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Abstract. The uniqueness of absolute minimizers of the energy of a compressible, hyperelastic
body subject to a variety of dead-load boundary conditions in two and three dimensions is herein
considered. Hypotheses under which a given solution of the corresponding equilibrium equations
is the unique absolute minimizer of the energy are obtained. The hypotheses involve uniform
polyconvexity and pointwise bounds on derivatives of the stored-energy density when evaluated
on the given equilibrium solution. In particular, an elementary proof of the uniqueness result of
Fritz John [Comm. Pure Appl. Math. 25 (1972), 617–634] is obtained for uniformly polyconvex
stored-energy densities.

1. Introduction

In this manuscript we consider the uniqueness of absolute minimizers of the energy of a
compressible, hyperelastic body under dead loads. Although one does not always expect such
uniqueness, for example, when a thin rod is subjected to uniaxial compression there should be
more than one buckled minimizer, a result of Zhang [48] for the displacement problem shows that
there is exactly one absolute minimizer of the elastic energy for certain boundary displacements.

In addition to the displacement problem we also consider both the traction and the mixed
problem for energy functions that are uniformly polyconvex, that is, when n = 3, stored-energy
densities of the form

W (x,F) = ω(x)
p
|F|p + Φ(x,F, cof F, det F),

where ω(x) ≥ ωo > 0, p ≥ 3, N 7→ Φ(x,N) is convex, det F denotes the determinant of the 3
by 3 matrix F, cof F its cofactor matrix, and |F| the square-root of the sum of the squares of
the elements of F. Our main result, Theorem 4.2, shows (using elementary methods) that for
such energies any (weak) solution of the equilibrium equations that satisfies a certain pointwise
bound will be the unique absolute minimizer of the energy. Moreover, there can be no other
solution of the equilibrium equations that satisfies this bound.

We note, in Remark 4.3, that our proof of Theorem 4.2 is also valid when Φ is not globally
convex. If instead a weak solution of the equilibrium equations lies at a point of convexity
of Φ (see (4.16)) and satisfies the required pointwise bound, then that deformation must be a,
potentially nonunique, absolute minimizer of the energy. Theorem 4.2 therefore has implications
for stored-energies that admit phase transitions (see Ball and James [5] or, e.g., Grabovsky and
Truskinovsky [19] and the references therein).
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In the special case when the stored-energy density W of a homogeneous body B ⊂ Rn,
n = 2 or n = 3, is given by

W (F) = ωo
n
|F|n + Φ(F, det F), (1.1)

where ωo > 0 and Φ is convex, then our results show that if ue is a weak solution of the
equilibrium equations that satisfies (see (4.6)–(4.8) and Remark A.2)

||Λ(∇ue, det∇ue)||L∞(B) < ωo/(2n− 3), Λ(F, det F) := ∂

∂λ
Φ(F, λ)

∣∣∣
λ=det F

, (1.2)

then ue is the unique absolute minimizer of the elastic energy. Moreover, no other solution of
the equilibrium equations can satisfy (1.2)1. Furthermore, for the pure-displacement problem,
Theorem 4.2 also shows that the same results are valid if (1.2)1 is replaced by

||Λ(∇ue,det∇ue)− ν||L∞(B) < ωo/(2n− 3),

where ν ∈ R denotes an arbitrary constant.
For the displacement problem we obtain additional results. We first show, in Theorem 5.1,

that a result of Zhang [48] is a simple consequence of our main theorem; we prove that if an
equilibrium solution, ue, is sufficiently close to a homogeneous deformation (in the Sobolev space
W 1,∞), then ue is the unique absolute minimizer of the energy and there are no other equilibrium
solutions nearby.

We also consider, in Theorem 5.3, a uniqueness result of John [26], who proved that there is
at most one equilibrium solution with (sufficiently) small strain: E := 1

2 [(∇u)T∇u−I]. We use a
recent result of Šilhavý [37], which produces a polyconvex representative that is invariant under
rotations, to show that John’s result is a direct consequence of our proof of the above-mentioned
result of Zhang. We thus provide an elementary proof of a version1 of the result in [26] that
does not require the use and properties of BMO [27].

In §6 we present some examples of classical equilibrium solutions that satisfy the hypotheses
of our theorems. In particular we construct two explicit examples in 2-dimensions, one for a
mixed problem and one for a pure-traction problem, of homogeneous solutions that are each
the unique absolute minimizer of the energy when the stored-energy density is compressible neo-
Hookean. In §7 we briefly mention a recent alternative approach to the uniqueness of minimizers
due to Gao, Neff, Roventa, and Thiel [16].

Most of the prior literature on uniqueness in finite elasticity considers the uniqueness of equi-
librium solutions rather than energy minimizers. For example, results of Gurtin and Spector [23]
imply that there is at most one solution of the equilibrium equations that lies in any convex set
where the second variation of the energy is strictly positive. Knops and Stuart [28] (also see
Bevan [8] and Taheri [45]) have shown that, for a star-shaped body, a homogeneous deforma-
tion is the unique smooth equilibrium solution that satisfies a homogeneous pure-displacement
boundary condition whenever the energy is strictly quasiconvex at that deformation and globally
rank-one convex.

Alternatively, there are a number of results that establish the nonuniqueness of equilibrium
solutions for compressible materials.2 For example, Post and Sivaloganathan [32] (verifying a

1Our hypotheses on the stored-energy differs from that in [26]. See Remark 5.4.
2For interesting examples of nonuniqueness for both compressible and incompressible materials see, e.g., [2,

§9], [9, §5.8], [1, 7, 21, 22, 23, 32, 33], and the references therein.
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conjecture of John [25, 26]) proved that there are (at least) a countably infinite number of equi-
librium solutions for certain pure-displacement problems for an annulus. Antman [1] has shown
that, for the pure-traction problem, a thick spherical shell without loads has a second equilib-
rium solution corresponding to an everted deformation. Simpson and Spector [38] have proven
that, in addition to the homogeneous equilibrium solution, there are indeed two distinct buckled
equilibrium solutions for certain 2-dimensional isotropic bars subject to uniaxial compression.

We mention that there is an interesting result of Spadaro [42] for the pure-displacement
problem in 2-dimensions for constitutive relations of the form (1.1) with n = 2. Spadaro shows
that there must be at least two absolute minimizers of the energy to a certain boundary-value
problem when the body is a disk. However (as he notes), his construction is not compatible
with finite elasticity, since it requires negative Jacobians.

Finally, we note that a possible interesting extension, which we have not addressed, is a
uniqueness result for live loads.3

2. Preliminaries; The Nonlinear Problem

2.1. Preliminaries. We consider a body that for convenience we identify with the region B ⊂
Rn, n = 2 or n = 3, that it occupies in a fixed reference configuration. We assume that
B 6= ∅ is a connected, bounded, open set whose boundary, ∂B, is Lipschitz4 (see, e.g., [15]). A
deformation of B is a mapping that lies in the space

Def := {u ∈W 1,1(B;Rn) : det∇u > 0 a.e.},

where det F denotes the determinant of F ∈ Linn (the space of linear maps from Rn into Rn)
and for 1 ≤ p ≤ ∞, W 1,p(B;Rn) denotes the usual Sobolev space of (Lebesgue) measurable
(vector-valued) functions u ∈ Lp(B;Rn) whose distributional derivative, ∇u, is also contained
in Lp. We write δij for the Kronecker delta: thus,

δij :=
{

0 if i 6= j

1 if i = j.

We assume that the body is composed of a hyperelastic material whose stored-energy den-
sity W : B × Linn → [0,∞] with x 7→ W (x,F) (Lebesgue) measurable5 for every F ∈ Linn .
W (x,∇u(x)) gives the elastic energy stored at almost every point x ∈ B of a deformation
u ∈ Def. We assume that the response of the material is invariant under a change in observer
and hence that, for a.e. x ∈ B,

W (x,QF) = W (x,F) for every F ∈ Lin�n and Q ∈ Orth�n , (2.1)

where Lin�n denotes those F ∈ Linn with det F > 0 and Orth�n denotes those Q ∈ Lin�n that
satisfy QTQ = I (I ∈ Lin�n denotes the identity, i.e, Ia = a for all a ∈ Rn).

