=wB; and the power delivered by the

generator Pg is expressed as

Pg ¼ E0
qiq þ ðx0d 2 xqÞidiq: ð4Þ

Neglected stator transients and the stator resistance, stator

equations are given by two algebraic equations as the

following:

vq ¼ E0
q þ x0did; ð5Þ

vd ¼ 2xqiq: ð6Þ

The equation for the excitation system is given by

_Efd ¼
2Efd þ KAðVref 2 VtÞ

TA

; ð7Þ

where Vref is the reference voltage to the AVR.

The load model includes a dynamic induction motor

based on a model defined by Walve [21] and a constant

PQ load in parallel. The induction motor model specifies

the real and reactive power demands P and Q of the

motor in terms of load voltage V and frequency v. The

combined model for the motor and the PQ load is

P ¼ Pld þ P0 þ p1
_dL þ p2

_VL þ p3VL; ð8Þ

Q ¼ Qld þ Q0 þ q1
_dL þ q2VL þ q3V2

L; ð9Þ

where Pld and Qld are the constant real and reactive

powers of the motor, and P0 and Q0 represent the PQ

load.

Fig. 1. A three-node power system model.
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The network model in the D–Q reference frame is

written as

iq cosðfÞ þ id sinðfÞ ¼ Yvq 2 a; ð10Þ

id cosðfÞ2 iq sinðfÞ ¼ Yvd 2 b; ð11Þ

where

a ¼ VLY1 cosðdL 2 d2 fþ f1Þ þ EbY3 cosðdþ f2 f3Þ;

b ¼ VLY1 sinðdL 2 d2 fþ f1Þ2 EbY3 sinðdþ f2 f3Þ:

The real and reactive powers supplied to the load by the

network are

P ¼ 2V2
LY1 cosðf1Þ2 V2

LY2 cosðf2Þ þ VLVtY1 cosðr1Þ

þ EbVLY2 cosðr2Þ; ð12Þ

Q ¼ V2
LY1 sinðf1Þ þ V2

LY2 sinðf2Þ þ VLVtY1 sinðr1Þ

þ EbVLY2 sinðr2Þ; ð13Þ

where

u¼ dþ arctan
vd

vq

 !
; r1 ¼ dL 2 u2f1; r2 ¼ dL 2f2;

Vt ¼
ffiffiffiffiffiffiffiffiffi
v2

d þ v2
q

q
:

Substituting from Eqs. (10)–(13) in Eqs. (1)–(3) and Eqs.

(8) and (9), and rearranging Eqs. (8) and (9) so that _dL and
_VL appear on the left-hand side, we obtain the following

power system model.

_d¼ wBSm

_Sm ¼
2Pg þPm 2 dSm

2H

_E0
q ¼

Efd 2E0
q þ idðxd 2 x0dÞ

T 0
d0

_Efd ¼
2Efd þKAðVref 2VtÞ

TA

_dL ¼ ðQ2Qld 2Q0 2 q2VL 2Q3V2
LÞ=q1

_VL ¼ ðP2Pld 2P0 2 p1
_dL 2 p3VLÞ=p2

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

: ð14Þ

All of the parameters in Eq. (14) will be fixed except Pm; i.e.

Pm will be taken as the bifurcation parameter. We follow

Ref. [17] by using the following parameter values.

Y1 ¼ 4:9752; Y2 ¼ 1:6584; Y3 ¼ 1:1056; f1 ¼ f2 ¼

f3 ¼ 21:4711; Eb ¼ 1:0; xd ¼ 1:79; xq ¼ 1:71; T 0
d0 ¼ 4:3;

T 0
q0 ¼ 0:85; x0d ¼ 0:169; x0q ¼ 0:23; H ¼ 2:894; wb ¼ 377;

d ¼ 0:05; Em ¼ 1:0P0 ¼ 0:4; Q0 ¼ 0:8; p1 ¼ 0:24; q1 ¼

20:02; p2 ¼ 1:7; q2 ¼ 21:866; p3 ¼ 0:2; q3 ¼ 1:4; KA ¼

200; TA ¼ 0:05:

3. Review of bifurcation and chaos

In this section, we give a brief review of bifurcations and

chaos in Refs. [6,12,22] which are examined in a more

intensive manner in this paper. By definition, bifurcations

occur at those parameter values where there is a change in

the system’s qualitative properties.

The power system model of Eq. (14) can be written as an

autonomous differential equation of the form with m as a

bifurcation parameter

_x ¼ f ðx;mÞ; x [ R6
; m [ R; f [ Cr

; r $ 2; ð15Þ

where generally the state vector x may consist of generator

angle, generator angular velocity, load voltage magnitude,

etc. the parameter m may be real, reactive power or input

power to the generator, etc.

At a fixed point (a equilibrium point or a steady-state

solution) xðm0Þ; since the right-hand term of Eq. (15)

becomes zero, its stability is dominated by the eigenvalues

of the Jacobian J ¼ ›f =›x evaluated at xðm0Þ: Define the

eigenvalues of J to be liðm0Þ; i ¼ 1; 2;…; 6: xðm0Þ is

hyperbolic if Re½liðm0Þ� – 0; for all i ¼ 1; 2;…; 6; xðm0Þ is

non-hyperbolic if there exists j such that Re½ljðm0Þ� ¼ 0:

3.1. Saddle-node bifurcation (SNB)

At a SNB point, two equilibrium points, generally one

stable and one unstable, coalesce and become a saddle-node

point, and then disappear as the parameter passes through the

bifurcation value. For the SNB, J has a simple zero eigenvalue

with the remaining eigenvalues having non-zero real parts.

