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We investigate the bifurcation phenomena in a Belousov–Zhabotinsky reaction model by
applying Hopf bifurcation theory in frequency domain and harmonic balance method. The
high accurate predictions, i.e. fourth-order harmonic balance approximation, on frequencies,
amplitudes, and approximation expressions for periodic solutions emerging from Hopf bifurca-
tion are provided. We also detect the stability and location of these periodic solutions. Numerical
simulations not only confirm the theoretical analysis results but also illustrate some complex
oscillations such as a cascade of period-doubling bifurcation, quasi-periodic solution, and period-
doubling route to chaos. All these results improve the understanding of the dynamics of the
model.
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1. Introduction

Belousov–Zhabotinsky (BZ) reaction is a family
of chemical oscillation reaction, which is the oxi-
dation and bromination of an organic compound

[Györgyi & Field, 1991]. It is well known for its rich
and complex oscillations. A great deal of experimen-
tal and numerical simulation studies suggest that
BZ reaction can exhibit various types of oscillations
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and complex dynamics, such as heterogeneous oscil-
lation [Kuhnert, 1986], spiral waves [Keener &
Tyson, 1986], period-doubling cascade [Györgyi &
Field, 1991], deterministic chaos [Zhang et al.,
1993], chemical turbulence [Zhou & Yang, 2000],
hyperchaos [Li et al., 2002a], mesoscopic dynam-
ical behavior [Li & Zhu, 2004], breathing front
dynamics [Marts et al., 2004], coexistence of two
bifurcation regimes [Wang et al., 2005], period-
doubling and chaotic oscillations [Zong et al., 2007],
chaotic bursters [Bi, 2010]. In addition, Dolzmann
et al. [2007] reported complex optical behavior in
a nonstationary ferroin catalyzed BZ reaction. Guo
et al. [2014] studied the dynamical behavior in the
spatial-temporal domain for a BZ reaction by using
a spatial-temporal domain identification and fre-
quency domain analysis approach.

A large number of mathematical models have
been developed to describe the BZ reaction in
detail. The models proposed by Györgyi and Field
[1991, 1992] have attracted a great deal of atten-
tion from researchers in different fields [Li et al.,
2002b; Zong et al., 2007; Freire et al., 2009; Li &
Chang, 2012; Li, 2012]. In 1991, Györgyi et al.
[1991] proposed a 11-variable BZ reaction model
in a well-mixed, continuous-flow, stirred tank reac-
tor (CSTR). Although this model can reproduce
the behaviors experimentally observed at low CSTR
flow rates, it is difficult to analyze the dynam-
ical structure of the system. Then, the authors
[Györgyi & Field, 1991] simplified the 11-variable
model to a 7-variable model, and the 7-variable
model was further reduced to two 4-variable mod-
els and one 3-variable model. Complex oscillations
and chaotic dynamics in the 4-variable models are
consistent with those experimentally observed at
both high and low CSTR flow rates. Some studies
of dynamical behaviors in one of 4-variable mod-
els, model DEQ, have been reported. Györgyi and
Field [1991] numerically showed complex oscilla-
tions in this model including periodic window, a
cascade of period-doubling and chaos at low flow
rates, complex limit cycles and chaos at high flow
rates. Li et al. [2002b] studied chaos synchroniza-
tion at low flow rate. Zong et al. [2007] experi-
mentally and numerically investigated dynamical
behaviors at high flow rate, and they found some
complex oscillations such as mixed-mode oscillation

at low flow rate, periodic-doubling oscillation and
chaos at high flow rate. Li and Chang [2012]
theoretically analyzed Hopf bifurcation in time
domain at both low and high flow rates. By apply-
ing Hopf bifurcation theory in frequency domain
and second-order harmonic balance method, Li
[2012] provided the estimates of frequencies and
amplitudes, the explicit approximation expressions
for the periodic oscillations emerging from Hopf
bifurcation.