3See, e.g., [31, 34, 43], [9, §2.7], or [36, §13.3].
4This assumption allows for a piecewise C1 boundary, for example, a rectangle.
5In particular, the stored-energy density may therefore be piecewise continuous.
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We further assume that, for a.e. x ∈ B,
F 7→W (x,F) ∈ C(Linn ; [0,∞]) ∩ C1(Lin�n ;R�),

lim
|F|→∞

W (x,F) = lim
det F→0+

W (x,F) = +∞,

W (x,F) = +∞ if and only if det F ≤ 0,

where R� := [0,∞). The (Piola-Kirchhoff) stress is then the derivative

S(x,F) := ∂

∂FW (x,F) : B × Lin�n → Linn ,

for a.e. x ∈ B. We call the body homogeneous if the stored-energy function W is independent
of x. We call the reference configuration stress free if, for a.e. x ∈ B, S(x, I) = 0.

2.2. The Nonlinear Problem. We assume the body is subject to dead loads. We take

∂B = D ∪S with D and S relatively open and D ∩S = ∅.

If D 6= ∅ we assume that a function d ∈ C(D ;Rn) is prescribed; d will give the deformation of
D . If S 6= ∅ we assume that a function s ∈ L1(S ;Rn) is prescribed; for H n−1-a.e. x ∈ S ,
s(x) will give the surface force (per unit area, when n = 3, and per unit length, when n = 2)
exerted on the body, at the point x, by its environment. Finally, we suppose that a function
b ∈ L1(B;Rn) is prescribed; for a.e. x ∈ B, b(x) will give the body force (per unit volume, when
n = 3, and per unit area, when n = 2) exerted on the body, at the point x, by its environment.
Here, and in the sequel, H k denotes k-dimensional Hausdorff measure. The set of admissible
deformations will be denoted by

A := {u ∈ Def ∩W 1,n(B;Rn) ∩ C(B;Rn) : u = d on D}.

Remark 2.1. A result of Vodop′yanov and Gol′dšhtĕın [47] (see, also, [44, Theorem 4]) implies
that each u ∈ W 1,n(B;Rn) with strictly positive Jacobian has a continuous representative.
Thus, discontinuities such as cavitation (see, e.g., Ball [3]) are not allowed in this manuscript.

The total energy E of a deformation u ∈ A is defined by

E(u) :=
∫

B

[
W
(
x,∇u(x)

)
− b(x) · u(x)

]
dx−

∫
S

s(x) · u(x) dH n−1
x . (2.2)

Under suitable additional hypotheses on W one might hope to show that any u that is a mini-
mizer (local in an appropriate topology or global) of E has first variation zero, i.e.,

0 =
∫

B

[
S
(
x,∇u(x)

)
: ∇w(x)− b(x) ·w(x)

]
dx−

∫
S

s(x) ·w(x) dH n−1
x (2.3)

for all variations w ∈ Var, where

Var := {w ∈W 1,n(B;Rn) ∩ C(B;Rn) : w = 0 on D},

F : G := tr(FGT), tr M denotes the trace of M ∈ Linn , and MT denotes its transpose.
Moreover, one would then want to show that u is a classical solution of the equations of

equilibrium, that is,6 u ∈ C2(B;Rn) ∩ C1(B;Rn) ∩A satisfies

Div S
(
x,∇u(x)

)
+ b(x) = 0 for x ∈ B (2.4)

6If S = ∅, then u ∈ C2(B;Rn) ∩A suffices.
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and the traction boundary conditions

S
(
x,∇u(x)

)
n(x) = s(x) for x ∈ S . (2.5)

Unfortunately, such results7 have not been obtained for arbitrary minimizers. In general, in this
manuscript we will therefore assume that one or more solutions of (2.3) are given.

Remark 2.2. There are a number of well-known classical equilibrium solutions that are of
interest. Among these are:

(1) Homogeneous solutions (see Remarks 2.7 and 4.6, Proposition 4.5, and §6.2);
(2) Solutions obtained using the implicit function theorem (see Remark 5.2); and
(3) Radial solutions when the body in its reference configurations is an annulus or a thick

spherical shell (see §6.1).

Definition 2.3. We say that ue ∈ A is a weak equilibrium solution if E(ue) < +∞,

x 7→ S
(
x,∇ue(x)

)
∈ Ln′(B; Linn), n′ := n

n− 1 , (2.6)

ue satisfies (2.3) for all w ∈ Var, and if D = ∅,∫
B

[
ue(x)− x

]
dx = 0. (2.7)

If D = ∂B we will call ue a weak solution of the (pure) displacement problem. If S = ∂B we
will call ue a weak solution of the (pure) traction problem. Otherwise, we will refer to such a ue
as a weak solution of the (genuine) mixed problem.

Remark 2.4. When S = ∂B any translation of a weak equilibrium solution ue will satisfy
both (2.3) and (2.6). Equation (2.7) eliminates this nonuniqueness.

Remark 2.5. Our assumption that S ∈ Ln
′ is, in general, more stringent than expected for

an absolute minimizer u ∈ W 1,n of E. However, it is necessitated by (2.3) which requires
S : ∇w to be integrable for w ∈ Var ⊂ W 1,n. As will become evident, our conditions for
uniqueness, e.g., (4.6) and (4.7), may sometimes require a weak equilibrium solution ue to
satisfy ue ∈W 1,∞(B;Rn). See Remark 4.4.

Remark 2.6. Any classical solution of (2.4) and (2.5) is also a weak equilibrium solution.

Remark 2.7. Let the body be homogeneous and D 6= ∅. Fix Fe ∈ Lin�n , a ∈ Rn, and define
ue(x) := Fex+a for all x ∈ B. Then ue(x) = d(x) := Fex+a for all x ∈ D . If S 6= ∅ assume,
in addition, that s(x) := S(Fe)n(x) for H n−1-a.e. x ∈ S , where, for such x, n(x) denotes the
outward unit normal to the boundary. Then ue is an admissible deformation that satisfies both
the equilibrium equations (2.4) (with b ≡ 0) and the traction boundary conditions (2.5); thus
ue is a classical equilibrium solution.

Although it is not known if an arbitrary minimizer of the energy is a solution of the equi-
librium equations, it will be if the mapping happens to satisfy certain additional conditions. In
order to illustrate this we first formally define what we mean by a local minimizer.

7In general, one can only prove that a minimizer is a weak solution of alternative forms of the equilibrium
equations. See [4, Theorem 2.4] and the references therein. However, Lemma 2.9 shows that additional hypotheses
may imply that a minimizer is in fact a weak equilibrium solution.
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Definition 2.8. Let um ∈ A . We say that um is a weak relative minimizer8 of the energy E

provided that there exists a δ > 0 such that

E(um) ≤ E(um + w)

for all variations w ∈ Var∩W 1,∞(B;Rn) that satisfy ||w||L∞(B) + ||∇w||L∞(B) < δ.

The next lemma then illustrates a circumstance where such a um does indeed satisfy
the equilibrium equations. The proof follows from the mean-value theorem together with the
bounded convergence theorem (see, e.g., Ball [4, §2.4] or [12, §3.4.2]).

Lemma 2.9. Let um ∈ A ∩W 1,∞(B;Rn) be a weak relative minimizer of E that satisfies

det∇u > ε a.e. (2.8)

for some ε > 0. Suppose, in addition, that either

S ∈ C(B × Lin�) or S is bounded on compact subsets of B × Lin�. (2.9)

Then um is a weak equilibrium solution.

