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Abstract. Experiments on polymers indicate that large tensile stress can induce cavitation, that
is, the appearance of voids that were not previously evident in the material. This phenomenon can
be viewed as either the growth of pre-existing infinitesimal holes in the material or, alternatively, as
the spontaneous creation of new holes in an initially perfect body. In this paper our approach is to
adopt both views concurrently within the framework of the variational theory of nonlinear elasticity.
We model an elastomer on a macroscale as a void-free material and, on a microscale, as a material
containing certain defects that are the only points at which hole formation can occur. Mathematically,
this is accomplished by the use of deformations whose point singularities are constrained. One con-
sequence of this viewpoint is that cavitation may then take place at a point that is not energetically
optimal. We show that this disparity will generate configurational forces, a type of force identified
previously in dislocations in crystals, in phase transitions in solids, in solidification, and in fracture
mechanics.

As an application of this approach we study the energetically optimal point for a solitary hole
to form in a homogeneous and isotropic elastic ball subject to radial boundary displacements. We
show, in particular, that the center of the ball is the unique optimal point. Finally, we speculate that
the configurational force generated by cavitation at a non-optimal material point may be sufficient to
result in the onset of fracture. The analysis utilizes the energy-momentum tensor, the asymptotics of
an equilibrium solution with an isolated singularity, and the linear theory of elasticity at the stressed
configuration that the body occupies immediately prior to cavitation.
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1. Introduction

Experiments on elastomers have shown that the application of a sufficiently large
tensile load can cause the appearance of holes that were not previously evident in the
material. Upon further loading these cavities grow in size and, eventually, coalesce to
form cracks. Similar void growth occurs in other materials such as ductile metals and
glasses.
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2 J. SIVALOGANATHAN AND S.J. SPECTOR

The nonlinear theory of elasticity was used by Gent & Lindley [18] to explain the
emergence of such holes in elastomers. In their view the application of loads produces
local triaxial tensions that cause the enlargement of small pre-existing voids.1 Although
this theory has an amazing degree of agreement with experiment, a material that
contains a large number of tiny holes is extremely difficult to deal with from both an
analytical and a computational perspective.

These difficulties were partially overcome by the variational approach to cavitation
adopted by Ball [3], which does not require pre-existing holes. Instead, a new hole
will be created in the material (which is considered as initially perfect) whenever it is
energetically favorable in reducing the total stored energy. However, the creation of new
holes requires deformations that are not continuous and so do not possess a classical
derivative at the points of discontinuity. The stored energy must therefore be extended
so that it is defined on such deformations, deformations that lie in a Sobolev space.
The advantage of this variational approach is that discontinuous Sobolev deformations
can be used to interpret void formation through the simultaneous use of two scales: a
macroscopic scale (corresponding to the smooth part of the deformation) on which an
apparently void-free material undergoes a (classical) finite deformation in response to
compression and small tensions; and a microscopic scale, where the material undergoes
a singular (discontinuous) deformation, which can be interpreted as the rapid growth
of a preexisting microvoid in response to sufficiently large tensions.2

One difference between the viewpoints outlined above is that new cavities may form
anywhere in the material (if it is modelled as initially perfect), whilst pre-existing holes
can only grow at precursors (i.e., flaws in the material). One anticipates that both views
should yield the same results provided such precursors are ubiquitous. Alternatively,
this difference can be addressed by restricting the set of material points at which void
formation can take place. In [47] it is assumed that the number of potential cavitation
points is finite and prespecified. It is shown that there are solutions of the resulting
equilibrium equations that can exhibit cavitation at such points. These solutions are
global minimizers of the energy subject to the constraint that cavitation can only
occur at these points. Although the minimization problem contains constraints, the
analysis in [47] yields no Lagrange multiplier and consequently no additional resultant
forces3 that arise as a consequence of the constraint.

We show in this paper that the conclusion that no additional forces emerge as a
result of restricting the cavitation points is not strictly correct. Instead, the correct
conclusion is that no classical (Newtonian) forces are created by constraining the
cavitation points. The constraint generally results in the creation of nonclassical forces,
sometimes called configurational or material forces4 (see, e.g., [13, 15, 23, 31, 37]), a

1 See [8, 24] for related approaches in the context of elastoplasticity.
2 See [26, 45, 49].
3 For example, the constraint of incompressibility gives rise to a hydrostatic pressure.
4 We are unaware of any other identification of nontrivial configurational forces within the context of

cavitation in nonlinear elasticity. Most prior work on such problems (see [27] and the references therein)
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type of force that has been previously identified within elasticity5 in dislocations in
crystals [12, 25, 40, 41], fracture mechanics [10, 16, 43], and at phase boundaries [2,
14, 35].

In this paper we propose the view that a material contains a fixed collection of
potential cavitation points. When the body is loaded there may then be a mismatch
between the points at which the material would prefer6 to cavitate and the points
where cavitation is possible. This disparity results in the emergence of a non-classical
force, a force that is due to the desired movement of the cavity to a more appropriate
place where the creation of a hole could be accomplished with less energy, provided
cavitation could occur there (i.e., if there were a precursor at that point). One can
also view this force as the force against the constraint. For cavitation problems this
force is concentrated at the point singularities of the deformation.