In this work, we further study the bifurcations
in this 4-variable BZ reaction model DEQ. By using
Hopf bifurcation theorem in frequency domain
[Mees & Chua, 1979; Moiola & Chen, 1996], we
theoretically analyze Hopf bifurcation of the model.
We provide higher accurate predictions on frequen-
cies, amplitudes, and explicit formulas of periodic
solutions arising from Hopf bifurcation by apply-
ing fourth-order harmonic balance method [Mees,
1981; Moiola et al., 1991; Moiola & Chen, 1993,
1996]. The stability and location of these periodic
solutions are also detected. In addition, we inves-
tigate the bifurcations of periodic orbit emerging
from Hopf bifurcation. Furthermore, our numer-
ical simulations show some new system behav-
iors including torus bifurcation at both low and
high flow rates, period-doubling bifurcation, a cas-
cade of period-doubling bifurcation and period-
doubling route to chaos at high flow rate. All these
results help to understand the dynamics of the BZ
reaction.

The rest of article is organized as follows: In
Sec. 2, we analyze the existence of Hopf bifurca-
tion in frequency domain. In Sec. 3, the frequen-
cies, amplitudes of periodic solutions generated
from Hopf bifurcation and their explicit expressions
are presented by fourth-order harmonic balance
method. We also detect the stability and location
of these periodic solutions. Numerical simulations
are shown in Sec. 4 to verify the theoretical analysis
results and display the complex dynamics. Section 5
contains the conclusions.

2. Equilibrium Points and
Bifurcations

2.1. BZ reaction model

Consider the following BZ model.
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


d[Br−]
dt

= −kD1[H+][Br−][HBrO2] − kD2[BrO−
3 ][H+]2[Br−] + kD7[Ce(IV)][BrMA]

+ kD8[MA·]QSS[BrMA] + kf ([Br−]mf − [Br−])

d[HBrO2]
dt

= −kD1[H+][Br−][HBrO2] + kD2[BrO−
3 ][H+]2[Br−] − 2kD3[HBrO2]2

+ 0.5kD4[H+]([Ce]tot − [Ce(IV)])[BrO·
2]EQ − 0.5kD5[HBrO2][Ce(IV)]

+ kf ([HBrO2]mf − [HBrO2])

d[Ce(IV)]
dt

= kD4[H+]([Ce]tot − [Ce(IV)])[BrO·
2]EQ − kD5[HBrO2][Ce(IV)] − kD6[MA][Ce(IV)]

− kD7[Ce(IV)][BrMA] + kf ([Ce(IV)]mf − [Ce(IV)])

[BrMA]
dt

= 2kD1[H+][Br−][HBrO2] + kD2[BrO−
3 ][H+]2[Br−] + kD3[HBrO2]2

− kD7[Ce(IV)][BrMA] − kD8[MA·]QSS + kf ([BrMA]mf − [BrMA]),

(1)

where

MA ≡ CH2(COOH)2, BrMA ≡ BrCH(COOH)2,

[MA·]QSS = −kC10[BrMA] +

√
(kC10[BrMA])2 + 8kC8kC11[Ce(IV)]

4kC11
,

[BrO·
2]EQ =

√
kC4[HBrO2]

kC5
, [Ce]tot = [Ce(III)mf ].

[ · ] denotes the concentration of the component.
[ · ]mf refers to the mixed-feed concentration of the
component, which is assumed to be zero for state
variables [Györgyi & Field, 1991]. The four state
variables in this model are the concentrations of
bromide ion Br−, bromous acid HBrO2, cerium ion
Ce(IV) and bromalonic acid BrMA. H+ and BrO−

3
are hydrogen ion and bromate ion, respectively. MA
is malonic acid. The parameter kf represents CSTR
flow rate. The parameters kDi (i = 1, . . . , 8) and kCj

(j = 4, 5, 8, 10, 11) are constants, and their mean-
ings can be found in [Györgyi & Field, 1991].