Therefore, the necessary conditions for SNB are given by

f ðx0;m0Þ ¼ 0; det Jðx0;m0Þ ¼ 0:

Not all points satisfying these necessary conditions are SNB

points (the points satisfying these conditions can be

transcritical or pitchfork bifurcation). To illustrate the nature

of sufficient conditions we consider a scalar system or reduce

the system to one-dimensional system by the center manifold

theorem. For such a system f ðx;mÞ; the sufficient conditions

for SNB are:

f ðx0;m0Þ ¼ 0;
›f

›x

				
ðx0;m0Þ

¼ 0;
›f

›m

				
ðx0;m0Þ

– 0;

›2f

›x2

					
ðx0;m0Þ

– 0:

SNB is considered as a main reason for dynamic instability of

the system (15) and is associated with voltage collapse

problems in power systems [3,4,9].

3.2. Hopf bifurcation

Hopf bifurcation (HB) does not yield any changes in the

number of equilibrium points. This type of bifurcations are
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characterized by a complex conjugate pair of eigenvalues

for xðm0Þ lying on the imaginary axis of the complex plane,

and result in the birth or death of a stable or unstable

limit cycle.

The Hopf bifurcation theorem [6] states that under

certain conditions a branch of periodic solutions splits off

from a equilibrium when some parameters change. The

crucial hypotheses made in the theorem for Eq. (15) are the

Jacobian matrix AðmÞ ¼ Dxf ðx0ðmÞ;mÞ has a pair of complex

conjugate eigenvalues, aðmÞ^ ibðmÞ and for some value

m ¼ m0

aðm0Þ ¼ 0; bðm0Þ . 0;

and

a0
mðm0Þ – 0;

and the remaining eigenvalues of Aðm0Þ have non-zero real

parts. Next we summarize the conditions for deciding Hopf

bifurcation of the six-order system of Eq. (14) according to

Ref. [18].

Theorem: suppose that the differential equation (15) has

an equilibrium point x ¼ x0ðmÞ; the characteristic equation

of the Jacobian matrix AðmÞ ¼ Dxf ðx0ðmÞ;mÞ is

PðlÞ ¼ l6 þ c1l
5 þ c2l

4 þ c3l
3 þ c4l

2 þ c5lþ c6 ¼ 0;

if the following conditions are satisfied:

(i) there exists m ¼ m0 such that ciðm0Þ . 0 for all i ¼

1; 2;…; 6; and

H5ðm0Þ¼2c2
3c4c5þc2c3c2

52c3
5þc3

3c62c3
1c2

6

þc2
1ð2c2

4c5þc3c4c6þ2c2c5c6Þ

2c1ðc
2
2c2

5þc2c3ðc3c62c4c5Þþc5ð3c3c622c4c5Þ¼0;

(ii)

H4ðm0Þ¼2c2
3c4þc2c3c52c2

5þc2
1ðc2c62c2

4Þþc1ðc2c3c4

2c2
2c5þ2c4c52c3c6Þ–0;

and

H3ðm0Þ¼2c2
32c2

1c4þc1ðc2c3þc5Þ–0;

(iii)

dH5ðmÞ

dm

				
m¼m0

–0;

then there is a Hopf bifurcation. The equilibrium xðm0Þ may

bifurcate into ‘small amplitude’ periodic solutions as the

value m passes through m0: In other words, the periodic

solution will emerge when m,m0 or m.m0 is sufficiently

close to m0:

Remark 1. The characteristic equation has a pair of

purely imaginary real roots if the condition (i) of the

theorem is satisfied. The conditions (ii) and (iii) are referred

to as the transverse condition of Hopf bifurcation theorem

[6].

Remark 2. A Hopf bifurcation is said to be subcritical or

supercritical if the periodic solutions are unstable or stable.

In particular, a subcritical Hopf bifurcation may induce

voltage collapse phenomena [1,3,19].

3.3. Cyclic fold, period-doubling bifurcation, torus

bifurcation, phase-locked phenomena

The stability of the branch of periodic solutions created

from Hopf bifurcations can be determined by Floquet

multipliers.

Letting the periodic solution of Eq. (15) at m ¼ m0 be

xðt;m0Þ and have the minimal period T, then the local

behavior near xðt;m0Þ is determined by linearizing Eq. (15)

along xðt;m0Þ: The linearized equation is

_y ¼ Dxf ðxðt;m0Þ;m0Þy:

It is a six-dimensional linear system and has six linearly

independent solutions yi; where i ¼ 1; 2;…; 6: These

solutions can be expressed in the form of an 6 £ 6 matrix

called a fundamental matrix solution as

YðtÞ ¼ ½y1ðtÞ; y2ðtÞ;…; y6ðtÞ�:

Obviously, Y satisfies the matrix equation

_Y ¼ Dxf ðxðt;m0Þ;m0ÞY :

When FðtÞ satisfies the above matrix equation and the initial

condition

Fð0Þ ¼ I;

where I is the 6 £ 6 identity matrix, FðTÞ is called the

monodromy matrix, and the eigenvalues of the monodromy

matrix are called the Floquet or characteristic multipliers

[12]. Ref. [15] provides the detail procedure to calculate the

Floquet multipliers of a periodic solution.

The monodromy matrix has six Floquet multipliers. One

of them associated with a periodic solution xðt;mÞ is always

unity and the other five multipliers hiðmÞ; i ¼ 1; 2;…; 5;

determine the stability of xðt;mÞ by the rule: xðt;mÞ is stable

if lhiðmÞl , 1 for all i ¼ 1; 2;…; 5; xðt;mÞ is unstable if

lhiðmÞl . 1 for some i.