A potential difference between configurational forces in cavitation and some of the
other areas in which they have been identified is that we do not generally7 anticipate
a change in the material location of the cavity after it forms. Relative to the reference
configuration, dislocations can accumulate, a crack can propagate, a phase boundary
can move through the material, but a cavity has a fixed material location once it is
has formed.

Our analysis focuses on a model problem in which a single new hole is created
in a homogeneous and isotropic material held by tensile loads on the boundary. We
show that if this hole is not created at an optimal material point then a nontrivial
configurational force will result and, at least for loads slightly greater the cavitation
load, this force will increase as the boundary load increases. This leads to an intriguing
possibility: in fracture mechanics configurational force is usually thought to be the
driving force for crack propagation and a standard criterion for crack propagation is
that this force should exceed a certain threshold. It therefore seems reasonable that
one might obtain a solution in which cracks8 originating at cavitation points can be
initiated within a nonlinearly elastic model, as has been observed in experiments.9

Before we discuss the details of our results, we make a final comment concerning
fracture. In order to simplify our analysis we have, for the most part, restricted our

has restricted attention to radially symmetric solutions where (see Proposition 2.2) no configurational
forces are present.

5 Such forces have also been identified in solidification. See, e.g., [23] and the references therein.
6 We assume that the material prefers to cavitate at a point whenever such a singular deformation

results in a reduction in energy. Such preferred points are possibly the points of maximum stress.
In the view of [32, 33] (cf. [28, 29]) if one considers the local constitutive relation, which will vary
from point to point in an inhomogeneous material, one can generally use such an energy criterion to
obtain, at each material point, a cavitation surface in strain space (the symmetric matrices). It is then
energetically favorable for a hole to form whenever the strain at that point crosses this surface.

7 Of course a cavity, as well as a crack, can heal under certain circumstances.
8 True fracture would necessitate an alternate interpretation for the derivative, which would no

longer lie in the indicated Sobolev space.
9 Recent research on the growth of voids in ductile metals suggests that the formation of cracks

from voids in such materials may require additional ingredients (see, e.g., [17]). See also [32] and [38].
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4 J. SIVALOGANATHAN AND S.J. SPECTOR

attention to a purely elastic model. If precursors are sparse then larger configurational
forces will ensue and adequate force for fracture may be available from nonlinear
elasticity by itself. However, if precursors are widespread the resulting configurational
forces may be insufficient to initiate fracture when elasticity alone is considered. Ad-
ditional energy might then result in a significant increase in the magnitude of such
forces. For example, the addition of an energy that is required to initiate cavitation
and which varies among pre-existing microvoids (e.g., inversely proportional to the
microvoid’s initial size) has essentially the same effect as a critical cavitation load that
varies with the material point.10 In particular, a single large microvoid (with negligible
energy inhibiting cavitation) that is located sufficiently far from an optimal cavitation
point, might cavitate before other closer (but smaller) microvoids and so produce the
force necessary for fracture. This may be especially appropriate since the requisite
fracture force in fracture mechanics is usually attributed to the energy of creation of
new crack surface (see, e.g., [16, 21, 43]).

The specific problem we consider is the displacement11 boundary-value problem:
Let Ω ⊂ IRn (n = 2, 3) be a regular region, which we assume is occupied by a
nonlinearly elastic body in its reference configuration. An admissible deformation
is a differentiable (or weakly differentiable) map u : Ω→ IRn that is one-to-one (a.e.),
satisfies det∇u > 0 (a.e.), and

u(x) = λx for all x ∈ ∂Ω, (1.1)

where λ > 0 is given. If the material is homogeneous and hyperelastic and there are
no body forces then the total elastic energy stored in a body that undergoes such a
deformation is given by

E(u) =

∫

Ω
W (∇u(x)) dx, (1.2)

where W : Mn×n
+ → IR is the stored-energy function and Mn×n

+ denotes the real n× n
matrices with positive determinant.

The equilibrium equations of nonlinear elasticity are the Euler-Lagrange equations
for E. These can take a number of forms depending on the variations taken in the
energy functional E. In this paper we will make particular use of the following two
forms:

(Div S(∇u(x)))i =
∂

∂xα

[
∂W

∂F iα
(∇u(x))

]
= 0 for i = 1, 2, . . . , n, (1.3)

10 Experiments on elastomers by Gent and his coworkers [11, 19, 20] have noted that the critical
cavitation load appears to increase with decreasing size of the inclusion (a glass bead) used in their
experiments. In order to explain this they hypothesize that an elastomer has a distribution of pre-
existing microvoids of different sizes and, in accordance with the analysis of [51], smaller voids have
larger surface energy to overcome in order to grow in size. Thus a small glass bead produces the
required cavitation strain over a small region in the material and there is less chance of finding a large
precursor, with small surface energy, in this region.

11 Results of [1] indicate that a displacement boundary condition on a portion of the boundary
(possibly at an inclusion) is needed for cavitation to be energetically favorable.
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where we use the convention of summation over repeated indices. The tensor S =
∂W/∂F is called the Piola-Kirchhoff stress tensor. The second form is the so called
energy-momentum form of the equations

Div M(∇u) = 0, (1.4)

where

M(∇u) = W (∇u)I−∇uT ∂W

∂F
(∇u), (1.5)

is known as the energy-momentum tensor and I denotes the n×n identity matrix.
In component form the equations (1.4) are given by

∂

∂xα

[
W (∇u(x))δβα −

∂uk

∂xβ
∂W

∂F kα
(∇u(x))

]
= 0, β = 1, 2, . . . , n.