In this work, we further investigate bifurcations
in BZ reaction model (1). The flow rate kf is taken
as bifurcation parameter, and other parameter val-
ues are chosen to be:

[BrO−
3 ] = 0.1M, [H+] = 0.38M,

[MA] = 0.25M, [Ce(III)] = 8.33 × 10−4 M,

kD1 = 2 × 106 M−2s−1, kD2 = 2.0M−3s−1,

kD3 = 3 × 103 M−1s−1, kD4 = 6.2 × 104 M−2s−1,

kD5 = 7 × 103 M−1s−1, kD6 = 0.3M−1s−1,

kD7 = 30M−1s−1, kD8 = 2.4 × 104 M−1s−1,

kC4 = 0.858 s−1, kC5 = 4.2 × 107 M−1s−1,

kC8 = 0.3 [MA]s−1, kC10 = 2.4 × 104 M−1s−1,

kC11 = 3 × 109 M−1s−1.

According to [Wiggins, 1990], simple qualita-
tive analysis gives the following conclusion:

Conclusion 1

• For 2.0 × 10−4 < kf < 6.05172 × 10−4 and
1.54738 × 10−3 < kf < 3.0 × 10−2, system (1)
has a stable node;
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• For 6.05172 × 10−4 < kf < 1.54738 × 10−3, sys-
tem (1) has an unstable node;

• For k1
f = 6.05172×10−4 and k2

f = 1.54738×10−3 ,
system (1) has two nonhyperbolic equilibrium
points with a single pair of pure imaginary eigen-
values.

2.2. Hopf bifurcation for
equilibrium point in frequency
domain

In order to apply Hopf bifurcation theorem in fre-
quency domain [Mees & Chua, 1979; Moiola &

Chen, 1996], model (1) is rewritten in the following
form:

ẋ = A(k)x + Bg(y) (2)

together with a second output equation

y = e = −Cx, (3)

where

x = ([Br−], [HBrO2], [Ce(IV)], [BrMA])T ,

k = kf , e = (e1, e2, e3, e4)T ,

g(y) = (g1, g2, g3, g4)T ,

A(k) =



−0.02888 − k 0 0 0

0.02888 −k 0 0

0 0 −0.075 − k 0

0.02888 0 0 −k


, B = C =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,

g1 = −7.6 × 105e1e2 + 30e3e4 − 0.048e2
4 − 0.02e4(5.76e2

4 − 18e3)0.5,

g2 = −7.6 × 105e1e2 − 6000e2
2 + 1.68369836(0.000833 + e3)(−e2)0.5 − 3500e2e3,

g3 = 3.36739672(0.000833 + e3)(−e2)0.5 − 7000e2e3 − 30e3e4,

g4 = 1.52 × 106e1e2 + 3000e2
2 − 30e3e4 + 0.048e2

4 + 0.02e4(5.76e2
4 − 18e3)0.5.

Taking Laplace transforms on both sides of Eq. (2), we can separate Eq. (2) into a linear part with a
transfer function

G(s; k) = C(sI − A(k))−1B

=




1
0.02888 + k + s

0 0 0

−0.002166 − 0.02888k − 0.02888s
(k + s)(0.02888 + k + s)(0.075 + k + s)

1
k + s

0 0

0 0
1

0.075 + k + s
0

0.02888
(k + s)(0.02888 + k + s)

0 0
1

k + s




(4)

and a memoryless nonlinear part

u � g(e) � g(y). (5)

It can be shown that systems (2) and (3) are equiv-
alent to the feedback systems (4) and (5), where
s is the Laplace variable, and the solution ê of
G(0; k)g(e) + e = 0, i.e. the equilibrium point ê for
systems (4) and (5), is equivalent to the equilibrium
point x̂ in Eq. (2) [Mees & Chua, 1979].

Now we want to calculate the solution ê of the
equation G(0; k)g(e) + e = 0 and investigate Hopf
bifurcation in frequency domain at the equilibrium
point ê for systems (4) and (5). Let D1 = ∂g

∂e |ê,
D1 is the Jacobian matrix of the equilibrium point
ê. The characteristic polynomial of transfer matrix
G(s; k)D1 is defined by

F (λ, s, k) = det(λI − G(s; k)D1). (6)
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According to Hopf bifurcation theory in fre-
quency domain [Mees & Chua, 1979; Moiola &
Chen, 1996], Hopf bifurcation can occur at an equi-
librium point ê for k = k0 provided that two con-
ditions are satisfied: (1) F (λ, s, k) = 0 has a single
root λ̂(iω0) = −1 + 0i when k = k0, s = iω0, where
iω0 is the pure imaginary eigenvalue of equilibrium
point x̂, equivalent to ê, of model (2) at k = k0;
(2) ∂F (λ,iω,k)