3. Uniform Polyconvexity

Let n = 2 or n = 3. Define
E2 := Lin2, E3 := Lin3×Lin3,

E �2 := Lin�2 , E �3 := Lin�3 ×Lin�3 .

We assume that the stored-energy density is uniformly polyconvex,9 that is, there is a constant
p ≥ n and functions ω : B → R� and Φ(n) : B × En × R� → R, R� := (0,∞), that satisfy, for
all F ∈ Lin� and a.e. x ∈ B,

W (x,F) = ω(x)
p
|F|p +

Φ
(2)(x,F,det F), if n = 2,

Φ(3)(x,F, cof F,det F), if n = 3,
(3.1)

where |F| :=
√

F : F,
(1) ω ∈ L∞(B) satisfies ω ≥ ωo for some constant ωo > 0;
(2) x 7→ Φ(n)(x,M, λ) is measurable for every M ∈ En and λ > 0; and, for a.e. x ∈ B,
(3) (M, λ) 7→ Φ(n)(x,M, λ) is convex on its domain and differentiable on E �n × R�.

Moreover, if the body is homogeneous we assume that both ω ≡ ωo and Φ(n) are independent of
x. Here, and in the sequel, cof F ∈ Lin�n denotes the tensor of cofactors of F ∈ Lin�n ; thus,

cof F = (det F)F−T for all F ∈ Lin�n .

In general, invariance under a change in observer, (2.1), does not imply that the function
Φ(n) must satisfy10

Φ(n)(x,QM, λ
)

= Φ(n)(x,M, λ
)

for every M ∈ E �n , Q ∈ Orth�n , λ ∈ R�, (3.2)

8See, e.g., Del Piero and Rizzoni [13] and the references therein for results concerning weak relative minimizers
in Elasticity. See Grabovsky and Mengesha [17, 18] for results concerning the relationship between such minimizers
and strong relative minimizers, although not for Elasticity.

9This terminology for (3.1) has previously been used in [40].
10For K ∈ Lin and M = (F,A) ∈ E3 we write KM := (KF,KA).
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and a.e. x ∈ B. In fact, Φ(n) is not uniquely determined by (3.1) (see, e.g., [12, p. 158]). A
particular choice of Φ(n) may satisfy (3.2), while another does not. However, a recent result
of Šilhavý [37] identifies a particular Φ(n) that satisfies (3.2). In §5.2 we will have occasion to
require that this Φ(n) be used in (3.1).

Let n = 2. For such stored-energy functions the Piola-Kirchhoff stress is given by

S(x,F) = ω(x)|F|p−2F + B(x,F) + Λ(x,F) cof F

for a.e. x ∈ B and every F ∈ Lin�2 , where

B(x,F) := ∂Φ(2)(x,F, λ)
∂F

∣∣∣∣
λ=det F

, Λ(x,F) := ∂Φ(2)(x,F, λ)
∂λ

∣∣∣∣
λ=det F

. (3.3)

Let n = 3. For stored-energy functions that satisfy (3.1)2 it follows that the Piola-Kirchhoff
stress satisfies, for a.e. x ∈ B, every F ∈ Lin�3 , and every H ∈ Lin3,

S(x,F) : H = H :
[
ω(x)|F|p−2F + B(x,F) + Λ(x,F) cof F

]
+ D(x,F) : K(F)[H], (3.4)

where

B(x,F) := ∂Φ(3)(x,F,A, λ)
∂F

∣∣∣∣∣A=cof F
λ=det F

, D(x,F) := ∂Φ(3)(x,F,A,det F)
∂A

∣∣∣∣∣
A=cof F

,

Λ(x,F) := ∂Φ(3)(x,F, cof F, λ)
∂λ

∣∣∣∣∣
λ=det F

, K(F)[H] := d(cof F)
dF [H].

(3.5)

4. Uniqueness of Minimizers

4.1. Equilibrium Solutions. In this subsection we consider the displacement, traction, and
mixed problems and obtain a uniqueness result that is valid for all of them. For the pure-
displacement problem D = ∂B, Var = W 1,n

0 (B;Rn) ∩ C(B;Rn), and we have the following
identities (see, e.g., [2] or [30, pp. 28–31]), for all z ∈W 1,n(B;Rn) and w ∈W 1,n

0 (B;Rn),∫
B
∇z : cof∇w dx = 0,

∫
B

det∇w dx = 0. (4.1)

For the mixed and traction problems (4.1)1 is satisfied by all w ∈ Var and z ∈ Traco, where11

Traco :=

{z ∈W
1,n(B;Rn) : z = 0 on S } if S 6= ∅

W 1,n(B;Rn) if D = ∂B,

i.e., those mappings that are equal to zero on the portion of the boundary where dead-load
tractions are prescribed.

Lemma 4.1. Assume that W is uniformly polyconvex. Let ue be a weak equilibrium solution.
Then, for any v ∈ A , z ∈ Traco, σ ∈ L∞(B; [0, 1]), and ν ∈ R (ν = 0 if D 6= ∂B)

E(v) ≥E(ue) +
∫

B
ω(x)

(1
2
[
1− σ(x)

]
|∇ue(x)|p−2|∇w(x)|2 + κp

p
σ(x)|∇w(x)|p

)
dx

+
∫

B

[
Λ
(
x,∇ue(x)

)
− ν

]
det∇w(x) dx + δn3

∫
B

Xe,z(x) : cof∇w(x) dx,
(4.2)

11The equality on the boundary is to be taken in the sense of trace.
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where w := v− ue, κp > 0 is given by Proposition A.1, and

Xe,z(x) := D
(
x,∇ue(x)

)
+ Λ

(
x,∇ue(x)

)
∇ue(x)−∇z(x). (4.3)

Proof. We prove the result when n = 3. The proof for n = 2 is similar. Suppose that W is
uniformly polyconvex. Let F,G ∈ Lin�3 and define H := G − F. For clarity of exposition we
suppress the x in our calculation. We note that the convexity of Φ(3) yields (for a.e. x ∈ B)

Φ̂(3)(G) ≥ Φ̂(3)(F) + B(F) : H + D(F) :
[
cof G− cof F

]
+ Λ(F)

[
det G− det F

]
, (4.4)

where Φ̂(3)(G) := Φ(3)(G, cof G, det G). If we now multiply (A.1), with a = G and b = F, by
ω/p and add the result to (4.4) we find, with the aid of (3.1)2, (3.4), (B.2), and (B.3), that, for
any σ ∈ [0, 1],

W (G) ≥W (F) + S(F) : H + ω

(1
2
[
1− σ

]
|F|p−2|H|2 + κp

p
σ|H|p

)
+ D(F) : cof H + Λ(F)

(
det H + F : cof H

)
.

(4.5)

Next, let ue be a weak equilibrium solution, v ∈ A , and define w := v− ue. Suppose that
σ ∈ L∞(B; [0, 1]). If we now take G = ∇v(x), F = ∇ue(x), and H = ∇w(x) in (4.5) and then
integrate the result over B and subtract (4.1)1, we conclude, with the aid of (2.2), (2.3), and
(4.3), that (4.2) is satisfied with ν = 0. Finally, if D = ∂B then (4.2) follows upon subtracting
ν times (4.1)2 from (4.2) with ν = 0. �

We now make use of Lemma 4.1 in order to establish the uniqueness of an energy minimizer
subject to certain constraints. We first recall that a mapping ue ∈ W 1,n(B;Rn) ∩ C(B;Rn)
is a weak equilibrium solution if det∇ue > 0 a.e., ue is a weak solution of the equations of
equilibrium (2.4) (see (2.3) on p. 5), and ue satisfies ue = d on D .

Theorem 4.2 (Uniqueness of Energy Minimizers). Assume that W is uniformly polyconvex.
Let ue be a weak equilibrium solution.

