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ABSTRACT. In this paper a Sobolev inequality, which generalizes the ordinary Banach algebra
property of such spaces, is established; for p € [1,00), n,m € Z™, and m > 2 that satisfy m > n/p,

1660 < K | (539161) ol + (19s g0+ 1¥llcs0) 16

for all ¢,¢p € W™P(Q) that satisfy spty C Qs C Q and domains  C R™ that are nonempty, open,
and satisfy the cone condition. Here ¢ =p if p > n, g € (n/Y,pn/(n —p)] if n > p, ¢ € (n/T,0)

if p=n, K = K(n,p,m,q,C), where C is the cone from the cone condition, and T := [n/p], the

largest integer less than or equal to n/p.
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1 Introduction; Sobolev Spaces

A standard classical methodology used to obtain a priori estimates for elliptic systems of

partial differential equations is to first prove the required estimate when the system has
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constant coefficients and the region has smooth boundary and then use a partition of unity
to extend the estimate to coefficients that depend on position and regions that are less
regular. For example, Agmon, Douglis, and Nirenberg [3, 4] first establish the estimate (in
the notation from Elasticity): for all u € C*°(Q;R") that satisfy u = 0 in a neighborhood
of D := 9O\S,

[all g1 p0 <N [HDivC[Vu]H + HC[Vu]nHm_%m’S +lull,ql (1.1)

m_17p7Q
where C : M™*"™ — M™ " is a constant linear mapping of the n x n matrices M™*™ and € is
a ball with § = @ or (2 is a half-ball and S is the flat portion of the boundary of 2. Here
m e Z", p€ (1,00), nis the outward unit normal to the boundary 99,

ou
P o= Pd Vu); :=
fulf = | [uGolax (Vuy = o2,
n
. OM;;
[ull} 0= > 1D%ul}q. (DivM); = -,
o] <m j=1 7
and a = (a1, ..., ap) is a multi-index with |a| = a1 + -+ + a, and D* = 93} ... 09"

For a general bounded open region 2 C R"™ a suitable open covering of Q2 and 0f2,
respectively, by balls and half-balls, together with a partition of unity can then be used (see
[3]) to prove (1.1) for C(x) : M™*"™ — M™ " whose components are m-times continuously
differentiable on Q. More generally, if one wants to establish! (1.1) for C € W™P(Q), then
one can make use of Moser’s [7, pp. 273-274] tame inequality (see Klainerman and Majda [6,
pp. 516-517] for a nice proof): If 1 < p < oo and k € Z™, then there exists a constant
C = C(n,p, k) > 0 such that

CH % prn < N0lloomn 1915 prn + 1910 e 191 e (1.2)
for all ¢, € WhkP(R™) N L>®(R").

However, (1.2) is an inequality for Sobolev functions defined on all of R", while in
practice one must make use of this inequality for Sobolev functions defined on a bounded
open region ) C R™. This presents no difficulties when the boundary of Q is sufficiently
smooth since one can then use standard extension results to obtain a version of (1.2) for
such domains. When the boundary of the region is not smooth there are some unresolved
difficulties.?

!See, e.g., [12] for a proof of (1.1) when C is a Sobolev function. See, e.g., Ragusa [11] and the references
therein for interior regularity when C is discontinuous.

2See Maz'ya and Shaposhnikova [8, Chapter 7] for regions whose boundary can be parametrized by an
appropriate Sobolev function. See, also, Necas [10].
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The main purpose of this paper is to provide a partial resolution of these difficulties by
proving an inequality, which is similar to (1.2) and which is also useful for elliptic estimates,
for regions that satisfy (only) a cone condition. In particular we show that if Q& C R™ is
nonempty, open, and satisfies the cone condition and if p € [1,00), n,m € Z*, m > 2, and
p € (n/m,n), then for any q € (n/[}],pn/(n — p)] there is a constant K = K(n,p,m,q,C)
such that

610210 < K | (s901611) Bzl (102l s+ 1620 10) 191lnp] - (13

for all ¢1,¢2 € W™P(Q) that satisfy spt gy C Qs C Q. Here C is the cone from the cone
condition® and [x] is the largest integer less than or equal to .

We note that our inequality, unlike (1.2), has the interesting feature that its dependence
on the supremum of the first function is limited to the region that supports the second
function. Our initial motivation for studying such inequalities originated in problems of
global bifurcation* for the strongly-elliptic system that governs the equilibrium of elastic
materials. In this context inequality (1.3) extends results of Valent [13, pp. 22-27] that are
used to improve estimates in [3, 4] in order to apply them to elasticity. Our proof makes use
of the following special cases of the usual Sobolev inequalities.

Proposition (See, e.g., [2, pp. 85-86]). Let Q C R™, n > 1, be a nonempty open region that
satisfies the cone condition. Suppose 1 <p < oo, k € Z", and j € N. Define pj, :== pn/(n —
kp) if n > kp and py := oo otherwise. Then there exist a constant K = K(n,p,k,j,q,C),
where C is the cone from the cone condition, that has the following properties.