When we change the parameter m, the multipliers hiðmÞ

also vary because the multipliers are the functions of the

parameter, therefore depending on the parameter. Gener-

ically there exist three different ways in which multipliers

cross the unit circle [12].

(i) Only one real multiplier crosses the unit circle along

the positive real axis, i.e. there exists hðmcÞ ¼ 1:

(ii) Only one real multiplier crosses the unit circle along

the negative real axis, i.e. there exists hðmcÞ ¼ 21:

(iii) A pair of complex conjugate multipliers crosses the

unit circle with a non-zero imaginary part, i.e. there

exists ImðhðmcÞ – 0:
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In the first case, a stable periodic solutions and an

unstable periodic solutions, coalesce and obliterate each

other at the bifurcation point mc which is called cyclic fold

bifurcation just like saddle-node bifurcation for fixed points

in the Poincaré map. When the function f satisfies some

symmetry or other regularity properties, pitchfork or

transcritical bifurcation may occur [6,22]. The flip bifur-

cation of the double period bifurcation occurs in the second

case, where a branch of period-doubled solutions is created

or destroyed at the critical value mc: If the bifurcation is

supercritical, a branch of stable period-doubled solutions

emerges, and the original branch of stable periodic solutions

continues as a branch of unstable periodic solutions at the

post-bifurcation. On the other hand, if the bifurcation is

subcritical, a branch of unstable period-doubled solutions is

destroyed, and the original branch of stable periodic

solutions continues as a branch of unstable periodic

solutions at the post-bifurcation. In the third case, the

bifurcation generates a torus, which is called secondary

Hopf bifurcation, Hopf bifurcation of the periodic orbit or

torus bifurcation.

After the bifurcation from a periodic orbit (with

frequency v1ðm0Þ) to a torus, there are two frequencies:

v1ðm0Þ and v2ðm0Þ: The related flow on the torus is called a

quasi-periodic solution if v1 and v2 are incommensurate

(i.e. v1=v2 is irrational). For some m, v1 and v2 are

commensurate, then the trajectory on the torus is closed and

periodic, which is called phase-locked or frequency-locked

phenomenon. Higher dimensional tori have more frequen-

cies. Rotation number and Arnold tongue well describe the

nature of the phenomenon [6,12,22].

3.4. Routes to chaos

Chaotic solutions are identified with non-periodicity and

sensitive dependence on initial conditions. Hence, chaos is

complicated geometrical objects that possess fractal dimen-

sions. We denote the flow generated by Eq. (15) by fðx; tÞ

and assume that it exists for all t . 0: And assume that

L , R6 is a compact set invariant under fðx; tÞ; i.e.

fðL; tÞ , L for all t . 0: Then the generally acceptable

definitions for the sensitive dependence and chaos are given

in Ref. [6].

Definition 1. The flow fðx; tÞ is said to have sensitive

dependence on initial conditions on L if there exists 1 . 0

such that, for any x [ L and any neighborhood U of x, there

exists y [ U and t . 0 such that lfðx; tÞ2 fðy; tÞl . 1:

Roughly speaking, Definition 1 implies that for any point

x [ L there is (at least) one point arbitrarily close to L that

diverges from x.

Definition 2. L is said to be chaotic if

(i) fðx; tÞ has sensitive dependence on initial conditions

on L.

(ii) fðx; tÞ is topologically transitive on L.

(iii) The periodic orbits of fðx; tÞ are dense in L.

Remark. In Ref. [22], the (iii) is not explicitly

included in the definition of a chaotic invariant set

because a closed invariant set L is topologically

transitive if a point y [ L exists such that its orbit is

dense in L.

Definition 3. Suppose A , R6 is an attractor, then A is

called a strange attractor if it is chaos.

Presently, there are many fairly well understood

transitions or routes to chaos. In this paper, we only

introduce three routes to chaos: periodic doubling

bifurcation, intermittency and torus breakdown, which

are observed in the dynamical simulation of power

systems.

Recall that before a supercritical period-doubling

bifurcation, there exists a branch of stable periodic

solutions, and after the bifurcation, there exists a branch

of stable period-two solutions (period-doubled solutions). If

the branch of period two solutions repeat the same

bifurcation as the parameter is varied, a branch of period

four solutions is created. And so fourth, one can expect a

branch of period 2n solution, and finally a branch of chaotic

attractors appears. This is called a period-doubling cascade

to chaos. There are many researches about it in power

systems [2,3,10,13].

Intermittency is also a route to chaos observed frequently

in physical experiments. We describe the main features of

the route. For values of a parameter m less than a critical

value mc; the system oscillates in a regular mode, and there

exists a stable periodic solution for the system. As m

changes and is slightly more than a threshold value mc; the

oscillations seems to be regular and closely similar to the

behaviors for m , mc; but they are occasionally interrupted

by turbulent bursts of aperiodic oscillations at irregular

intervals. With increasing m, the time intervals (the time

regular oscillation) between two consecutive bursts become

smaller and smaller and more and more difficult to be

distinguished. As m is increased further, the periodic

oscillations disappear and are completely replaced with

chaotic response.

Chaos also can appear following a torus characterized

by two oscillatory modes with incommensurate frequen-

cies. As the parameter m is varied, if a branch of stable

periodic solution undergoes a supercritical secondary

Hopf bifurcation, a branch of two period quasi-periodic

solution with two incommensurate frequencies appears.