∂ω |(−1,iω0,k0) and ∂F (λ,iω,k)
∂k |(−1,iω0,k0) are

nonzero and not parallel.
Calculations show that systems (4) and (5) have

two special equilibrium points:

(a) ê1 = (−3.137488664 × 10−6,−3.914231394 ×
10−7,−1.385673176 × 10−5,−1.539902738 ×
10−3) at k01 = 6.05172 × 10−4, with a sin-
gle eigenvalue λ̂(iω01) = −1 + 0i, ω01 =
8.157976072 × 10−2. ∂F (λ,iω,k)

∂ω |(−1,iω01,k01) =
335.823 − 147.277i, ∂F (λ,iω,k)

∂k |(−1,iω01,k01) ≈
69933.53854551 + 64276.656606i.

(b) ê2 = (−7.259249877 × 10−7,−3.711716701 ×
10−6,−3.614864477 × 10−5,−1.34935985 ×
10−3) at k02 = 1.54738 × 10−3, with a sin-
gle eigenvalue λ̂(iω02) = −1 + 0i, ω02 =
6.15181694412 × 10−2. ∂F (λ,iω,k)

∂ω |(−1,iω02,k02) =
975.955 − 250.035i, ∂F (λ,iω,k)

∂k |(−1,iω02,k02) ≈
−154714.716 − 181187.354i.

Therefore, we have the following result:

Conclusion 2. For feedback systems (4) and (5),
two Hopf bifurcations HB1 and HB2 can occur at
two equilibrium points ê1 for k01 = 6.05172 × 10−4

and ê2 for k02 = 1.54738 × 10−3, respectively.

3. The Approximate Analysis and
Stability of Periodic Orbits

3.1. Computations of frequency,

amplitude and approximate
analytical expression for
periodic solution

In this section, by fourth-order harmonic balance
method we wish to obtain a high accurate approxi-
mation of the periodic solution generated from Hopf
bifurcation at equilibrium point ê. The fourth-order
harmonic balance explicit formula [Mees, 1981;
Moiola et al., 1991; Moiola & Chen, 1993, 1996] is
given by

e(t) ≈ ê + Re

(
4∑

n=0

En exp(inω̂t)

)
, (7)

where E0 = V02θ̂
2 + V04θ̂

4, E1 = V11θ̂ + V13θ̂
3 +

V15θ̂
5, E2 = V22θ̂

2 + V24θ̂
4, E3 = V33θ̂

3 + V35θ̂
5,

E4 = V44θ̂
4. ω̂ and θ̂ denote the frequency and

amplitude of periodic solution e(t), respectively,
both of which are the solutions of the following
equation:

λ̂(iω) = −1 − θ2Z1(ω) − θ4Z2(ω). (8)

The explicit expressions of Vij , Z1(ω) and Z2(ω)
can be found in [Mees, 1981; Moiola et al., 1991;
Moiola & Chen, 1993, 1996].

In order to compute ω̂ and θ̂ for Eq. (8), we
separate the real and imaginary parts of Eq. (8) as
follows:
Re[λ̂(iω)] = −1 − θ2Re[Z1(ω)] − θ4Re[Z2(ω)]

Im[λ̂(iω)] = −θ2Im[Z1(ω)] − θ4Im[Z2(ω)].

(9)

Suppose Z2(ω) �= 0. By eliminating θ4 from (9),
we obtain

Re[λ̂(iω) + 1]Im[Z2(ω)] − Re[Z2(ω)]Im[λ̂(iω)]

= (Re[Z2(ω)]Im[Z1(ω)]

−Re[Z1(ω)]Im[Z2(ω)])θ2. (10)

We consider two cases.