(a) If n = 2 suppose that ue satisfies, for some ν ∈ R (ν = 0 if D 6= ∂B) and a.e. x ∈ B,∣∣Λ(x,∇ue(x)
)
− ν

∣∣ ≤ ω(x)
∣∣∇ue(x)

∣∣p−2
. (4.6)

(b) If n = 3 suppose that ue satisfies, for some z ∈ Traco, ν ∈ R (ν = 0 if D 6= ∂B) and
a.e. x ∈ B,

2Γe,z(x) + βp
∣∣Λ(x,∇ue(x)

)
− ν

∣∣|∇ue(x)| ≤ ω(x)|∇ue(x)|p−2. (4.7)

Then ue is an absolute minimizer of E. Moreover, if, in addition, (4.6) or (4.7) is a strict
inequality on a set of positive measure, then ue is the unique absolute minimizer of E. Further,
there are no other weak equilibrium solutions that satisfy (4.6) or (4.7) with strict inequality on
a set of positive measure. Here Γe,z is the largest principal stretch of Xe,z given by (4.3), κp is
given by Proposition A.1, and

βp := 2
33/2

[
p

2κp

]1/(p−2)

. (4.8)

Proof. We will prove the result for the pure-displacement problem. The result for the mixed
and traction problems will follow from the same calculations with ν = 0. We first show that
E(v) ≥ E(ue) for all v ∈ A . Fix z ∈ Traco and ν ∈ R. We first note that, in view of Lemma 4.1,
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it suffices to show that there exists a measurable function σ : B → [0, 1] such that, for every
H ∈ Linn and a.e. x ∈ B,

ω|H|2
[(1− σ)

2 |∇ue|p−2 + κpσ

p
|H|p−2

]
+ (Λ− ν) det H + δn3

(
Xe,z : cof H

)
≥ 0. (4.9)

If n = 2 then (4.9) follows from (4.6), Hadamard’s inequality:

2|det H| ≤ |H|2,

and the choice σ ≡ 0. If n = p = 3 then (4.9) follows from (4.7), (4.8), Hadamard’s inequality
(see, e.g., [41, p. 408]):

33/2|det H| ≤ |H|3,
the cofactor inequality (B.5), and the choice

σ(x) =
∣∣Λ(x,∇ue(x)

)
− ν

∣∣
ω(x)κ3

√
3

.

Now assume that n = 3 and p > 3. Then Hadamard’s inequality and (B.5) reduce (4.9) to
showing that there exists a measurable function σ : B → [0, 1] such that, for every H ∈ Lin3
and a.e. x ∈ B,

ω

[(1− σ)
2 |∇ue|p−2 + κpσ

p
|H|p−2

]
− |Λ− ν|

33/2 |H| − Γe,z ≥ 0, (4.10)

where Γe,z ≥ 0 is the largest principal stretch of Xe,z given by (4.3).
Before we determine σ such that (4.7) implies (4.10), we first consider the implications of

σ(xo) = 0 at some xo ∈ B. We note that (4.10) with σ(xo) = 0 is satisfied for every H ∈ Lin3
if and only if ∣∣Λ(xo,∇ue(xo)

)
− ν

∣∣ = 0 and 2Γe,z(xo) ≤ ω(xo)|∇ue(xo)|p−2.

We therefore conclude that:
(i) If |Λ(xo,∇ue(xo))− ν| = 0 at some xo ∈ B, then (4.7) yields (4.10) with σ(xo) = 0.

(ii) If |Λ(xo,∇ue(xo))− ν| 6= 0 for some xo ∈ B, then σ(xo) 6= 0.
Next, since ω(x) ≥ ωo > 0 and det∇ue > 0 a.e., we can fix xo ∈ B and assume that

ω(xo)|∇ue(xo)| > 0,
∣∣Λ(xo,∇ue(xo)

)
− ν

∣∣ > 0, and (hence) σ(xo) ∈ (0, 1]. (4.11)

Define t := |H| ≥ 0. Then (4.10) can be viewed as

f(t) := atp−2 − bt+ c ≥ 0 for all t ≥ 0, (4.12)

where, in view of (4.7), c = f(0) ≥ 0, b ≥ 0, and a > 0 (since σ > 0). A necessary and
sufficient condition for (4.12) to be satisfied is that f be nonnegative at the unique tm that
satisfies f ′(tm) = 0, i.e., a(p − 2)tp−3

m = b. If we substitute tm into (4.12) we find that (4.10) is
a consequence of

f(tm) = c− b
(
p− 3
p− 2

)[
b

a(p− 2)

]1/(p−3)
≥ 0

or, equivalently,

2Γe,z + δp

[ |Λ− ν|p−2

ωσ

]1/(p−3)
≤ ω|∇ue|p−2(1− σ), (4.13)
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where

δp := 2(p− 3)[
33/2(p− 2)

](p−2)/(p−3)

[
p

κp

]1/(p−3)
. (4.14)

Next, define

σ := ω|∇ue|p−2 − 2Γe,z
(p− 2)ω|∇ue|p−2 > 0, 1− σ = 2Γe,z + (p− 3)ω|∇ue|p−2

(p− 2)ω|∇ue|p−2 > 0,

where σ ∈ (0, 1) follow from Γe,z ≥ 0, (4.7), and (4.11). With this choice of σ inequality (4.13)
becomes

2Γe,z + δp

[(p− 2)|∇ue|p−2|Λ− ν|p−2

ω|∇ue|p−2 − 2Γe,z

]1/(p−3)
≤ 2Γe,z + (p− 3)ω|∇ue|p−2

(p− 2) ,

which, after some algebra, reduces to[
δp

(p− 2)
(p− 3)

](p−3)/(p−2)
(p− 2)1/(p−2)|∇ue||Λ− ν| ≤ ω|∇ue|p−2 − 2Γe,z. (4.15)

However, (4.8) and (4.14) yield

(p− 2)1/(p−2)
[
δp

(p− 2)
(p− 3)

](p−3)/(p−2)
= βp

which shows that (4.15) and (4.7) are identical.
We next note that it is clear that if (4.6) or (4.7) is a strict inequality on a set of positive

measure then (4.2) and the above proof yield E(v) > E(ue) unless ∇v = ∇ue a.e. Since B is
open and connected it follows that v = ue + a a.e. for some a ∈ Rn. If D 6= ∅, then ue = v = d
on the nonempty, relatively open set D , while if D = ∅, then (see (2.7))∫

B
(ue − v) dx = 0.

In either case a = 0.
Finally, if we suppose that ve 6≡ ue is a weak equilibrium solution that satisfies (4.6) or

(4.7) with strict inequality on a set of positive measure (and with ue replaced by ve), then the
above argument yields E(ue) > E(ve), which is a contradiction. �

Remark 4.3. Suppose we replace the assumption that (M, λ) 7→ Φ(n)(x,M, λ) is (globally)
convex with the weaker assumption that, for a.e. x ∈ B,(

Me(x), det∇ue(x)
)

is a point of convexity of (M, λ) 7→ Φ(n)(x,M, λ), (4.16)

where Me(x) = ∇ue(x) if n = 2 or Me(x) = (∇ue(x), cof∇ue(x)) if n = 3. Then it is clear
from the proof of Theorem 4.2 that any weak equilibrium solution ue that satisfies (4.16) and
either (4.6) or (4.7) is an absolute minimizer of E. Theorem 4.2 therefore has implications for
stored-energies that admit phase transitions (see Ball and James [5] or, e.g., Grabovsky and
Truskinovsky [19] and the references therein); while one would not expect uniqueness of mini-
mizers for such constitutive relations, Theorem 4.2 yields conditions under which an equilibrium
solution is an absolute minimizer of the energy.
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Remark 4.4. (a) Suppose that p = n and, for a.e. x,

|Λ(x,F)| ≥ ϕ(F), where ϕ(F)→∞ as |F| → ∞. (4.17)

Then any admissible deformation u ∈ A that satisfies (4.6) or (4.7) must have additional
regularity, i.e., u ∈W 1,∞(B;Rn).