With increasing m, a rich variety of bifurcations of the

torus can take place. One of those post-bifurcation states

is a chaotic attractor. As the parameter is varied, the

two-torus is deformed, destroyed, and chaos emerges at

last. In this scenario, the closed curve of the two quasi-

periodic solutions in the Poincare section deforms,

wrinkles, and becomes fractal, and finally breaks down.

Since the transition to chaos from torus fulfills through

the destruction of the closed curve, this transition is often

described as chaos via torus breakdown.
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3.5. Identifying chaos

To decide whether an oscillation is chaotic, there are

several numerical indices such as fractal dimensions,

Fourier spectra, and Lyapunov exponents. Just like what

we did in Section 4, we can also distinguish among fixed

points, periodic oscillations, quasi-periodic solutions and

chaotic solutions by using Lyapunov exponents. Chaotic

attractor can be seen as the result of an infinite number of

stretchings in one or more directions and contractions in

another or some other directions, combined with foldings,

where Lyapunov exponents just measure these stretchings

and contractions.

The linearization of Eq. (15) is the variational equation

_y ¼ fxðx;mÞy;

where the Jacobian fx is evaluated along the particular

trajectory xðt; x0Þ: For any initial vector yð0Þ; the solution

yðtÞ can be expressed

yðtÞ ¼ FðtÞyð0Þ:

Here the fundamental solution matrix FðtÞ comes from

_F ¼ fxðxðt; x0Þ;mÞF; Fð0Þ ¼ I:

Let the eigenvalues of FðtÞ be liðtÞ; i ¼ 1; 2;…; 6; then these

eigenvalues represent the stretching of the principal axes.

Now we give the definition of Lyapunov exponents:

Lk ¼ lim
t!1

1

t
lnðlkðtÞÞ; k ¼ 1; 2;…; 6:

From this definition, we can see that Li represents the

average rate of stretching or contraction of the ith direction

in the phase space R6 along the solution xðt; x0Þ: That is to

say, the trajectory will dispel others nearing it in a

particular direction along it if a Lyapunov exponent is

positive, otherwise, the trajectory will attract others nearing

it in a particular direction along it. Hence for dissipative

systems, the sum of all Lyapunov exponents must be

negative,
P

i Li , 0:

For a fixed point, when all Lyapunov exponents are

negative, the point is a stable fixed point. For a limit cycle of

an autonomous system, one of the Lyapunov exponents is

always zero, and for a stable periodic orbit, all Lyapunov

exponents except one zero eigenvalue are negative. For a

m-torus, there are m Lyapunov exponents equal to zero.

When all other Lyapunov exponents are negative, the torus

is stable. In dissipative systems, chaos are characterized by

one or more positive Lyapunov exponents, which corre-

spond to the nature of sensitivity to initial conditions.

However, a positive Lyapunov exponents is a necessary but

not sufficient condition for chaos, it is still the standard by

which we confirm chaotic behaviors in numerical simu-

lations. For a detailed discussion, see Ref. [12].

4. Bifurcation analysis and chaos

In this section, we analyze the stability and bifurcation

for Eq. (14) where Pm is taken as a bifurcation parameter.

All the results are obtained by detailed numerical simu-

lations, and preliminary analyses are based on the

mathematical theories and methods of Section 3.

First of all, the bifurcation diagram is given in Fig. 2 by

using AUTO97 [5]. There are twelve types of bifurcations,

which are listed in Table 1.

From Fig. 2, we show that the equilibrium point x2ðPmÞ

undergoes four bifurcations labelled as HB1, HB2, HB3 and

SNB4. The equilibrium point x2ðPmÞ is stable for 0 , Pm ,

P4
m ¼ 0:608664; but as Pm is increased, the equilibrium

x2ðPmÞ loses its stability at Pm ¼ P4
m through HB4. With a

further increase in Pm; the x2ðPmÞ gains stability through

HB1 at Pm ¼ P1
m ¼ 1:155867: It remains stable until Pm ¼

P2
m ¼ 1:191285; where stability is lost through HB2. Further

the SNB3 does not influence the stability of x2ðPmÞ: The

movement of six eigenvalues of the Jacobian matrix at x2 is

shown in Fig. 3 by numerical simulation as the parameter

Pm varies.

At Pm ¼ P4
m; a supercritical Hopf bifurcation HB4

occurs. The Jacobian matrix at the equilibrium x2 has a

pair of pure imaginary eigenvalues and four negative real

part eigenvalues: { ^ 33:6677j;232:19;27:7426;21 ^

6:8525j}: Fig. 3(a) shows the pair of conjugate complex

eigenvalues transversely crosses the vj axis at E and e from

the left to the right half plane while Pm ¼ P4
m; E and e in Fig.

3(b) and (c) show the four eigenvalues with negative real

parts, so a supercritical Hopf bifurcation occurs at Pm ¼ P4
m;

and the equilibrium x2 becomes unstable for Pm . P4
m: Due

to the pair of pure imaginary eigenvalues, ^v0j ¼

^33:6677j; there is a stable periodic solution with the

period approximately equal to 2p=v0 for Pm slightly more

than P4
m by the Hopf theorem. We check that for Pm ¼

0:6099 there exists a stable periodic solution with a period

of T ¼ 2p=v0 < 0:18 s by numerical simulation. Hence, at

the critical point HB4, system behavior is dominated by d

and Sm:

At the critical points HB1 and HB2, the eigenvalues of the

Jacobian at x2 are { ^ 31:2075j; 220.809, 213.085,

20:12 ^ 7:543j} and { 2 0:3757 ^ 30:88j; 219.73,

213.95, ^7:57j}; respectively. From Fig. 3(a), we can

see that the curves re-cross the vj axis at points A and a

(^v1
0j ¼ ^31:2075j corresponding to d and Sm) leading to

the subcritical Hopf bifurcation HB1 at Pm ¼ P1
m; and other

real parts of the eigenvalues are negative (see points A and a

in Fig. 3(b) and (c)), so x2 remains stable until Pm ¼ P2
m ¼

1:191285: At Pm ¼ P2
m; another pair of complex eigen-

values crosses the vj axis transversely (^v2
0j ¼ ^7:57321j

corresponding to dL and VL) from the left to the right half

plane, which are shown by points B and b in Fig. 3(b), so a

subcritical Hopf bifurcation HB2 occurs again, and x2 re-

losses stability due to it and remains unstable until Pm ¼

P3
m: At P1

m and P2
m; HB1 and HB2 are both subcritical. There
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are unstable oscillations with periods approximately equal

to 2p=v1
0 and 2p=v2

0 for Pm slightly more than P1
m and Pm

slightly less than P2
m; respectively. But the periods of the

unstable oscillations near them are not checked in this

paper. At the critical points HB1 and HB2, system behavior

is dominated by d, Sm and dL; VL; respectively.

At P3
m ¼ 1:960761; a saddle-node bifurcation SNB3

occurs, at which the Jacobian has a simple zero eigenvalue,

a real positive eigenvalue and two pairs of complex

eigenvalues with negative real parts: { 2 11:044 ^

21:9116;214:2932 ^ 14:7414; 8:38915; 0} (see points C

and c in Fig. 3). The system has no operating point for

Pm . P3
m ¼ 1:960761:

Fig. 2 also shows the branches of the periodic solutions

emerging from HB4, HB1 and HB2. As HB4 is supercritical, a

family of stable periodic orbits emanates from HB4, and the

six multipliers of the stable periodic orbits lie inside the unit

circle. As Pm increases, the stable orbits lose their stabilities

due to a torus bifurcation TR5 at P5
m ¼ 0:840966; the

corresponding six multipliers are {1; 0:0005; 0:190515 ^

0:981684j; 0:23067 ^ 0:156288j}; where the pair of com-

plex conjugate multipliers 0:190515 ^ 0:981684j passes

across the unit circle from the inside to the outside the unit

circle with an increase in Pm; so that a torus bifurcation

occurs at Pm ¼ P5
m and the periodic oscillation loses its

stability for Pm . P5
m: With further increases in Pm; the

periodic orbit gains it back at TR6 at Pm ¼ 1:251128; and it

remains stable until TR7. At TR6, a pair of complex conjugate

multipliers 20:543321 ^ 0:83952234j goes to the inside the

unit circle, and other multipliers lie inside the unit circle. The

periodic oscillation loses its stability through TR7 at P7
m ¼

1:30209: From P7
m; it has not regained its stability although it

goes through TR8. The branch emerging from HB1 is the

same as that from HB4.

On the branch emerging from HB2, unstable periodic

oscillations emerge from HB2 at P2
m ¼ 1:191285 where one

of the multipliers lie outside the unit circle. As Pm

decreases, the multiplier enters the unit circle at P9
m ¼

0:954709 from the positive side of the real axis, so that the

periodic branch turns to the right and gains its stability

through circle fold bifurcation CFB9. However, with

increasing Pm; one of the multiplier crosses the unit circle

at 21 for P10
m ¼ 0:960252; which results in the period-

doubling bifurcation PDB10. And then the periodic solution

undergoes a cascade of period-doubling bifurcations at

PDB11 and PDB12.

Next, we further analyze the complex dynamical proper-

ties of the system emerging from HB4 and HB2 by using the

detailed numerical analysis based on the computations of

the largest Lyapunov exponent, the projections and the time

domain plot of the trajectories.

Table 1

All bifurcation points in Fig. 2 and their Pm values for d ¼ 0.05

Pm Pm

HB1 1.155867 TR7 1.30209

HB2 1.191285 TR8 1.264726

SNB3 1.960761 CFB9 0.954709

HB4 0.608664 PDB10 0.960252

TR5 0.840966 PDB11 0.962034

TR6 1.251128 PDB12 0.962452

Fig. 2. Bifurcation diagram of Efd 2 Pm; the solid and the dotted line represent the stable and the unstable stationary points (or periodic solutions), respectively.
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Fig. 3. As Pm increases, the eigenvalues cross the points E ! A ! B ! C ! D or e ! a ! b ! c ! d: (a)–(c) show the movements of three pairs of conjugate

eigenvalues.
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4.1. Dynamics emerging from HB4

On the continuation of HB4, we first find a family of

stable periodic solutions which are shown in Fig. 4. The

periodic solution encounters the torus bifurcation TR5 at

P5
m ¼ 0:840966; and the bifurcation results in the emer-

gence of quasi-periodic solution so that the periodic branch

loses its stability. For P5
m , Pm # 1:043; the trajectories

starting from the neighborhood of the stationary point tend

to a quasi-periodic oscillation. Fig. 5 shows that the toroidal

attractor expands in the sense of the slowly increasing

amplitude of the oscillations while Pm is built up in the

interval. The approximate frequencies of the oscillations in

Fig. 5 roughly consist of v1 ¼ 33:39 and v2 ¼ 7:13 for

Pm ¼ 0:851: We also give the approximate frequencies of

the oscillations for quasi-periodic trajectory are v1 ¼

33:151 and v2 ¼ 7:196 for Pm ¼ 0:901; v1 ¼ 32:17069

and v2 ¼ 7:40735 for Pm ¼ 1:043; and drew the projections

of quasi-periodic trajectory for Pm ¼ 0:901 and 1.043,

which have analogy to Fig. 5, we omitted these. Those

frequencies, respectively, come from the imaginary parts of

the complex eigenvalues at the corresponding Pm values.