Case I. Re[Z2(ω)]Im[Z1(ω)] − Re[Z1(ω)]Im ×
[Z2(ω)] �= 0. In this case, (10) can be rewritten as

θ2 =
Re[λ̂(iω) + 1]Im[Z2(ω)] − Re[Z2(ω)]Im[λ̂(iω)]

Re[Z2(ω)]Im[Z1(ω)] − Re[Z1(ω)]Im[Z2(ω)]

� h(w). (11)

Substituting (11) into the Eq. (9) yields

Re[λ̂(iω)] = −1 − h(ω)Re[Z1(ω)]

−h2(ω)Re[Z2(ω)] (12)

for Re[Z2(ω)] �= 0, and

Im[λ̂(iω)] = −h(ω)Im[Z1(ω)]

−h2(ω)Im[Z2(ω)] (13)

for Im[Z2(ω)] �= 0.
In order to find the roots ω̂ of Eq. (12) or

Eq. (13), we firstly choose a k in the left small
neighborhood of Hopf bifurcation parameter k0, and
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substitute k into Eq. (12) or Eq. (13) to obtain
numerical values of ω̂ sufficiently close to ω0. Then
by substituting ω̂ into (11), the value of θ̂2 will be
computed. If the value of θ̂2 is positive, the periodic
solution emerging from Hopf bifurcation appears for
k < k0. If the value of θ̂2 is negative, then the bifur-
cated periodic solution appears not for k < k0 but
for k > k0. We need to choose a k in the right small
neighborhood of Hopf bifurcation parameter k0 and
compute (ω̂, θ̂).

Case II. Re[Z2(ω)]Im[Z1(ω)] − Re[Z1(ω)]Im ×
[Z2(ω)] = 0. In this case, (10) becomes

Re[λ̂(iω) + 1]Im[Z2(ω)]

−Re[Z2(ω)]Im[λ̂(iω)] = 0. (14)

Similarly, we numerically compute the values of ω̂
sufficiently close to ω0 from (14), and substitute ω̂

into (9) to obtain θ̂2.

Following the procedure described above, we
get the following results:

(I) The periodic orbit generated from HB1 at
ê1 appears in the right neighborhood of k01 =
6.05172 × 10−4. For k = 6.1045 × 10−4, the fourth-
order harmonic balance approximation expression
of the periodic orbit with frequency

ω̂ = 8.1068731623462 × 10−2

and amplitude

θ̂ = 1.298375930657188 × 10−7

is given by

e(t) ≈ ê + Re

(
4∑

n=0

En exp(inω̂t)

)
,

where ê= (−3.1072073515× 10−6,−3.9738278184×
10−7,−0.00001397138896,−0.00153491273)T ,

E0 = 10−7 ×



−0.001378244627313
−0.000267374533455
−0.000818866958143
−0.218787694528839


,

E1 = 10−7 ×



−0.282277843257427 − 0.199006203039458i
0.058826546219293 + 0.037503694716739i

0.969152084883089 + 0.000000984037526i

0.639531114456919 − 0.461923055003505i


,

E2 = 10−9 ×




0.151425449725114 − 0.134552850389603i

−0.052796538323410 − 0.018180057061660i
−0.302503844697538 + 0.339219531738535i
−0.146133743356638 + 0.408191526168601i


,

E3 = 10−11 ×




0.039716335296817 + 0.139511251979552i
0.047818266031950 − 0.009187271976616i
−0.048469075034954 − 0.275277050341810i
−0.164469984571708 − 0.259894462511374i


,

E4 = 10−13 ×



−0.116036542786798 − 0.032146459214479i
−0.029448309005695 + 0.034077496390071i
0.181657291018815 + 0.091919330614548i
0.250753242362002 + 0.019605241552955i


.

(II) The periodic orbit generated from HB2 at ê2 appears in the left neighborhood of k02 = 1.54738×10−3 .
For k = 1.547 × 10−3, the fourth-order harmonic balance approximation expression of the periodic orbit

1550093-6
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with frequency ω̂ = 6.1371869 × 10−2 and amplitude θ̂ = 1.127697655889159 × 10−6 is given by

e(t) ≈ ê + Re

(
4∑

n=0

En exp(inω̂t)

)
,

where ê = (−7.26348434 × 10−7,−3.708952782 × 10−6,−0.00003613998,−0.00134943716)T ,