Model stored-energy functions for which our results apply have the form

W (F) = k‖F‖p + h(det F) for all F ∈Mn×n
+ ,

where k > 0, p ∈ [1, n); h : IR+ → IR+ is C2, strictly convex, and satisfies h(δ) → ∞
as δ → 0+ and h(δ)/δ → ∞ as δ →∞; det F denotes the determinant of F; and ‖ · ‖
denotes the Euclidean norm on n×n matrices: ‖F‖2 = F : F and F : G := trace(FTG).
However, we emphasize that the approach and results presented apply to a much wider
class of stored-energy functions.

Now let x0 ∈ Ω, then it is known that for a wide class of stored-energy functions
with slow growth (e.g., as above with p > n−1), there is a minimizer denoted u(·,x0, λ)
of E that creates no new holes in Ω \{x0} and which may or may not create a new
hole at the prescribed point x0 (see [47]). Results of Eshelby [13, 15] show that the
configurational or material force (see, e.g., [23, 31, 37]) on x0 is given, in particular,
by

f(x0, λ) :=

∫

∂Ω
M(∇u(x,x0, λ))n(x) dSx, (1.6)

where n is the outward unit normal to the boundary. We first note in Section 2 that
−f(x0, λ) ·m is also the derivative of the energy with respect to any one-parameter
family of inner variations that translates x0 in the direction m, that is,

−f(x0, λ) ·m = δE :=
d

dt
E(ut)

∣∣∣∣
t=0

, (1.7)

where

ut(x) = u0(h−1
t (x)), ht(x) = x + tv(x),

and v ∈ C1
0(Ω; IRn) satisfies v(x) ≡m in some neighborhood of x0.
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6 J. SIVALOGANATHAN AND S.J. SPECTOR

Suppose now that B = B1(0), the unit ball centered at the origin and let x0 = 0.
Then results of [3] for the class of radial deformations

u(x) = r(|x|) x

|x| for x ∈ B, (1.8)

where r : [0, 1]→ [0,∞), show that

PROPOSITION 1.1. For each λ > 0 there exists a unique minimizer u(r) of the
energy functional E among radial deformations in W 1,p(B; IRn), 1 ≤ p < n, that
satisfy u(x) = λx for x ∈ ∂B. Moreover, there is a critical value λcrit > 0 with the
property that

(i) If λ ≤ λcrit the unique radial minimizer u(r) is the homogeneous deformation
uh(x) ≡ λx.

(ii) If λ > λcrit the unique radial minimizer u(r) corresponds to a map of the form
(1.8) satisfying r(0) > 0.

Thus for λ > λcrit the deformation u(r) is discontinuous and produces a hole of radius
r(0) at the center of the ball (this is the phenomenon of cavitation).

The basic assumptions we make on the family of minimizers are drawn from [48].
We first assume that for each x0 ∈ Ω the corresponding minimizer u(·,x0, λ) is unique
and that in the case Ω = B and x0 = 0 the minimizer u(·, 0, λ) is the radial minimizer
given above. Then, by a scaling argument (see, e.g., [48, Lemma 1.2]), λ = λcrit is the
infimum of the values of λ for which the corresponding minimizer is discontinuous for
any x0 ∈ Ω.

We then write

u(x,x0, λ) = λx + w(x,x0, λ)

and assume that

w(·,x0, λ)→ 0 as λ→ λcrit

in C2(Ω \Bδ(x0)) for any δ > 0 sufficiently small, where Bδ(x0) denotes the ball of
radius δ centered at x0. We expand the expression (1.6) in a series in (λ − λcrit) to
obtain

f(x0, λ) = −1
2(λ− λcrit)

2
∫

∂Ω
n∇xẇ : C[∇xẇ] dSx + o(|λ− λcrit|2),

where

ẇ(x,x0) =
∂

∂λ
w(x,x0, λ)

∣∣∣∣
λ=λcrit

and C =
∂2W

∂F2
(λcritI)

is the elasticity tensor at the (stressed) configuration uhcrit(x) ≡ λcritx.
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If Ω = B and x0 = 0 it is easy to show that f(0, λ) = 0. Then, using an ansatz
for the minimizers (see (4.1)), we are able to prove that, in three-dimensions, the
configurational force on x0 satisfies

f(x0, λ) = −Ψ(|x0|, λ)x0, Ψ(t, λ) = (λ− λcrit)
2ψ(t) + o(|λ− λcrit|2),

where ψ > 0. Consequently, if x0 6= 0 then f(x0, λ) 6= 0 for λ−λcrit > 0 and sufficiently
small (see Theorem 6.1).

Finally, we note that our results have an interpretation that does not involve config-
urational forces. Suppose one is interested in determining the point(s) in a body where
cavitation is optimal, i.e., a point x0 ∈ Ω if one exists that achieves the infimum:

inf
x0∈Ω

E(u(·,x0, λ))

for all λ − λcrit > 0 and sufficiently small. Then our results imply that (see Corol-
lary 6.2) in the case when Ω = B every x0 6= 0 is not optimal due to the fact that
cavitation at points closer to the origin is energetically more favorable than cavitation
at points farther away. Consequently, the center of the ball appears to be the only
optimal cavitation point.