I. (Sobolev Imbedding Theorem) If k > n/p then W*P(Q) c C(Q) with

sup 16| < K ||l p0 for all ¢ € WHP(Q).

I1. (Gagliardo-Nirenberg-Sobolev Inequality) If k < n/p then W*TiP(Q) ¢ WH4(Q) with

161 g0 < K l6lls 0 for all ¢ € WFHIP(Q)

and q € [p,px| if pr < 00 and q € [p,00) otherwise.

Here,

Cp(Q) :={p € C(Q): e L*(Q)},

which is a Banach space under the L*-norm.

3That is, every x €  is the vertex of cone that is contained in Q and is a rigid deformation of C. See,
e.g., [1, p. 66] or [2, p. 82].
1See, e.g., [5, 9].



4 H. C. Simpson and S. J. Spector

2 The Product Property

For a Sobolev function ¢ € W*P(Q), k € N, p € [1,00), we define the support of 1 by
spty :=Q\ {x € Q:9¢(z) =0 for a.e. z in some open neighborhood of x} .

Thus, since the complement of spt is an open set, D) = 0 a.e. on Q\(spt ) for |a| < k.
Consequently, if ¢,v € WFP(Q), k > n/p, and spt C Q, then ¢(DV¢) € LP(Q) for |y| < k
and

60" = (00161 ) 1070 (2.1)

The main result of this paper is the following theorem, which generalizes the usual
Banach algebra property of WP m > n/p. See Valent [13, pp. 22-27] for similar results.

Theorem. Let Q) C R"™, n € Z*, be a nonempty open region that satisfies the cone condition.
Suppose 1 < p < oo, m € ZT with m > n/p, and Qs C Q is measurable. Then for every
q € (,np/(n —p)], if n > p, and for every q € (F,00), if p = n, there exists a constant
K = K(n,p,m,q,C) > 0, where C is the cone from the cone condition for Q and Y := [2],

P
such that the following are satisfied.

(a) If m =1 then for all ¢, € WIP(Q) that satisfy spt C Qs C Q
60150 <2 | (s0161 ) 1ol 0+ (s1p161) 6l 0] - (2:2)
(b) If m > 2 and n > p then for all ¢, € W™P(Q) that satisfy sptip C Qs C Q
16052 < K | (300161) 1ol + (1lhnsga + 19hcrp0) 1600 - 23)
(¢) If m > 2 and p > n then for all ¢p,vb € W™P(Q) that satisfy spty C Qs C Q

160010 < K [(sgp r<z>) s e+ [l e wum,p,g] e

Remark. Note that the constant K is independent of €2,. When €2 has finite volume one

can combine the term |[|¢)|| o Wwith its upper bound ||¢|| q in (2.3), however, the

milap7
constant K will then depend on the volume of 2.

m717Q7

Proof of (2.2). To simplify the notation we drop the €2, but leave the €25, on the appropriate
norms. To prove (2.2) we first note that, since p > n, without loss of generality we may
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assume, by the Sobolev imbedding theorem, that ¢, € WP (Q) N Cp(Q). Next, ¢l , <
1¢9llo, + IV (99)lg,, and, in view of (2.1),

o0l < (su0lol) 101,
However, V(¢¢) = ¢V + ¢V ¢ so that, with the aid of (2.1),
V(@) < N0VPllo, + 14V,

<sup\¢|) el + (sup |¢|> 161,
Qs Q
which proves (2.2). O

IN

Proof of (2.3) when [2] =m —1 and m > 2. Note that n > p. Let ¢ € (%5, 5] if n > p
and g € (-5, 00) if n = p. To prove (2.3) when [[%]] = m—1 we first note for future reference
that

q>p, qg(m —1) >n, (2.5)

and if m > 2 then n > p and

np n

< . 2.6

n—p - m-—2 (2:6)

Now, let ¢, ¢ € W™P(Q). Then, since mp > n, ¢,9 € Cp(Q2) by the Sobolev imbedding

theorem, while g € [p, p1] (or q € [p,0)) yields ¢ € W™~14(Q) by the Gagliardo-Nirenberg-
Sobolev inequality. Next,

100y < D 1D,

laj<m

- > > e, (D) (D7)

laj<m || [Bl+[V[=la|

0,p
< K Aoy (DY H :
< KXY X oo, . (2.7)
la|<m |B]+]7]=la
where K := maxc,, only depends on n and m.
If || = 0 then || < m and hence by (2.1)
1609, < 18l 127%llo,, < I9lse.0, 11y (2.8)

If || = m then |y| = 0 and hence by the Sobolev imbedding theorem and (2.5)2

(DPo)p|| <D (¢llag € K Sllp 1114 (2.9)
0,p 0,p
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If 7] = m — 1 (and |G| # 0) then |3] = 1. Define ¢’ so that %+% = ]l) and py—1 =
pn/(n—(m—1)p) if n > (m —1)p and p,,—1 := 0o otherwise. Then, by (2.5)2, ¢ € (p, Pm—1)
and hence by Holder’s inequality and the Gagliardo-Nirenberg-Sobolev inequality (k = m—1)

| ayom)| <||D%, D], < 19l 1ol < K Ny [l - (2100

Finally, if 2 < |8] < m — 1 then |7| < m — 2. Note |B] + Y| < m, m > 3, and n # p
(since n/p > m — 1 > 2). Thus, by Hélder’s inequality,