E0 = 10−6 ×



−0.000623603956585
−0.003928409225123
0.004153785205925
0.444029053851815


,

E1 = 10−6 ×



−0.038670750332176 − 0.020612062812239i

0.269759145025610 + 0.109490671930614i
0.799757783398478 + 0.000144129922089i
0.128949958701153 − 0.727175272445702i


,

E2 = 10−7 ×



−0.018002678558810 + 0.008824105162330i

0.040899606399917 − 0.136421339899872i
0.021481701046379 − 0.307395359346716i
−0.122390983923579 − 0.032706421985678i


,

E3 = 10−8 ×



−0.001459501068126 + 0.010447327621118i

−0.071257562757574 − 0.022986523108462i

−0.135523854145855 − 0.028414153561823i

−0.004915850436747 + 0.028006415605450i


,

E4 = 10−10 ×




0.046813279851679 + 0.037848638504768i

−0.156941803039144 + 0.382332592054964i
−0.236055807499592 + 0.635558102926264i
0.086682305040796 − 0.035042300457125i


.

Periodic orbits calculated from our formulas
(black curve) and by numerically solving differential
equations (green “+”) are highly consistent with
each other. Their graphs are shown in Figs. 1(a)
and 1(b).

3.2. Detection of stability for
periodic orbits

In [Jing et al., 2002], it was shown that the peri-
odic orbit bifurcated from Hopf bifurcation is sta-
ble if one of Conditions (I) and (II) is satisfied:
Condition (I). The argument of λ̂(iω), arg(λ̂(iω)),
decreases as ω increases in the neighborhood of
(ω̂, θ̂), and arg(dλ̂(iω)

dω / dL2
d(θ2)

)|(ω̂,θ̂) < 0; Condition (II).

The argument of λ̂(iω), arg(λ̂(iω)), increases as ω

increases in the neighborhood of (ω̂, θ̂), and

arg(dλ̂(iω)
dω / dL2

d(θ2)
)|(ω̂,θ̂) > 0. Here, L2 = −1 − θ2Z1 ×

(ω) − θ4Z2(ω). (ω̂, θ̂) is the frequency and ampli-

tude of the periodic solution. dλ̂(iω)
dω is the tangent

vector of λ̂(iω) along the increasing direction of ω,
and dL2

d(θ2)
denotes the tangent vector of L2 along the

increasing direction of θ2.
Note that

dλ̂(iω)
dω

∣∣∣∣
(ω̂,θ̂)

≈ λ̂(iω̂1) − λ̂(iω̂2)
ω̂1 − ω̂2

,

dL2

d(θ2)

∣∣∣∣
(ω̂,θ̂)

≈ −Z1(ω̂) − 2θ̂2Z2(ω̂),
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Fig. 1. The projections of periodic solutions (a) k =
6.1045 × 10−4 and (b) k = 1.547 × 10−3.

where both ω̂1 and ω̂2 are in the small neighbor-
hood of ω̂ and sufficiently close to each other, thus
we can determine the stability of periodic orbit by
calculating λ̂(iω̂1)−λ̂(iω̂2)

ω̂1−ω̂2
and −Z1(ω̂) − 2θ̂2Z2(ω̂).

For the periodic orbit with frequency ω̂ =
8.1068731623462 × 10−2 at k = 6.1045 × 10−4,
we choose ω̂1 = 8.1068731623462 × 10−2 and
ω̂2 = 8.10687317 × 10−2, and have arg(λ̂(iω̂1)) −
arg(λ̂(iω̂2)) = 3.48684636719554 × 10−10 > 0,

arg




dλ̂(iω)
dω
dL2

d(θ2)



∣∣∣∣∣∣∣∣∣
(ω̂,θ̂)

≈ arg


 λ̂(iω̂1) − λ̂(iω̂2)

ω̂1 − ω̂2

−Z1(ω̂) − 2θ̂2Z2(ω̂)




= −2.255624500755766 < 0.

Therefore, the periodic orbit bifurcated from HB1

at k = 6.1045 × 10−4 is stable.