2. Inner Variations; The Force on a Defect

Let Ω ⊂ IRn (n = 2, 3) be a regular region occupied by a homogeneous hyperelastic
body in a homogeneous reference configuration. Suppose that D ⊂ Ω is a closed region
that may contain one or more defects12. Suppose further that u0 : Ω → IRn is a
deformation with finite total elastic energy, i.e.,

E(u0) :=

∫

Ω
W (∇u0(x)) dx<∞,

that is at equilibrium in Ω\D, i.e., u satisfies (1.3) and consequently (1.4) in Ω\D.
Then results of Eshelby [13, 14, 15] show that the configurational force, f(D), that
Ω\D exerts on D is given, in particular, by

f(D) =

∫

∂Ω
M(∇u0)n dS. (2.1)

Remark. More generally, it is well-known that (2.1) is satisfied when ∂Ω is replaced
by any smooth surface that encloses D. Slightly modified versions of (1.4) and (2.1)
are valid when the material is not homogeneous. See, e.g., [23] or [37].

Next, let m ∈ IRn be a unit vector and let v ∈ C1
0 (Ω; IRn) satisfy v(x) ≡ m for

all x in some open set that contains D. Then, for t sufficiently small, ht : Ω → IRn

12 By a defect we mean an imperfection or weakness in the material and not particularly in the
atomic structure.
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8 J. SIVALOGANATHAN AND S.J. SPECTOR

defined by ht(x) = x + tv(x) is a diffeomorphism of Ω that rigidly translates D in the
direction m, where ut is the one-parameter family of inner variations :

ut(x) = u0(h−1
t (x)).

LEMMA 2.1. The configurational force satisfies

−f(D) ·m := δE =
d

dt
E(ut)

∣∣∣∣
t=0

. (2.2)

Remark. The inner product of the configurational force with any unit vector is thus
minus the rate of change of the energy when the defect undergoes an infinitesimal
translation in the direction of that vector. This simple result is thus in the spirit of
Knowles & Sternberg’s [34] derivation (see also [6] and [9]) of the conservation law
(1.4) by inner translations.

Proof of Lemma 2.1. Let U be an open set with smooth boundary that satisfies
D ⊂ U ⊂ U ⊂ Ω. Assume that v satisfies v ≡ m on U so that ∇v ≡ 0 and hence
∇ht ≡ I on U . Then it is a standard result13 that the rate of change in energy with
respect to a one-parameter family of inner variations satisfies

δE =
d

dt
E(ut)

∣∣∣∣
t=0

=

∫

Ω\U
∇v : M(∇u0) dx. (2.3)

Next, v = 0 on ∂Ω and, since u0 is a smooth equilibrium solution in Ω\D, Div M =
0 in Ω\D. Therefore by the divergence theorem

∫

Ω\U
∇v : M(∇u0) dx =

∫

Ω\U
div[MTv] dx

=

∫

∂(Ω\U)
v ·M(∇u0)n dS

= m ·
∫

∂U
M(∇u0)n dS

= −m ·
∫

∂Ω
M(∇u0)n dS,

which together with (2.2) and (2.3) yield (2.1). (Here n is the outward unit normal to
Ω\U and so it points into U .) 2

13 See, e.g., [44, p. 240] or [47, Theorem 5.2]. Such proofs require u0 ∈ C1(Ω \D) or, more generally,
that W satisfies (2.5) and u0 ∈ W 1,1(Ω).
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2.1. Hypotheses on W

We assume throughout the remainder of this paper that W ∈ C2(Mn×n
+ ) is isotropic

and frame indifferent so that for any Q ∈ SO(n) (the n×n special orthogonal matrices)
we have

W (FQ) = W (QF) = W (F) for F ∈ Mn×n
+ .

We further assume that there is a C > 0 such that
∥∥∥∥FT∂W

∂F
(F)

∥∥∥∥ ≤ C[W (F) + 1] for F ∈Mn×n
+ . (2.4)

Remark. Hypothesis (2.4) can be used to show (see [4, 5, 7]) that any energy
minimizer u ∈ W 1,1(Ω; IRn) is a weak solution of the energy-momentum equations.
It follows from [5, Proposition 2.3] that if W is frame indifferent and satisfies (2.4)
then14

∥∥∥∥
∂W

∂F
(F)FT

∥∥∥∥ ≤ C[W (F) + 1] for F ∈Mn×n
+ . (2.5)

and consequently u is also a weak solution of the equilibrium equations in the deformed
configuration: the spatial divergence of the Cauchy stress is zero.

2.2. No configurational forces in radial cavitation

The following elementary result is well-known to researchers in cavitation, but has
not, we believe, appeared previously in the literature.

PROPOSITION 2.2. The radial minimizers u0 = u(r) given in Proposition 1.1 satisfy

f(0, λ) =

∫

∂B
M(∇u0)n dS = 0

Thus there is no configurational force in radial cavitation.

Proof. We first note that it is a consequence of our assumptions of frame indifference
and isotropy of the stored-energy function W that

W (F) = Φ(v1, v2, . . . , vn) for all F ∈ Mn×n
+ , (2.6)

where Φ is a symmetric function of its arguments and v1, v2, . . . , vn denote the singular
values of F (i.e., the eigenvalues of

√
FTF).