(b) Suppose that p ≥ n and, for a.e. x,

|Λ(x,F)| ≥ ϕ(F), where ϕ(F)→∞ as det F→ 0+. (4.18)

Then any u ∈ A that satisfies (4.6) or (4.7) will satisfy, for some ε > 0,

det∇u(x) > ε for a.e. x ∈ B.

The next result, which is an immediate consequence of Remark 2.7 and Theorem 4.2,
shows that, for the genuine mixed problem on a homogeneous body with Φ(n) continuously
differentiable, the set of homogeneous deformations that satisfies (4.7) with strict inequality and
z ≡ 0 or (4.6) with strict inequality is an open subset of Linn

�.

Proposition 4.5. Let both D and S be nonempty. Assume that the body is homogeneous and
that W is uniformly polyconvex with Φ(n) continuously differentiable.

(a) If n = 2 suppose that Fe ∈ Lin�2 satisfies

|Λ(Fe)| < ωo|Fe|p−2. (4.19)

(b) If n = 3 suppose that Fe ∈ Lin�3 satisfies

2Γe + βp|Λ(Fe)||Fe| < ωo|Fe|p−2 (4.20)

where Γe is the largest principal stretch of Xe := D(Fe) + Λ(Fe)Fe.
Suppose further that b ≡ 0, d is given by d(x) := Fex + a for some a ∈ Rn and all x ∈ D , and
s is given by s(x) := S(Fe)n(x) for x ∈ S , where n(x) denotes the outward unit normal to the
boundary (for H n−1-a.e. x ∈ S ). Then the weak equilibrium solution ue(x) := Fex + a is the
unique absolute minimizer of the energy E. Moreover, there does not exist a weak equilibrium
solution ve 6≡ ue that satisfies (4.19) or (4.20) with Fe replaced by ∇ve(x).

Remark 4.6. Proposition 4.5 can be viewed as a simple analogue, for the mixed problem, of the
well-known result of Knops and Stuart [28]. Consider a homogeneous star-shaped body T . Fix
Fe ∈ Linn

� and consider the pure-displacement problem: S = ∅ with d(x) := Fex for x ∈ ∂T .
Then results in [28] show that, in the absence of body forces, there is at most one deformation
ue ∈ C2(T ;Rn)∩C1(T ;Rn)∩A that satisfies the equilibrium equations (2.4) provided that the
stored-energy function W is strictly quasiconvex at Fe and (globally) rank-one convex. Similarly,
Bevan [8] has shown that there is at most one weak relative minimizer um ∈ C1(T ;Rn)∩A for
certain stored-energy functions W (F) = Ψ(F) + h(det F) with h convex, Ψ strictly quasiconvex,
and both functions having appropriate growth.

4.2. Weak Relative Minimizers. We now assume that we are given an admissible deformation
um that is a weak relative minimizer (see Definition 2.8) rather than an equilibrium solution.
Then the additional hypotheses of Lemma 2.9 allow us to conclude that um is a weak equilibrium
solution and so we can then apply the results from the previous subsection. The next result
follows directly from Lemma 2.9 and Theorem 4.2.



12 J. SIVALOGANATHAN AND S. J. SPECTOR

Proposition 4.7. Let um ∈ A ∩ W 1,∞(B;Rn) be a weak relative minimizer of E that satisfies
(2.8) and either (4.6) or (4.7) with strict inequality on a set of positive measure. Suppose,
in addition, that S satisfies (2.9). Then um is a weak equilibrium solution that is the unique
absolute minimizer of E.

Remark 4.4 together with the above proposition then gives us the following result.

Corollary 4.8. Assume that p = n. Let um ∈ A be a weak relative minimizer of E that satisfies
(4.6) or (4.7) with strict inequality on a set of positive measure. Suppose, in addition, that S
satisfies (2.9) and that Λ satisfies (4.17) and (4.18). Then um is a weak equilibrium solution
that is the unique absolute minimizer of E.

5. Further results for the Displacement Problem: a Theorem of Zhang and a
Theorem of John

5.1. A Theorem of Zhang. We now present a result of Zhang [48] who showed that, in 3-
dimensions for the pure-displacement problem, there is at most one equilibrium solution ue that
is uniformly close, in W 1,∞, to a given homogeneous deformation and, moreover, that ue must
then be the minimizer of the energy obtained by both the direct method of the calculus of
variations and the implicit function theorem.

Theorem 5.1 (Zhang [48]). Suppose D = ∂B and that W is homogeneous and uniformly
polyconvex.12 Fix Fo ∈ Lin�. Assume that (M, λ) 7→ Φ(n)(M, λ) is continuously differentiable
at (Fo,det Fo) if n = 2 or (Fo, cof Fo,det Fo) if n = 3. Then there exists a δ = δ(Fo) > 0 such
that any weak equilibrium solution ue that satisfies∥∥∇ue − Fo

∥∥
L∞(B) < δ (5.1)

is a strict absolute minimizer of E. Consequently, there is at most one weak equilibrium solution
that satisfies (5.1).

Remark 5.2. The main difficulty is showing that there are any weak equilibrium solutions,
especially solutions that satisfy (5.1). However, in this instance and with suitable additional
assumptions one can make use of the implicit function theorem to get classical solutions of the
equations of equilibrium (2.4) (see Zhang [48]). In particular, if one assumes that the boundary
is sufficiently smooth, and one replaces b with εb and the boundary condition u = d with

u(x) = Fox + εd(x) for x ∈ ∂B,

where b and d are sufficiently smooth, then results of Valent [46] (see, also, [9, Chapter 6] or
[36, §20.9]) yield the existence of a classical solution of the equilibrium equations for small ε.

Proof of Theorem 5.1. We prove the result when n = 3. The proof for n = 2 is similar. For
clarity of exposition, we suppress the variable x as well as the “almost every x” that should
accompany most of our inequalities. Fix Fo ∈ Lin� and assume the hypotheses of the theorem.
We will show that, if δ < 1

2 |Fo| in (5.1), then the right-hand side of (4.7) is bounded away from

12Zhang [48] instead assumes that W (F) = a|F|p + b| cof F|q + Φ(F, cof F,det F) with a > 0, b > 0, p ≥ 2,
q ≥ p/(p− 1), and Φ convex.
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zero, while the left-hand side of (4.7) goes to zero as δ approaches zero. This will allow us to
apply Theorem 4.2 to obtain the desired uniqueness.

Define
ε := ωo|Fo|p−2

2p−1[(2 + βp)|Fo|+ 1
] , (5.2)

where βp is given by (4.8). Then in view of the continuity of D and Λ at Fo there exists a
δ = δ(Fo, ε) > 0 such that, for G ∈ Lin�3 ,

|G− Fo| < δ =⇒ |Λ(G)− Λ(Fo)| < ε, |D(G)−D(Fo)| < ε. (5.3)

Without loss of generality, we assume that

2δ < |Fo|. (5.4)

Let ue be a weak equilibrium solution that satisfies (5.1) with δ given in (5.3)–(5.4). We
note that by the triangle inequality, (5.1), and (5.4)

2|Fo| ≤ 2|Fo −∇ue|+ 2|∇ue| ≤ |Fo|+ 2|∇ue|,

2|∇ue| ≤ 2|∇ue − Fo|+ 2|Fo| ≤ 3|Fo|, (5.5)

and hence, in particular,
ωo|Fo|p−2 ≤ ωo2p−2|∇ue|p−2. (5.6)

Next, by the triangle inequality, (5.1), (5.3) with G = ∇ue, and (5.5),∣∣∣[D(∇ue) + Λ(∇ue)∇ue
]
−
[
D(Fo) + Λ(Fo)∇ue

]∣∣∣
≤
∣∣D(∇ue)−D(Fo)

∣∣+ ∣∣[Λ(∇ue)− Λ(Fo)]∇ue
∣∣ < ε(1 + 2|Fo|).