When we carefully check the variation of the quasi-

periodic oscillation further, it is of interest to note that

phase-locked phenomena suddenly emerge. When Pm is in

the little right neighborhood of 1.043, the toroidal attractor

has already been deformed. As a result of the deformation,

the unlocking phenomena suddenly occur when Pm is

slightly more than 1.0431, and the toroidal attractor

completely changes into a complex periodic orbit. The

projections of the periodic orbits are shown in Fig. 6 for

Pm ¼ 1:0432 and Pm ¼ 1:04547. The periodic orbits last

until Pm is approximately equal to 1.09.

When Pm ¼ 1:09706; we find a chaotic attractor, whose

projection of the chaotic attractor is shown in Fig. 7, and the

solution is interrupted by bursts. By carefully checking the

bursts of the solutions, it has been found that the time

between two bursts are almost the same, and the largest

Lyapunov exponent ðL1Þ of the trajectory in Fig. 7 for Pm ¼

1:09706 is positive and approximate to 0.004. As Pm

continues to increase slowly, the turbulent bursts occur

more and more frequently and the largest Lyapunov

exponent is 0.0022 for Pm ¼ 1:105; we drew the figure,

but omitted it here.

When Pm reaches up to 1.117, the largest Lyapunov

exponent of the strange attractor is 0.1437. With a further

increase in Pm; where the largest Lyapunov exponent of

the chaotic attractors is 0.1447. The approximate frequen-

cies of the chaotic oscillations are related to the imaginary

parts of the complex eigenvalues of the Jacobian matrix

linearized at the corresponding fixed points.

When Pm continuously increases, we find a group of

trajectories which are shown in Figs. 7 and 8. Carefully

comparing the projections of these trajectories, a cascade

of period-doubling bifurcations can be identified. Fig. 7

shows a period orbit with a long period, while Fig. 8

shows the doubled orbits which finally merge in to a

chaotic orbit at Pm ¼ 1:12923: We show that there is an

‘burst’ in chaotic behavior which has an ‘intermittency’

mechanism. We drew the projectory and the correspond-

ing behaviors of Efd and VL; but omitted it. The largest

Lyapunov exponent is 0.146 for Pm ¼ 1:12923:

Fig. 4. The projections of the periodic trajectory for Pm ¼ 0:74603072:
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The chaotic oscillating modes last until Pm is approxi-

mately equal to 1.135. Fig. 9 exemplifies the mode. From

Fig. 9, we can see the trajectory is burst frequently by

turbulent contractions. The behavior of the system becomes

to be quite complex for Pm ¼ 1:1295 and 1.135. As Pm

grows up further, the turbulent contractions occurs more and

more frequently. At last, the trajectory diverges for the

variables d and dL:

4.2. Dynamics emerging from HB2

As HB2 is subcritical, the periodic branch from HB2

gains the stability through CFB9. With increases of Pm; the

stable periodic solution encounters PDB10, and bifurcates to

a period-two branch which bifurcates to a new period

four branch when it is subjected to PDB11. With this pattern,

the periodic branch finally reaches chaos at Pm ¼ 0:963:

Fig. 10(a)– (d) show the projection of a period-one

solution and its sample time simulations at Pm ¼ 0:9554;

and the projection of period-two for Pm ¼ 0:961; four for

Pm ¼ 0:9627 and eight for Pm ¼ 0:9623; and their sample

time simulations are, respectively, found, we only give the

plot of period-two for Pm ¼ 0:961 in Fig. 11. Fig. 12 shows

the projection of the chaotic trajectory whose largest

Lyapunov exponent is 0.3465 which verifies the chaotic

feature at Pm ¼ 0:965: Fig. 12 shows the sample time

simulation. Chaos resulted from cascades of period-

doubling bifurcations is observed in the region around Pm [

Fig. 6. The dot line represents the projection of the periodic orbit for Pm ¼ 1:0432; and the solid line represents that for Pm ¼ 1:04547:

Fig. 5. The projection of quasi-periodic trajectory for Pm ¼ 0:851:
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½0:963; 0:965�; and when Pm . 0:966; the chaotic trajectory

becomes a quasi-periodic solution.

5. The effects of damping factor on bifurcations

and dynamics

In this section, we investigate the loci of bifurcation points

for system (14) when both Pm and d are varied. From Eq.

(14), we know that the damping factor d does not affect the

locations of equilibrium points, which implies the damping

factor d does not have any effect on the saddle-node

bifurcation where the determinant of the linearized Jocobian

matrix must be zero. Hence the saddle-node bifurcation is

a vertical wall in the d direction in the parameter space. For

Hopf bifurcation and torus bifurcation, both Pm and d do play

important roles in the bifurcation computation. The bifur-

cation loci can be computed numerically and the results are

shown in Fig. 13 for variation in Pm and d. The curve 1, 2 and

4 are the loci of three Hopf bifurcations, and curve 5 is the

torus bifurcation locus and the bifurcation points HB1, HB2,

SNB3, HB4, and TR5 – 8 in Section 4 are on the curves 1–5 in

Fig. 13, respectively.

We observe from Fig. 13 that the bifurcation loci for Eq.