14 A proof similar to [5, Proposition 2.3] shows conversely that (2.5) implies (2.4) for isotropic
materials. Thus for frame indifferent, isotropic, stored energy functions conditions (2.4) and (2.5) are
equivalent.
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10 J. SIVALOGANATHAN AND S.J. SPECTOR

Next suppose that

u0(x) =
r(R)

R
x, R = |x|, r : [0, 1]→ [0,∞)

is the radial minimizer given in Proposition 1.1. Then

∇u0(x) = r′(R)
x⊗ x

R2
+
r(R)

R

[
I− x⊗ x

R2

]

and consequently (see, e.g., [3]) the singular values, v1, v2, . . . , vn, of F = ∇u0 are

given by v1 = r′(R), v2 = . . . = vn =
r(R)
R . Therefore, in view of (2.6),

S(∇u0) :=
∂W

∂F
(∇u0) = Φ,1 (R)

x⊗ x

R2
+ Φ,2 (R)

[
I− x⊗ x

R2

]

and

(∇u0)T S(∇u0) = r′(R)Φ,1 (R)
x⊗ x

R2
+
r(R)

R
Φ,2 (R)

[
I− x⊗ x

R2

]
, (2.7)

where Φ,i denotes differentiation of Φ with respect to its i-th argument and Φ(R) and

Φ,i (R) denote Φ and Φ,i evaluated at the arguments v1 = r′(R), v2 = . . .= vn = r(R)
R ,

respectively.
Consequently, by (2.7),

(∇u0(x))TS(∇u0)n(x) = r′(1)Φ,1 (1)n(x) for x ∈ ∂B,

where n(x) = x
|x| is the outward unit normal to ∂B. Finally, from the above calculations

we conclude
∫

∂B
M(∇u0(x))n(x) dSx =

∫

∂B
[Φ(R)− r′(R)Φ,1 (R)]n(x) dSx

= [Φ(1)− r′(1)Φ,1 (1)]

∫

∂B
n(x) dSx = 0,

as claimed. 2

3. Families of minimizers with one point of discontinuity

Given x0 ∈ Ω and λ > 0, Theorem 4.1 of [47] yields a minimizer15 u(·,x0, λ) of E
that satisfies the boundary condition u(x,x0, λ) = λx for x ∈ ∂Ω. These minimiz-
ers are contained in the Sobolev space W 1,1(Ω; IRn), are one-to-one a.e., and satisfy

15 Minimizers also exist when surface energy is included in the model. (See [39] and [47,
Theorem 4.2].)
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det∇xu > 0 a.e. Throughout this section we make the following hypotheses on this
set of minimizers.

3.1. Hypotheses on the minimizers

(M1) For each x0 ∈ Ω and λ > 0 the minimizer u(·,x0, λ) of E is unique and this
family of minimizers satisfies:

(a) For each x0 ∈ Ω and λ > 0

u(·,x0, λ) ∈ C2(Ω\{x0}; IRn) ∩ C1(Ω \{x0}; IRn),

u(x,x0, λ) = λx for x ∈ ∂Ω.

(b) For each x0 ∈ Ω

u(·,x0, ·) ∈ C3
(
(Ω \{x0}) × [λcrit,∞)

)
.

(M2) For each x0 ∈ Ω

u(·,x0, λ)→ uhcrit(·) in C2(Ω \Bδ(x0)) as λ→ λ+
crit

for any sufficiently small δ > 0, where

uhcrit(x) := λcritx.

(M3) In the case Ω = B, x0 = 0, the radial minimizer, whose existence is given in
Proposition 1.1, is the unique minimizer of E.

Remarks. 1. (M1) and (M2) are known to be satisfied by the radial minimizer given
in Proposition 1.1 (see [46]). Further details and implications can be found in [48].

2. It follows from the above hypotheses that each member u(·,x0, λ) of our family
of minimizers satisfies the equilibrium equations (1.3)–(1.4) in Ω\{x0}.

Example. Let n = 3, z = x0, and suppose that Ω = B, the unit ball centered
at the origin in IR3. Then it follows from (M1) that each minimizer16 u(·, z) satisfies
u(Qx,Qz) = Qu(x, z) for each Q ∈ SO(3) and x, z ∈ B: otherwise, choosing ũ(x, z) =
QTu(Qx,Qz) we obtain from the assumed frame indifference and isotropy of the
material E(ũ) = E(u) but ũ 6= u contradicting our assumption of uniqueness. We
note that

∇xu(Qx,Qz) = Q∇xu(x, z)QT (3.1)

16 For ease of exposition we have suppressed the dependence of the minimizer on λ in this example.
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and, by the assumed frame indifference and isotropy of W , the energy-momentum
tensor (1.5) satisfies

M(QFQT) = QM(F)QT (3.2)

for every Q ∈ SO(3) and F ∈ Mn×n
+ . Therefore, the change of variables y = Qx

together with (3.1), (3.2), and n(Qx) = Qn(x) yields

f(Qz) =

∫

∂B
M (∇u(y,Qz)) n(y) dSy

=

∫

∂B
M (∇u(Qx,Qz)) n(Qx) dSx

=

∫

∂B
QM (∇u(x, z))n(x) dSx = Qf(z)

for every Q ∈ SO(3) and z ∈ B. A standard result (see, e.g., [22, p. 238]) then implies
that the configurational force is radial: there is a function ξ : [0,∞)→ IR such that

f(z) = ξ(|z|)z.