(5.7)

Finally, define
ν := Λ(Fo), z(x) := D(Fo)x + Λ(Fo)ue(x) (5.8)

and note that (5.7)1 is the norm of Xe,z given by (4.3). Therefore, (5.1), (5.3) with G = ∇ue,
(5.5), (5.7), and (5.8), together with (B.5) (Γe,z ≤ |Xe,z|), yield

2Γe,z + βp
∣∣Λ(∇ue)− ν

∣∣|∇ue| < 2ε
[
(2 + βp)|Fo|+ 1

]
. (5.9)

The desired uniqueness now follows (5.2), (5.6), (5.9), and Theorem 4.2. �

5.2. A Theorem of John. We next show that our results also imply a result of John [26] who
showed that, in 3-dimensions, there is at most one solution of the pure-displacement problem
with small strain E := 1

2 [(∇u)T∇u− I].
We first recall that Šilhavý [37] identifies a particular Φ(n) that satisfies (see (3.2))

Φ(n)(QM, λ
)

= Φ(n)(M, λ
)

for every M ∈ E �n , Q ∈ Orth�n , λ ∈ R�, (5.10)

when W is homogeneous. Suppose that this Φ(n) is used in (3.1). It follows from (5.10) that the
derivatives of Φ(n) (see (3.3)2 and (3.5)3,2) satisfy, for every F ∈ Lin�n and Q ∈ Orth�n ,

Λ(QF) = Λ(F), D(QF) = QD(F).

Standard representation theorems (see, e.g., [9, Theorems 3.3-1 and 4.2-1] or [20, §25, §27] and
[36, Theorem 8.3.3]) then yield functions13 Λ∗ : Psymn → R and D∗ : Psym3 → Sym3 that

13We write Symn for those H ∈ Linn that satisfy H = HT; Psymn denotes those H ∈ Symn that are strictly
positive definite.
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satisfy, for every F ∈ Lin�n ,

Λ(F) = Λ∗
(
FTF

)
, D(F) = FD∗

(
FTF

)
. (5.11)

John’s theorem then follows from (5.11) and our proof of Zhang’s theorem.

Theorem 5.3 (John [26]). Let D = ∂B and let W be homogeneous and uniformly polyconvex.
Suppose that Λ satisfies (5.11)1 with Λ∗ continuous at I. If n = 3 suppose, in addition, that D
satisfies (5.11)2 and that D∗ is continuous at I with D∗(I) = ξI for some ξ ∈ R. Then there
exists a δ > 0 such that there is at most one weak equilibrium solution ue that satisfies∥∥(∇ue)T∇ue − I

∥∥
L∞(B) < δ. (5.12)

Moreover, if such a ue exists it is a strict absolute minimizer of E.

Remark 5.4. The corresponding theorem in [26] does not assume polyconvexity.14 Instead,
John assumes that the stored-energy function W ∈ C3(Lin3;R) satisfies15

W (F) = µ|E|2 + 1
2λ(tr E)2 +O(|E|3), (5.13)

where µ > 0 and λ > 0 denote the Lamé moduli and E := 1
2 [FTF− I]. The proof in [26] makes

use of the properties of BMO developed by John and Nirenberg [27] rather than the elementary
techniques used herein.

Remark 5.5. Let n = 3 and suppose that W is isotropic. Then results of Šilhavý [37] yield a Φ(3)

that is isotropic. It follows that the corresponding D is isotropic and hence, by the representation
theorem for isotropic tensor-valued functions, D(F) = φ1(B)I + φ2(B)B + φ3(B)B2, where
B := FFT and φi : Psym3 → R. Thus, D∗(I) = D(I) = ξI follows from isotropy. Whether
or not W is isotropic, one can show that the assumption S(I) = 0, which is implicit in (5.13),
yields B(I)−D(I) = ηI for some η ∈ R.

Proof of Theorem 5.3. We prove the result when n = 3. The proof for n = 2 is similar. Assume
the hypotheses of the theorem. We will show that, if δ < 1

2 in (5.12), then the right-hand side of
(4.7) is bounded away from zero, while the left-hand side of (4.7) goes to zero as δ approaches
zero. This will allow us to once again apply Theorem 4.2 to obtain the desired uniqueness.

Define
ε := ωo

2(4 + βp)
, (5.14)

where βp is given by (4.8). Then, in view of the continuity of Λ∗ and D∗ at I and the fact that
D∗(I) = ξI, there exists a δ = δ(ε) > 0 such that, for C ∈ Psym3,

|C− I| < δ =⇒ |Λ∗(C)− Λ∗(I)| < ε, |D∗(C)− ξI| < ε. (5.15)

Without loss of generality, we assume that

2δ < 1. (5.16)

14The proof in [26, Eqns. (8)–(11)] is also not compatible with W (F) = +∞ when det F = 0.
15More generally, it is not difficult to show that the results in [26] are valid for any W ∈ C3(Linn ;R) with

S(I) = 0 and C(I) strongly elliptic, where C(F) := ∂S/∂F here denotes the elasticity tensor. In particular, for
a W that satisfies (5.13), µ > 0 and µ + λ > 0 suffice. See, e.g., [9, Theorem 4.10.2] for examples of polyconvex
energies that are consistent with (5.13).
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Let ue be a weak equilibrium solution that satisfies (5.12) with δ given in (5.15)–(5.16). We
note that, by the triangle inequality, (5.12), (5.16), and the Cauchy-Schwarz inequality,

2
√

3 = 2|I| ≤ 2|I− (∇ue)T∇ue|+ 2|(∇ue)T∇ue| < 1 + 2|∇ue|2,

|∇ue|2 = I :
[
(∇ue)T∇ue − I + I

]
≤
√

3
∣∣(∇ue)T∇ue − I

∣∣+ 3 < 4, (5.17)

and hence, in particular,
ωo < ωo|∇ue|p−2. (5.18)

Next, by the triangle inequality, (5.12), (5.15) with C = (∇ue)T∇ue, and (5.17),∣∣∣[∇ueD∗
(
(∇ue)T∇ue

)
+ Λ∗

(
(∇ue)T∇ue

)
∇ue

]
−
[
ξ∇ue + Λ∗(I)∇ue

]∣∣∣
≤
∣∣∣∇ue

[
D∗
(
(∇ue)T∇ue

)
− ξI

]∣∣∣+ ∣∣∣[Λ∗((∇ue)T∇ue
)
− Λ∗(I)

]
∇ue

∣∣∣ < 4ε.
(5.19)

Finally, define
ν := Λ∗(I), z(x) :=

[
ξ + Λ∗(I)

]
ue(x) (5.20)

and note that, in view of (5.11) and the fact that D∗(I) = ξI, (5.19)1 is the norm of Xe,z given
by (4.3). Then (5.11), (5.12), (5.15) with C = (∇ue)T∇ue, (5.17), (5.19), and (5.20), together
with (B.5) (Γe,z ≤ |Xe,z|), yield

2Γe,z + βp
∣∣Λ(∇ue)− ν

∣∣|∇ue| < 2ε(4 + βp). (5.21)

The desired uniqueness now follows (5.14), (5.18), (5.21), and Theorem 4.2. �

6. Examples

6.1. An Application of Theorem 5.1 to an Annular Region. Fix b > a > 0 and let
B := {x ∈ Rn : a < |x| < b}, where n = 2 or n = 3. Suppose that the deformation u is
prescribed on both the inner and outer boundary, i.e., u(x) = νx when |x| = a and u(x) = λx
when |x| = b, where 0 < νa < λb. Then for a large class of homogeneous, isotropic, stored-
energy functions it has been shown (see [3, 39]) that there is a unique minimizer of the energy
among all radial deformations, i.e., deformations that satisfy

ur(x, ν, λ) = r(R, ν, λ)
R

x, R := |x|

for some absolutely continuous, strictly increasing function R 7→ r(R, ν, λ). Moreover, it turns
out that ur is a classical solution of the equilibrium equations. In addition, the continuous
dependence of a solution (and its derivative) of a second-order ordinary differential equation on
its initial data can be used to show that

ur(ν, λ,x)→ νx uniformly in C1( B;R2) as λ→ ν.