Similarly, for the periodic orbit with frequency
ω̂ = 6.1371869 × 10−2, by choosing

ω̂1 = 6.1371869 × 10−2 and

ω̂2 = 6.1371870 × 10−2,

we compute

arg(λ̂(iω̂1)) − arg(λ̂(iω̂2))

= 1.680128924874680 × 10−9 > 0

and

arg




dλ̂(iω)
dω
dL2

d(θ2)



∣∣∣∣∣∣∣∣∣
(ω̂,θ̂)

≈ arg


 λ̂(iω̂1) − λ̂(iω̂2)

ω̂1 − ω̂2

−Z1(ω̂) − 2θ̂2Z2(ω̂)




= −2.039280080314195 < 0.

Hence, the periodic orbit bifurcated from HB2 at
k = 1.547 × 10−3 is stable.

4. Numerical Simulations

In this section, we present numerical simulations
to show bifurcations of periodic solutions, which
emerge from Hopf bifurcation, and complex
oscillations.

For convenience, we use the abbreviations: HB
(Hopf bifurcation); PDB (period-doubling bifurca-
tion); TR (torus bifurcation).

The bifurcation diagram of kf versus MAX×
[Ce(IV)] is given in Fig. 2 by using AUTO2007
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Fig. 2. The bifurcation diagram.
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Table 1. Bifurcation points and kf values in Fig. 2.

HB1 HB2 TR3 PDB4 PDB5 TR6

kf 6.05172 × 10−4 1.54738 × 10−3 1.52493 × 10−3 1.49535 × 10−3 1.30792 × 10−3 7.18684 × 10−4

Table 2. The movement of Floquet multipliers.

λ1 λ2 λ3 λ4 kf

1 0.609334 + 0.707861i 0.609334 − 0.707861i 7.75969 × 10−6

1 0.526870 + 0.836141i 0.526870 − 0.836141i 1.21215 × 10−5

1 0.473870 + 0.898851i 0.473870 − 0.898851i 3.95886 × 10−6 TR3

1 −1.26165 + 0.762219i −1.26165 − 0.762219i 1.70197 × 10−6

1 −1.37868 −1.66829 1.53633 × 10−6

1 −0.89026 −2.73651 1.46015 × 10−6 PDB4

1 −0.729487 −3.53699 1.37755 × 10−6

1 −0.3647 −10.5471 5.87986 × 10−7

1 −0.217364 −30.6145 3.89576 × 10−7

1 −0.280294 −1.26862 −5.35722 × 10−6

1 −0.338771 −0.86487 −6.17477 × 10−6 PDB5

1 0.364276 + 0.319971i 0.364276 − 0.319971i −4.31995 × 10−6

1 0.596511 + 0.678982i 0.596511 − 0.678982i −3.32642 × 10−6

1 0.733855 + 0.663588i 0.733855 − 0.663588i −8.32086 × 10−6

1 0.755596 + 0.656842i 0.755596 − 0.656842i −8.92905 × 10−6 TR6

1 0.777703 + 0.648871i 0.777703 − 0.648871i −9.59059 × 10−6

1 0.821894 + 0.629984i 0.821894 − 0.629984i −1.18734 × 10−5

[Doedel et al., 2007]. There are six types of bifurca-
tions, which are listed in Table 1. The solid and
dashed curves represent the stable and unstable
equilibrium points, respectively. From Fig. 2, we can
observe that the equilibrium point undergoes two
bifurcations labeled as HB1 and HB2. The equilib-
rium point is stable for kf < k1

f = 6.05172 × 10−4.
At k1

f , a supercritical Hopf bifurcation HB1 occurs,
so that this equilibrium point loses its stability and
a stable periodic orbit emerges from HB1. With a
further increase in kf , the equilibrium point gains
stability back through supercritical HB2 at k2

f =
1.54738 × 10−3 until kf = 3.0 × 10−2.