In particular the configurational force is parallel to z and its magnitude only depends
on the norm of z. We also note that

f(z) = ∇zη(|z|), η(t) :=

∫ t

0
sξ(s) ds,

so that the configurational force is the gradient of a potential.

3.2. Expansion of the first variation

We now write each member of our family of equilibria as

u(x,x0, λ) = λx + w(x,x0, λ). (3.3)

Then for each x0 ∈ Ω

(i) w(x,x0, λ) = 0 for all x ∈ ∂Ω and λ > 0,

(ii) ∇xw(x,x0, λ) =
∂w

∂n
⊗ n for all x ∈ ∂Ω and λ > 0, (3.4)

(iii) w(x,x0, λcrit) ≡ 0 for x ∈ Ω\{x0}.

LEMMA 3.1. Let (M1)–(M3) hold. Let x0 ∈ Ω, let m ∈ IRn be a unit vector, and let
v ∈ C1

0(Ω; IRn) satisfy v ≡ m for all x ∈ Bε(x0) and some ε > 0. Then for λ > λcrit

the inner first variation (2.2) is given by

δE = 1
2(λ− λcrit)

2m ·
∫

∂Ω
n∇xẇ : C[∇xẇ] dSx + o(|λ− λcrit|2), (3.5)
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where

ẇ(x,x0) =
∂

∂λ
w(x,x0, λ)

∣∣∣∣
λ=λcrit

and C =
∂2W

∂F2
(λcritI)

is the elasticity tensor at the (stressed) configuration uhcrit(x) ≡ λcritx.

Proof. We write∇ to denote ∇x and, to simplify notation, suppress the dependence
of all functions on the singular point x0. We first claim that δE satisfies

δE = −m ·
∫

∂Ω
Φ(λ,x)n(x) dSx (3.6)

where

Φ(λ,x) := W (∇u(x, λ))−W (λI)− ∇w(x, λ) : S(∇u(x, λ)) (3.7)

and w(x, λ) := u(x, λ)− λx. To see this we observe that, by (1.5) and (2.1),

δE = −m ·
∫

∂Ω

[
W (∇u(x, λ))− (∇u(x, λ))TS(∇u(x, λ))

]
n dS. (3.8)

However, by the proof17 of Lemma 3.2 in [48] (see in particular expression (3.15))
∫

∂Ω
S(∇u(x, λ))ndS = − lim

ε→0

∫

∂Bε(x0)
S(∇u(x, λ))n dS = 0, (3.9)

while the divergence theorem implies
∫

∂Ω
W (λI)m ·n dS = 0. (3.10)

Finally, from (3.4)(ii) we have that ∇w = ∂w
∂n ⊗ n on ∂Ω. Therefore for x ∈ ∂Ω

m · (∇w)TSn =

[(
∂w

∂n
⊗ n

)
m

]
· Sn = (m ·n)

(
∂w

∂n
⊗ n

)
: S,

which together with (3.7)–(3.10) and (3.4)(ii) yields (3.6).
Next, a simple computation18 shows that Φ(λ0,x) = 0, Φλ(λ0,x)) = 0, and

Φλλ(λ0,x,x0) = −∇ẇ(x,x0) : C[∇ẇ(x,x0)],

where ẇ(x,x0) = wλ(x,x0, λcrit). Therefore for each x0 ∈ Ω and x ∈ Ω \{x0}
Φ(λ,x,x0) = −1

2(λ− λcrit)
2∇ẇ(x,x0) : C[∇ẇ(x,x0)] + o(|λ− λcrit|2).

Hypothesis (M2) yields w(·,x0, λ) → 0 in C2(Ω \Bδ(x0)) as λ → λ+
crit for any suffi-

ciently small δ > 0. Thus, in particular, the above expansion is uniform for x ∈ ∂Ω.
Equation (3.5) is now a consequence of the above expansion and (3.6). 2

17 Here (2.5) is crucial.
18 See [48, p. 205] for details.
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LEMMA 3.2. Let (M1)–(M3) hold then ẇ(x,x0) satisfies

DivxC[∇xẇ(x,x0)] = 0 in Ω\{x0}.
Proof. From the definition of w and the remark following the statement of (M1)–

(M3) we have that

Divx

[
∂W

∂F
(λI +∇xw(x,x0, λ))

]
= 0 for x ∈ Ω\{x0}. (3.11)

The result now follows on differentiating (3.11) with respect to λ and setting λ = λcrit.
2

4. Asymptotically radial maps

In this section we adopt the ansatz proposed in [48] to evaluate the coefficient of
(λ− λcrit)

2 in the expansion of the first variation δE given in Lemma 3.1. The ansatz
is the following.

Hypothesis (M4). We assume that the family u(·,x0, λ) is asymptotically radial,
i.e., there are functions µ ∈ C2(Ω) and ṽ : Ω× Ω→ IRn, with ṽ(·,x0) ∈ C2(Ω; IRn) ∩
C(Ω; IRn) such that for any compact set S ⊂ Ω, and for (λ− λcrit) > 0, the expansion

u(x,x0, λ) = λcritx + (λ− λcrit)

[
µ(x0)

x− x0

|x− x0|n
+ ṽ(x,x0)

]
+ o(|λ− λcrit|) (4.1)

holds uniformly for (x,x0) ∈ Ω\Bδ(x0)× S for any δ > 0 and sufficiently small.