Therefore such solutions satisfy (5.1) with Fo = νI. Consequently, Theorem 5.1 implies that
when the radial minimizer of the energy, ur, is sufficiently close (in C1) to νx, it is the unique
absolute minimizer of the energy among all admissible deformations, not just the radial ones.

For compressible neo-Hookean materials (see (6.1)) in 2-dimensions, a more general result
has been obtained by Iwaniec and Onninen [24] (see also [41]) who proved that the radial min-
imizer, ur, is the unique absolute minimizer of the energy among all admissible deformations,
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whether or not ur is close to a homogeneous deformation. However, results of Post and Sivalo-
ganathan [32], which verified a long standing conjecture of John [25, 26], demonstrated that, for
compressible neo-Hookean materials in 2-dimensions, there are (at least) a countable number of
distinct, nonradial, classical solutions of the equilibrium equations. The solutions in [32, §4] are
of the form

u(x) = r(R)
R

[
cos
(
Θ(R)

)
− sin

(
Θ(R)

)
sin
(
Θ(R)

)
cos
(
Θ(R)

)]x, R := |x|,

where r(a) = νa, r(b) = λb, Θ(a) = 0, Θ(b) = 2nπ for any nonzero integer n (n = 0 yields the
radial solution). An extension of this result to all even dimensions can be found in [35].

6.2. Examples in 2-Dimensions. Let n = 2. We will herein restrict our attention to com-
pressible neo-Hookean materials, i.e., constitutive relations of the form:

W (F) = ωo
2 |F|

2 + h(det F), S(F) = ωoF + h′(det F) cof F, (6.1)

where ωo > 0 denotes a constant and h ∈ C2(R�;R�) satisfies

h′(1) = −ωo, h′′(1) > 0, h′′ ≥ 0, lim
t→0+

h(t) = +∞. (6.2)

We will use Proposition 4.5 to construct two explicit examples, one for a mixed problem and
one for a pure-traction problem, of homogeneous equilibrium solutions that are each the unique
absolute minimizer of the energy when the stored-energy density is given by (6.1) and (6.2).

Let the body, in its reference configuration, occupy the rectangle B = (−R,R) × (−L,L)
for some R > 0 and L > 0. Fix λ > 1 and consider homogeneous deformations of the form

uh(x, y) =
[
αx
λy

]
, (6.3)

where α > 0. Consider the functional

E(α) = ωo
2 (α2 + λ2) + h(αλ). (6.4)

Our hypotheses on h imply that E ∈ C(R�;R�) blows up at 0 and +∞ and hence that E achieves
its infimum at some α = α(λ) > 0. Since

E ′(α) = ωoα+ λh′(αλ) = 0, E ′′(α) = ωo + λ2h′′(αλ) > 0, (6.5)

we conclude from the strict convexity of E that α = α(λ) is unique and satisfies (6.5)1 (which
is the condition that the sides of the rectangle x = ±R are free of tractions). We now have the
following result.

Proposition 6.1. Let λ > 1, B = (−R,R)× (−L,L) ⊂ R2, and

E(u) :=
∫ L

−L

∫ R

−R
W
(
∇u(x, y)

)
dx dy,

where W is given by (6.1)–(6.2). Then the unique absolute minimizer of E among deformations
u ∈ A with

d(x,−L) :=
[
αx
−λL

]
, d(x, L) :=

[
αx
λL

]
, −R < x < R, (6.6)
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is the homogeneous deformation uh given by (6.3) with α = α(λ) given by (6.5)1. Moreover,
there are no other weak equilibrium solutions ve that satisfy

|h′(det∇ve)| < ωo a.e.

Remark 6.2. The existence theory of Ball and Murat [6] can be applied to (6.1)–(6.2). Thus,
their minimizer is uh.

Proof of Proposition 6.1. It is clear that uh ∈ A is a classical equilibrium solution that satisfies
the displacement boundary condition uh = d, where d is given by (6.6). Therefore, in view of
Proposition 4.5, (6.2)1, and (6.5)1 all we need to show is that

α(λ) < λ for all λ > 1. (6.7)

If we differentiate (6.5)1 with respect to λ we find, with the aid of (6.1)–(6.2), that
dα
dλ = −h

′(αλ) + αλh′′(αλ)
ωo + λ2h′′(αλ) . (6.8)

Consequently,

θ(λ) := λ2 d
dλ

[
α

λ

]
= − 2αλh′′(αλ)

ωo + λ2h′′(αλ) ≤ 0, (6.9)

where we have made use of (6.1)–(6.2) and (6.5)1. Moreover, when λ = 1 it follows that α = 1
and so, in view of (6.1)–(6.2) and (6.9), θ(1) < 0, which together with (6.9) yields (6.7). �

Next, instead of the displacement boundary condition on the top and bottom of the rectangle
we apply tractions. For the deformation uh (with α = α(λ)) we will specify (cf. (6.4))

S(λ) = ωoλ+ αh′
(
λα(λ)

)
> 0. (6.10)

We note that S(1) = ωo + h′(1) = 0. Then we differentiate (6.10) with respect to λ and make
use of (6.8), (6.5)1, and (6.7) to conclude that

dS
dλ = ωo + α2h′′ + dα

dλ
[
h′ + αλh′′

]
= (ωo + α2h′′)(ωo + λ2h′′)− (h′ + αλh′′)2

ωo + λ2h′′

= ω2
o(λ2 − α2) + ωoλ

2(3α2 + λ2)h′′

λ2(ωo + λ2h′′) > 0,

where we have written h′ for h′(αλ) and h′′ for h′′(αλ). Thus, we can consider λ as a function
of S, i.e., for each S > 0 there is a unique λ = λ(S) > 1 that satisfies (6.10). Proposition 4.5
and the proof of Proposition 6.1 then yield the following result.

Proposition 6.3. Let S > 0, B = (−R,R)× (−L,L) ⊂ R2, and

E(u) :=
∫ L

−L

∫ R

−R
W
(
∇u(x, y)

)
dx dy − S

∫ R

−R

[
u2(x, L) + u2(x,−L)

]
dx,

where W is given by (6.1)–(6.2). Then the unique absolute minimizer of E among deformations
u ∈ A that satisfy ∫ L

−L

∫ R

−R
u(x, y) dx dy = 0
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is the homogeneous deformation uh given by (6.3), where α = α(λ) is given by (6.5)1 and
λ = λ(S) is the unique solution of (6.10). Moreover, there are no other weak equilibrium
solutions ve that satisfy

|h′(det∇ve)| < ωo a.e. (6.11)

Remark 6.4. There is a second homogeneous equilibrium solution, which does not satisfy (6.11),
to this traction problem. The solution can be obtained by starting with the homogeneous
deformation vh(x, y) = [−αx,−λy]T, where α = α(λ) is still given by (6.5)1, but λ ∈ (0, 1)
instead satisfies

−S = ωoλ+ αh′(αλ) < 0.

There may also be equilibrium solutions that exhibit buckling.

7. An Alternate Approach

Recently, Gao, Neff, Roventa, and Thiel [16] have established an interesting alternative
approach to uniqueness. Assuming the stored-energy density, W , is homogeneous and invariant
under a change in observer, a standard result yields a function16 Ŵ ∈ C1(Psymn) that satisfies
Ŵ (C) = W (F), where C := FTF. The second Piola-Kirchhoff stress tensor K : Psymn → Symn

is defined by

K(C) := 2dŴ
dC (C) = F−1S(F).