Figure 2 also shows the branch of the periodic
solution generated from HB2. The filled and open
circles indicate the stable and unstable periodic
solutions, respectively. Table 2 shows the movement
of Floquet multipliers along the branch of peri-
odic orbit between kf = 7.13906 × 10−4 and kf =
1.53081 × 10−3. A stable periodic solution emerges
from HB2 at kf = 1.54643 × 10−3 due to super-
critical Hopf bifurcation HB2, the corresponding
four Floquet multipliers are {1, 0.914603, 0.613985,
0.0000219968}. As kf decreases, a pair of complex
conjugate multipliers 0.526870 ± 0.836141i cross

the unit circle from the inside to the outside unit
circle, so that a torus bifurcation TR3 occurs at
k3

f = 1.52493×10−3 , and the periodic solution loses
its stability. At kf = 1.5248×10−3, i.e. at high flow
rate, we find a chaotic orbit with Lyapunov expo-
nents {0.0028469, 0,−0.00068817,−3.3209}, which
is shown in Fig. 3.
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Fig. 3. The projection of a chaotic trajectory for kf =

1.5248 × 10−3.
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(a) Period-one orbit for kf = 1.3075 × 10−3.
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(b) Period-two orbit for kf = 1.3085 × 10−3.
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(c) Period-four orbit for kf = 1.3086 × 10−3.

Fig. 4. The numerical simulations of period-doubling cascade to chaos.
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(d) Period-eight orbit for kf = 1.30862 × 10−3.
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(e) Period-16 orbit for kf = 1.30864 × 10−3.
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(f) A chaotic orbit for kf = 1.308640802 × 10−3.

Fig. 4. (Continued)
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Fig. 5. The projection of a quasi-periodic trajectory and its time series for kf = 7.156 × 10−4.

With a further decrease in kf , one of the mul-
tipliers passes across the unit circle at −1 for k4

f =
1.49535×10−3 , which results in the period-doubling
bifurcation PDB4, and the unstable periodic solu-
tion has not regained its stability until PDB5 at
k5

f = 1.30792 × 10−3. When kf is slightly greater
than k5

f , the periodic solution undergoes a cascade
of period-doubling bifurcation. Figures 4(a)–4(e)
show the stable period-one orbit for kf = 1.3075 ×
10−3, period-two orbit for kf = 1.3085 × 10−3,
period-four orbit for kf = 1.3086 × 10−3, period-
eight orbit for kf = 1.30862 × 10−3 and period-
16 orbit for kf = 1.30864 × 10−3, respectively. A
chaotic orbit resulted from this cascade is presented
in Fig. 4(f). Chaotic oscillation is observed in the
region around kf ∈ [1.308640802 × 10−3, 1.52492 ×
10−3]. When kf continuously decreases from k5

f =
1.30792 × 10−3 and reaches k6

f = 7.18684 × 10−4,
a pair of complex conjugate multipliers 0.733855 ±
0.663588i pass across the unit circle from the inside
to the outside unit circle, so that the periodic solu-
tion encounters the torus bifurcation TR6 and loses
its stability. Thus, a quasi-periodic orbit arises from
this bifurcation. Figure 5 shows the projection of
a quasi-periodic solution at kf = 7.156 × 10−4.
When kf = 7.1 × 10−4, i.e. at low flow rate, we
also find a chaotic attractor with Lyapunov expo-
nents {0.004073, 0,−0.00064437,−2.2323}, which
is presented in Fig. 6. Numerical simulations in
Figs. 1–6 suggest that the flow rate kf has impor-
tant effects on bifurcations and dynamics of BZ
reaction model.
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Fig. 6. The projection of a chaotic trajectory for kf =

7.1 × 10−4.

5. Conclusion

Bifurcations of the BZ reaction model have been
carefully and rigorously studied. Fourth-order har-
monic balance method allowed us to obtain higher
accurate predictions on frequencies and amplitudes
for periodic solutions emerging from Hopf bifur-
cation. The explicit approximation expressions of
the periodic solutions are also presented. Numeri-
cal simulations show several dynamical bifurcations
emerging from Hopf bifurcation, including period-
doubling bifurcation, chaotic attractor resulting
from a cascade of period-doubling bifurcation, and
torus bifurcation. We can observe chaotic orbits at
both low and high flow rates, and the chaotic oscil-
lations at high flow rate resulting from a cascade
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of periodic-doubling bifurcation. Thus, we conclude
that the flow rate kf does play an important role
in the bifurcations of the model. All the results
enrich our understanding of complex oscillations in
BZ reaction model.
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