Remarks. 1. Suppose that we view the minimizing map u(·,x0, λ), which is smooth
away from the cavity, as a composition of a radial cavitating map followed by a smooth
deformation that puts the material at equilibrium. More precisely, let u(r)(·, λ) be the
radial minimizer on the unit ball given in Proposition 1.1. Then it is well known [3] that
u(r) has a smooth extension as an equilibrium deformation to all of IRn. Suppose that,
for each fixed x0 ∈ Ω, we can construct a one-parameter family of smooth deformations
g(·,x0, λ) that satisfy u(x,x0, λ) = g(u(r)(x − x0, λ),x0, λ). Then it is shown in [48]
that (4.1) is a consequence of the differentiability of this composition with respect to
λ at λ = λcrit.

2. It follows from (3.3) and (4.1) that

ẇ(x,x0) = µ(x0)
x− x0

|x− x0|n
+ ṽ(x,x0)− x. (4.2)

We define

v(x,x0) :=
1

µ(x0)
(ṽ(x,x0)− x). (4.3)

and note that v(x,x0) satisfies the following result which is Corollary 5.3 in [48].
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LEMMA 4.1. Let (M1)–(M4) hold. Then v(·,x0) satisfies the linear system of equa-
tions

DivxC[∇xv] = 0 for x ∈ Ω, (4.4)

and the boundary condition

v(x,x0) = − x− x0

|x− x0|n
for x ∈ ∂Ω. (4.5)

Before proceeding with our next result we note that, as a consequence of the
assumed frame indifference and isotropy of W , a standard result (see, e.g., [48, Theo-

rem A.1]) yields constants a, b, c ∈ IR such that the elasticity tensor C = ∂2W
∂F2 (λcritI)

satisfies

C[H] = aH + bHT + c(traceH)I for all H ∈ Mn×n. (4.6)

Consequently, (4.4) and the identity ∇div v = Div[∇v]T imply that the function v
given by (4.3) satisfies

I :C[∇v] = (a+ b+ nc)div v,

DivC[∇v]T = b∆v + (a+ c)∇div v, (4.7)

0 = DivC[∇v] = a∆v + (b+ c)∇div v.

THEOREM 4.2. Let (M1)–(M4) hold. Then the coefficient of (λ − λcrit)
2 in the

expansion of δE (see Lemma 3.1) is given by

1
2m ·

∫

∂Ω
n∇xẇ : C[∇xẇ] dSx = −κnµ(x0)2m · [∇x (divxv(x,x0)) ]

∣∣∣
x=x0

,

where κn = nωn(a + b + c) and ωn is the volume of the unit ball in IRn (ω2 = π,
ω3 = 4π/3).

Proof. We write once again ∇ to denote ∇x and first note that ẇ satisfies the
conservation law19

div
(
(∇ẇ : C[∇ẇ])m− 2mαC[∇ẇ,α ]Tẇ

)
= 0 in Ω\{x0}. (4.8)

To see this we observe that, by Lemma 3.2, 0 = (DivC[∇ẇ]),α= DivC[∇ẇ,α ].
Consequently

div
(
C[∇ẇ,α ]Tẇ

)
= ∇ẇ : C[∇ẇ,α ]

and hence, if we multiply by mα and sum over the index α,

div
(
mαC[∇ẇ,α ]Tẇ

)
= mα∇ẇ : C[∇ẇ,α ].

19 Equivalently, mαC[∇ẇ,α ] = C[∇((∇ẇ)m)]. Recall that we use the convention of summation over
repeated indices.
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16 J. SIVALOGANATHAN AND S.J. SPECTOR

However, in view of the symmetry20 of C

div ((∇ẇ : C[∇ẇ])m) = m · ∇(∇ẇ : C[∇ẇ]) = 2mα∇ẇ : C[∇ẇ,α ],

which together with the previous equation yields (4.8).
We next note that ẇ = 0 on ∂Ω and so the coefficient of (λ−λcrit)

2 in the expansion
(3.5) of δE is given by

Q(ẇ) = +1
2

∫

∂Ω
(m ·n)∇ẇ : C[∇ẇ] dS (4.9)

= +1
2

∫

∂Ω
((m ·n)∇ẇ : C[∇ẇ]− 2mαẇ ·C[∇ẇ,α ]n)dS

= −1
2

∫

∂Bε
((m ·n)∇ẇ : C[∇ẇ]− 2mαẇ ·C[∇ẇ,α ]n)dS, (4.10)

where Bε = Bε(x0) is the (open) ball of radius ε centered at x0 and we have made use
of (4.8) and the divergence theorem to obtain the last equality.