(14) divide the parameter space into six regions: (i) the left

region of the curve 4 is the operating region of the system

where the operating point (xs) is locally stable; (ii) the region

between curve 1 and 4 and above curve 5 where

Fig. 7. The projection of the periodic trajectory for Pm ¼ 1:128:

Fig. 8. The projection of the period-doubled trajectory for Pm ¼ 1:1288:
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the equilibrium point xs is locally unstable and a stable

periodic solution exists (Fig. 4); (iii) the region surrounded

by curve 1–3 where xs is locally stable; (iv) the region

surrounded by curve 2, 3 and Pm-axis, in which xs is unstable;

(v) the right region of curve 3 in which there is no equilibrium

points, and (vi) the region surrounded by curve 5 and Pm-

axis, where the dynamic behavior is the most complex one,

there exist a quasi-periodic solution, chaos, phase-locked

phenomena period-doubled orbits (see Section 4).

We will show that d can prevent the occurrence of torus

bifurcation and stabilize the system. If we take a horizontal

cross-section of the parameter plane in Fig. 13 by varying

Pm while keeping d at a constant values, the cross-section

will have four intersections with curve 5 for small d. In other

Fig. 9. The time simulations of the components Efdr ; VL; d and dL for Pm ¼ 1:135; and the sensitive dependence of VL on the initial conditions.
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words, four torus bifurcations will occur just like the case of

d ¼ 0:05 in Section 4. While the cross-section moves

upward slowly, the number of the intersections decreases,

and at last there is no intersection when d is greater than the

largest value of d on curve 5 (approximately equal to 8.043).

Therefore, torus bifurcations can be inhibited by d so that it

can prevent complex phenomena resulted from torus

bifurcation, and enhance the stability of the power system.

In order to illustrate the inhibition, we present the

projections of trajectories in Fig. 14 for d ¼ 10: Parameters

of the trajectories in the figures are the same as those in Fig.

5 except d ¼ 0:05: By numerical simulations (we got the

results, but deleted these because the file is too large), we

observe that the quasi-periodic orbit in Fig. 5, the chaos and

the diverging trajectories all become the periodic solutions

in Fig. 14 when d changes from 0.05 to 10. Hence, the

increasing in d contributes to the stability of the system.

Besides, note the stable region of xs will increase when the

cross-section goes up, i.e. the increase in the damping factor d

contributes to the stable region for xs or the feasibility region

of the system.

In the simulation of this paper, the damping d is set from

d ¼ 0 to 200. According to Ref. [7], the d typically ranges

from d ¼ 210 to 20 p.u. and the values above d ¼ 100 are

mainly of academic interest. Here we just want to display

the locus of bifurcation points completely. For the curve 2 of

Fig. 13, i.e. the locus of HB2, meets with the saddle-node

bifurcation locus (curve 3) at last. Therefore, increases in d

can deter the emergence of HB2 to the saddle-node

bifurcation. This result is similar to that about machine

damping in the four-order model of power systems, in which

machine damping can inhibit the emergence of Hopf

bifurcation so that it can prevent the chaos resulted from

period-doubling bifurcations [19]. However, the effect of

the damping factor d is not as significant as that of the

machine damping.

6. The role of hard-limits in the system

This section investigates the role of hard-limits in

stability and bifurcation of the system. First assume that

Fig. 10. The numerical simulations for Pm ¼ 0:9554 : (a), the projection of period-one orbit, (b)–(d), the corresponding sample time behavior of all system

components.
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there is an excitation field control in the generator which

is simply represented by the single-time-constant transfer

function shown in Fig. 15. Note that the wind-up type

hard-limit on the signal Efdr limits the control output Efd

strictly between the values Efdmin
and Efdmax

: With the

assumptions, instead of Eq. (7), the equation for _Efd in

system (14) is replaced by

_Efdr ¼
Efd0 2 Efdr þ KAðVref 2 VÞ

TA

;

and the system (14) becomes into a new system (140),

where Efd is the output of the wind-up limiter or

saturation:

Efd ¼

Efdmax
if Efdr . Efdmax

;

Efdr if Efdmin
# Efdr # Efdmax

;

Efdmin
if Efdr , Efdmin

:

8>><
>>: ð140Þ

In system (14), Pm is a bifurcation parameter, and all

other parameters are chosen to be the same as in Section 2

except: Efdmin
¼ 0; Efdmax

¼ 5: Before we start to solve for

the equilibrium points and bifurcation points of the system

(140), we also assume that the field control output Efd at

the operating point must lie within the linear region of the

hard-limit for small Pm; i.e. between Efdmin
and Efdmax

: In

fact, the steady-state value of Efdr should always lie

within these limiting values in a well-designed system

even under load variations. By using AUTO97, the

bifurcation diagram for fixed d ¼ 0:05 is drawn in Fig.

16, and Pm values of all bifurcation points are listed as the

following: HB1 for P1
m ¼ 1:15586; HB2 for P2

m ¼ 1:1913;

SNB3 for P3
m ¼ 1:9365; HB4 for P4

m ¼ 0:60866; CFB5 for

P5
m ¼ 1:164358:

From Fig. 16, it can be observed that the stable

periodic solution jumping from the supercritical Hopf

Fig. 11. The numerical simulations for Pm ¼ 0:961 : (a), the projection of period-two orbit and (b)–(d), the corresponding sample time behavior of all system

components.
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bifurcation point HB4 only undergoes a cyclic fold

bifurcation at CFB5, and then arrives at HB1, a

subcritical Hopf bifurcation. This means that the hard-

limits inhibit torus bifurcations, which do occur for the

case without hard-limits (Fig. 2). Therefore, a series

complex dynamic behaviors resulted from torus bifur-

cations are all prevented. Moreover, it seems that the role

of the hard-limits is more effective than the role of

damping factor d in the sense of inhibiting torus

bifurcation. To clarify this point we examine several

time-plots of three trajectories when the hard-limits are

introduced and find the system in the sustained

oscillations and the quasi-periodic trajectory, chaos, and

the diverging trajectory will converge to a stable limit

cycle due to hard-limits. In other words, the hard-limits

somehow introduce positive damping in a global sense so

that torus bifurcations are prevented and the trajectories

are eventually stabilized into sustained oscillation.