Do), < [P, . 10"
|ty < ¢07ni<ﬂw)pu Wllo,en

< lellg,— s 1¥1l,y, 18l s (2.11)

Then, in view of the Gagliardo-Nirenberg-Sobolev inequality (k = m — |3] and k = |8 — 1),

Mgy, —zm e < K llSll s Ny m < K lll1q (2.12)
since q € (-5, 5] by (2 6) and the definition of g. The desired result, (2.3), now follows
in the case when [7] = m — 1 from (2.7)-(2.12). O

Proof of (2.3) when 1 < [2] <m — 1. We prove (2.3) by induction on m. Note that n > p.
Define m =1 +1 = [[%]] + 1. Then m > n/p > m — 1 and m > 2. The induction starts at
m = m. Then, as we have just proven, (2.3) is valid for m = m and any ¢ in the appropriate
interval. To continue the induction we assume (2.3) is valid, for some m > m and ¢, and
show it is valid for m 4+ 1 and the same q.

Let ¢,¢ € W™HLP(Q). Then q € (F5 p} ifn > pand ¢ € (§,00) if n = p; consequently
P € W™1(Q) by the Gagliardo-Nirenberg-Sobolev inequality. We again note V(¢v) =
YV + ¢V1p and hence

[0¢llmg1p < 10Ul + V@V
169l p + 19V Bl + 6Vl - (2.13)

IN

However, by the induction hypothesis

1660 < 5 [ (599161) 1ol + (16002 + 10l 1) Bl

< & [(500101) 10llsn+ (Wl + 1610y 10y | (219
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and, similarly,

1690y < K | (s0161) 162+ (g 10ln) D6 (229
10V 6l < K [(sgp rw\) (T (S r\¢\\m+1,p] , (2.16)
since Qs C 2, while by the Sobolev imbedding theorem (k = m)
SUp [V < K |9l (2.17)
Inequality (2.3) with m replaced by m + 1, now follows from (2.13)—(2.17). O

Proof of (2.4). Note that p > n. First we prove (2.4) for m = 2. Let ¢,% € W2P(Q2). Then
(2.13) with m =1 is valid, however, (2.14)—(2.16) must be replaced by (see (2.2))

Lt <sup|¢|) annl,,,] ,
@ (2.18)

el < 2 [(sgpw) 1l + <sgp|w|) \|v¢||1,,,] |

lovl,, < 2 [(sgmm) I

and an appropriate estimate for ¢V, ,. Clearly, || [}, , < |- |5, and since p > n the
Sobolev imbedding theorem (k = 1) yields

(2.19)

SEPW\ < K9l Sgp|V¢| S K|Vl < Koy, -

Thus, we need only estimate the term [[¢V||; ,, which replaces (2.15), to finish the proof
when m = 2.

We note V(¢V)) = ¢VVY + Vi) ® V¢ and hence

1oVl 16V llop + VOVl

<
< 6V¥llg, + 16V VYo, + VY © Vg, - (2.20)

In view of (2.1) the first two terms on the right-hand side of (2.20) satisfy

16Vl < <s5p|¢|) Wlay 69900, < (sgpw) Wil (220)

while the last term on the right-hand side of (2.20) satisfies

V6@ Vol < (sgp |w>\) 1l (2.22)
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Inequality (2.4) with m = 2 now follows from (2.13) with m =1 and (2.18)—(2.22).

To complete the proof we note that (2.4) can be obtained by induction on m for m > 2.
However, the required steps are identical to those in the proof of (2.3), when 1 < [[%] <m-—1,

with the terms [|9|,, , and [|¢]],,_, , deleted. O

Remark. Ifn >p>1,m>m="+1:= [[%]]—i—l > 2, and Q, C Q is open then one can show
that, for all ¢,¢ € W"P(Q) that satisfy spt+) C Qs C Q and for every q € (§,np/(n — p)],
if n > p, and for every q € (%, 00), if p = n, there exists a constant K = K(n,p,m,q,C) >0

such that

169110 < K ( >~ [I9llog @) Whnipg) + 1ln-1q0 ||¢||m,p,9> . ()

k=0

where

I8llcx o = Y sup [D*(x)|-

xeN

la|<k s
Inequality (2.23) is obtained by induction on m. The initial step is the above proof of (2.3)
when [2] = m — 1. The induction is then similar to that presented above in the proof of
(2.3) when 1 < [2] < m — 1. The only significant difference is that one does not use the
estimate (2.17), but instead leaves the appropriate version of (2.16) as it is, since each step in
the induction argument will now add an additional derivative to the ¢ term that multiplies

(]| M
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