The proof in [16, Proposition 2.1] implies17 the following:

Proposition 7.1. Let ue ∈ A be a weak solution of the equilibrium equations. Define Ce(x) :=
[∇ue(x)]T[∇ue(x)]. Suppose that, for a.e. x ∈ B,

(1) Ce(x) is a point of convexity of Ŵ ; and
(2) K(Ce(x)) is positive semi-definite.

Then ue is an absolute minimizer of E. Suppose, in addition, that D 6= ∅, for a.e. x ∈ B,
Ce(x) is a point of strict convexity of Ŵ , and ue ∈ C1(B;Rn) satisfies det∇ue > 0 on B, then
ue is the unique absolute minimizer of E.

In particular, when Ŵ is convex on its entire domain, Psymn, then one only needs to
consider the sign of the eigenvalues of the second Piola-Kirchhoff stress tensor K. The main
difficulty with Proposition 7.1 is the required convexity of the function C 7→ Ŵ (C). Such an
assumption is independent of the polyconvexity of W ; it is neither necessary nor sufficient for
the existence18 of minimizers. A minor additional problem is the smoothness assumption on ue
that is required for uniqueness. However, when Ŵ is in fact convex, Proposition 7.1 may yield
results that are better than those produced by Theorem 4.2.

16Recall that Psymn denotes the set of strictly positive-definite, symmetric C ∈ Linn.
17The uniqueness of the absolute minimizer also requires a result of Ciarlet and Mardare [10, Theorem 2.1].
18However, see [11] where the implicit function theorem is used to obtain existence for small data.
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Appendix A. An Optimal Constant

We have made use of a variant of a result of Evans [14, pp. 248–250].

Proposition A.1. Let p ∈ [2,∞). Then there exists a constant κp ∈ [22−p, p21−p] such that

|a|p ≥ |b|p + p|b|p−2b · (a − b) + σκp|a − b|p + (1− σ)p2 |b|
p−2|a − b|2 (A.1)

for all a,b ∈ Rn and σ ∈ [0, 1].

Remark A.2. If p = 2 then (A.1) reduces to |a|2 = |b|2 + 2b · (a − b) + |a − b|2; thus κ2 = 1.
Also, it follows from [29] that κ3 = 2−

√
2.

Proof of Proposition A.1 (cf. the proof of Proposition A.1 in [29]). In view of the previous re-
mark we assume that p > 2. We note that when σ = 1 this result can be found in Müller
et al. [29, Appendix]. We will prove the result when σ = 0. Inequality (A.1) will then follow
upon taking a convex combination of the resulting inequalities.

Let σ = 0 and p > 2. If b = 0 then (A.1) is clear. By homogeneity we may assume |b| = 1.
Therefore, (A.1) will follow if we show that, for all a,b ∈ Rn with |b| = 1,

|a|p ≥ 1 + pb · (a − b) + p

2 |a − b|2. (A.2)

Suppose now that n = 1 and define t := sgn(b)(a− b). Then (A.2) reduces to the inequality

φ(t) := |t+ 1|p − 1− pt− p

2 t
2 ≥ 0. (A.3)

If we differentiate φ we find that, for t 6= −1,

φ′(t) = p(t+ 1)
[
sgn(t+ 1)|t+ 1|p−2 − 1

]
.

The only possible solutions of φ′(t) = 0 are t = −1 and t = 0. Since φ(0) = 0, φ(−1) =
(p− 2)/2 > 0, and φ is a continuous function that blows up at ±∞ inequality (A.3) follows.

Next, let σ = 0, p > 2, |b| = 1, and n > 1. We write a = b+ te and α = e ·b, where |e| = 1
and α ∈ [−1, 1]. Then (A.2) reduces to

θ(t, α) :=
[
1 + 2αt+ t2

]p/2 − 1− pαt− p

2 t
2 ≥ 0 (A.4)

for all t ∈ R and α ∈ [−1, 1]. When α = ±1 the vectors a and b are colinear; (A.4) then follows
from the above argument with n = 1. For fixed t we differentiate θ with respect to α and set
the result equal to zero to conclude that α = −t/2. However, θ(t,−t/2) = 0, which establishes
(A.4) and completes the proof of (A.1). �

Appendix B. Determinants and Cofactors

B.1. The Determinant of a Sum. A standard identity19 is for every F,H ∈ Linn ,

det(H + F) =
{

det F + H : cof F + det H, if n = 2,
det F + H : cof F + F : cof H + det H, if n = 3.

(B.1)

In particular, the choice H = G− F yields

det G =
{

det F + [G− F] : cof F + det(G− F), if n = 2,
det F + [G− F] : cof F + F : cof[G− F] + det(G− F), if n = 3.

(B.2)

19See, e.g., [9, p. 51]. Alternatively, one can derive (B.1) from the characteristic polynomial.
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B.2. The Derivative of the Cofactor in 3-Dimensions.

Lemma B.1. Let F,H ∈ Lin3. Then

K(F)[H] := d(cof F)
dF [H] = cof(F + H)− cof F− cof H. (B.3)

Proof. Fix F,H ∈ Lin3. Then a simple computation shows that cof(F + tH) is a quadratic
polynomial in t ∈ R, i.e., there exist A,B,C ∈ Lin3 such that, for all t ∈ R,

cof(F + tH) = A + Bt+ Ct2. (B.4)

At t = 0 we get cof F = A. If we divide (B.4) by t2 and let t → ∞ we find that cof H = C. If
we differentiate (B.4) with respect to t and then let t = 0 we conclude that

d(cof F)
dF [H] = B.

The desired result follows from (B.4) at t = 1 together with our formulae for A, B, and C. �

Remark B.2. It is clear from the definition that K(F) : Lin3 → Lin3 is a linear map for every
F ∈ Lin3. If we interchange F and H in (B.3) we find that K(F)[H] = K(H)[F]; consequently,
F 7→ K(F)[H] : Lin3 → Lin3 is also linear. Thus, (F,H) 7→ K(F)[H] is bilinear.

B.3. An Upper Bound on the Cofactor in 3-Dimensions.

Lemma B.3. Let X,H ∈ Lin3. Then

|X : cof H| ≤ γ|H|2 ≤ |X||H|2, (B.5)

where γ denotes the largest eigenvalue of
√

XTX.

Proof. We first note that V :=
√

XTX is symmetric and positive semi-definite and hence, by
the spectral theorem, has eigenvalues γ ≥ β ≥ α ≥ 0. Thus,

|X|2 = |V|2 = α2 + β2 + γ2 ≥ γ2,

which establishes the second inequality in (B.5).
We now apply the polar decomposition theorem to conclude H = QU and X = RV, where

U and V are symmetric and positive semi-definite and Q and R are orthogonal. Next, by the
spectral theorem, there exists an orthonormal basis {f1, f2, f3} and real numbers λ1 ≥ λ2 ≥ λ3 ≥
0 such that

H = QU = λ1Qf1 ⊗ f1 + λ2Qf2 ⊗ f2 + λ3Qf3 ⊗ f3,

cof H = Q cof U = λ2λ3Qf1 ⊗ f1 + λ1λ3Qf2 ⊗ f2 + λ1λ2Qf3 ⊗ f3,

|H|2 = |QU|2 = |U|2 = λ2
1 + λ2

2 + λ2
3. (B.6)

Consequently,
(cof H) : X = λ2λ3Qf1 ·RVf1 + λ1λ3Qf2 ·RVf2 + λ1λ2Qf3 ·RVf3

= λ2λ3e1 ·Vf1 + λ1λ3e2 ·Vf2 + λ1λ2e3 ·Vf3,
(B.7)

where ei := RTQfi, i = 1, 2, 3, denote unit vectors. However,

|ei ·Vfi| ≤ |ei| |Vfi| ≤ γ, (B.8)
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where γ denotes the largest eigenvalue of V =
√

XTX. The desired result, (B.5), now follows
from (B.6)–(B.8), together with the inequality 2λiλj ≤ λ2

i + λ2
j . �
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