HB2 is a subcritical bifurcation, where a branch of

unstable periodic solutions emerge from it, but the branch is

always unstable although it also undergoes a cyclic fold

bifurcation CFB6. From Figs. 2 and 16, clearly the period-

doubling bifurcation point in Fig. 2 are inhibited by the hard-

limits so that the chaos resulted from period-doubling

bifurcation is also prevented by the hard-limits. The

numerical results further confirm that the hard-limits

contribute to the stability of the system. When Pm . P2
m;

the transients diverge away quickly.

Fig. 12. The numerical simulations for Pm ¼ 0:965 : (a), the projection of the chaotic trajectory and (b) the corresponding sample time behaviors of VL and Efd :

Z. Jing et al. / Electrical Power and Energy Systems 25 (2003) 443–461 457



Fig. 13. The locus of bifurcation points in the parameter space Pm –d:

Fig. 14. The projection of the trajectory with the same parameters in Fig. 5 for Pm ¼ 0:851; but d ¼ 10:

Fig. 15. The simplified excitation model.
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The preceding paragraph discusses the role of hard-

limits while the damping factor d ¼ 0:05: A natural

question is whether or not this role exists persistently

robustly. We carry out the same work but substituting

d ¼ 10 for d ¼ 0:05: The result is shown in Fig. 17.

Surprising similarities exist between Figs. 16 and 17,

which demonstrate the role of hard-limits is identical for

different d values.

Besides, note that the points CFB5 in Figs. 16 and 17

are between HB1 and HB2, and the operating point for

small Pm can move along the branch of stable periodic

orbits, and then arrive at another feasibility region for

larger Pm: Therefore, the two operating regions are

connected by the branch of periodic solutions. The cyclic

fold bifurcation is contributed to the hard-limits, where

Efdr arrives at Efdmax
:

Fig. 16. The bifurcation diagram for the system with hard-limits for d ¼ 0:05:

Fig. 17. The bifurcation diagram for the system with hard-limits for d ¼ 10:
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7. Conclusion

We found many dynamical bifurcations, emerging from

the Hopf bifurcations in the model (14), including cyclic

fold bifurcation, period-doubling bifurcations and torus

bifurcations which all occur prior to the saddle-node

bifurcation. We also observed the complex dynamical

behaviors emerging from the dynamical bifurcations

including periodic orbits, quasi-periodic orbits, phase-

locking phenomena and two different routes to chaos and

the intermittency mechanism of chaos. The stable periodic

orbit emerges from HB4 at P4
m ¼ 0:608664: The three

chaotic regions are also numerically observed: the chaos

resulted from period-doubling bifurcations approximately

lies in the interval Pm [ ½0:963; 0:965� and Pm [
½1:1292; 1:135�; and we only give the chaotic attractor is

shown in Fig. 12; another chaotic attractor resulted from the

quasi-periodic orbits approximately lies in the region Pm [
½1:09706; 1:122�; and the phase-locked phenomena approxi-

mately occurs in the region Pm [ ½1:0454; 1:09�; and the

corresponding chaotic attractors are obtained, but we

deleted these. The above complex dynamical phenomena

emphasize the importance of the consideration of non-

linearity.

In general, static bifurcations (saddle-node bifurcations)

can be related to system collapse, and the oscillations of the

quasi-periodic orbits or weak chaos affect the quality of

electric power by distorting the voltage and current wave

forms and can also cause the power system collapse in

certain circumstances. But they are considered as one of the

clues for the collapse of complicated power systems or for

stability margin narrowing in parameter space.

Besides, we also find that at different Hopf bifurcation

points, the system behavior is dominated by different state

variables for instance d and Sm at HB1 and HB4, and dL and

VL at HB2. This fact suggests that different factors of power

systems reduce the system stability at different critical

points. In other words, we should design different control

systems or control different parameters near the critical

points.

When the effects of the damping factor d on the system’s

dynamics are considered, the torus bifurcation can be

inhibited by the increases in d, which implies positive

damping is beneficial for the stability of the system. Once

the hard-limits are introduced to the system, the effects are

similar to those of a great increase in the damping factor, i.e.

the torus bifurcation is prevented. In Section 5, we do not

investigate the loci of the cyclic bifurcation and period-

doubling bifurcation like CFB9, PDB10 for variations in

both Pm and d. However, from the analyses of Sections 4

and 5, we can reasonably infer that the damping factor d also

exists the largest values along the loci of the cyclic

bifurcation and period-doubling bifurcation (they may be

smaller than the largest value along the torus bifurcation

locus). Therefore d also prevents the cyclic bifurcation and

period-doubling bifurcation.

Remark. The size of the original file is too large ð.

33MÞ; present file near 2M after deleted a lot of Figures, for

examples: the projections of quasi-periodic trajectory and

chaotic trajectories and corresponding time behaviors of VL

for Pm ¼ 0:901; 1.043, 1.09706, 1.105, 1.117, 1.122; the

projections and time simulations of components of Efdr and

VL of period-four, period-eight, chaotic behaviors for Pm ¼

0:9623; 0.9627, 1.12923, 1.1295, 1.135, 1.145; the time-

plots of the trajectories with hard-limits for Pm ¼ 0:851;

1.12923, 1.145.
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