In view of (4.2) and (4.3) we next set

ẇ = µ[v + p], p(x) :=
x− x0

|x− x0|n
(4.11)

in (4.10), expand in terms of v and p, and evaluate the integral (4.10) in the limit
ε→ 0+. In evaluating the limiting value of this integral it is clear that the terms that
are quadratic in v converge to zero as ε→ 0+ by the smoothness of v. Moreover, the
most singular terms in the expansion of (4.10) are those that are quadratic in p and
its derivatives and are given by

−1
2µ

2
∫

∂Bε

[
(m ·n)∇p : C[∇p]− 2mαp ·C[∇p,α ]n

]
dS. (4.12)

For x ∈ ∂Bε(x0) the function p and its derivatives satisfy

p = O
(
ε1−n

)
, ∇p = O

(
ε−n

)
, ∇p,α = O

(
ε−n−1

)
, (4.13)

as ε → 0+. From these equations it is clear that the singular integral terms in (4.12)
are each of order ε−2n and hence their integrals over ∂Bε(x0) are each of order ε−n−1

as ε → 0+. The sum of these terms contribute nothing to the integral in the limit
ε → 0+ as can be directly verified or by observing that the original integral (4.9) is
clearly finite and independent of ε.

Thus it remains to use (4.11) and evaluate the terms in the expansion of (4.10) that
include both p and v. On noting that, for the domain Ω \Bε, the (outward) pointing
normal n on ∂Bε is given by n = − x−x0

|x−x0 | , and the fact that C is symmetric it follows

that the cross terms in question are given by

µ2
∫

∂Bε

[
(m · n̂)∇p : C[∇v]−mαv ·C[∇p,α ]n̂−mαp ·C[∇v,α ]n̂

]
dS, (4.14)

20 The second derivative of W is symmetric: A :C[B] = B : C[A] for any A,B ∈Mn×n.
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where

n̂ = −n =
x− x0

|x− x0|
(4.15)

is the outward unit normal to the boundary of the ball Bε(x0).
We next calculate the contributions from each of the three terms listed in (4.14).

Term I. We first, note that

∇p(x) =
1

|x− x0|n
[
I− n x− x0

|x− x0|
⊗ x− x0

|x− x0|

]
(4.16)

and, in view of (4.15),

([(x− x0)⊗ (x− x0)] : C)n̂ =
[
(x− x0)⊗CT(x− x0)

]
n̂,

where C = C(x,x0) := C[∇v(x,x0)]. Thus, by (4.16), the divergence theorem, and
the fact that |x− x0| = ε for x ∈ ∂Bε, the first integral in (4.14) is equal to the inner
product of µ2(x0)m with the vector

1

εn

∫

∂Bε
(C : I) n̂ dS − n

εn+2

∫

∂Bε

[
(x− x0)⊗CT(x− x0)

]
n̂ dS

=
1

εn

∫

Bε
∇(C : I)dx− n

εn+2

∫

Bε
Div

[
(x− x0)⊗CT(x− x0)

]
dx. (4.17)

We note that DivxC = 0 and consequently

Div
[
(x− x0)⊗CT(x− x0)

]
= CT(x− x0) + (x− x0)C : I. (4.18)

Finally, we substitute and (4.18) into (4.17) and then let ε→ 0+ to conclude with
the aid of Proposition A.1 and (4.7)1,2 that the first integral in (4.14) is equal to

µ2ωn
n+ 2

m ·
[
2∇ (C[∇v] : I)− nDivC[∇v]T

]

=
µ2ωn
n+ 2

m · [(2(a+ b) + n(c− a))∇div v(x0,x0)− nb∆v(x0,x0)] . (4.19)

Term II. First note that p = ∇ζ, where ζ is the fundamental solution of Laplace’s
equation. Thus ∇p,α is a symmetric matrix and trace∇p,α= (div p),α = (∆ζ),α= 0.
Thus C[∇p,α ] = (a+ b)∇p,α by (4.6).

We next differentiate (4.16) to get

p,γαβ (x) =
−n

|x− x0|n+2

(
δαβ (xγ − xγ0) + δγβ(xα − xα0 ) + δαγ (xβ − xβ0)

− (n+ 2)
(xα − xα0 )(xβ − xβ0)(xγ − xγ0)

|x− x0|2
)
.
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Therefore for x ∈ ∂Bε (so that |x− x0| = ε) we find with the aid of (4.15) that

mαv ·C[∇p,α ]n̂ =
(a+ b)n

εn+1
[n(v · n̂)(m · n̂)− (m · v)]

=
(a+ b)n

εn+2
m · [n ((x− x0) · v)I− v⊗ (x− x0)] n̂.

Consequently, by the divergence theorem and the identity

Div [n ((x− x0) · v) I− v ⊗ (x− x0)] = n[∇v]T(x− x0)− [∇v](x− x0),

the second term in (4.14) is equal to

µ2n(a+ b)

εn+2
m ·

∫

Bε

(
[∇v](x− x0)− n[∇v]T(x− x0)

)
dx

→ µ2nωn(a+ b)

n+ 2
m · [∆v(x0,x0)− n∇div v(x0,x0)] (4.20)

as ε→ 0+, in view of Proposition A.1 and the identity Div[∇v]T = ∇div v.

Term III. We first note that, by (4.4), 0 = (Div(C[∇v]),α= DivC[∇v,α ] and hence

div
(
C[∇v,α ]T(x− x0)

)
= I : C[∇v,α ] in Ω. (4.21)

Therefore, by (4.11)2, (4.21), and the divergence theorem we find that

µ2
∫

∂Bε
mαp ·C[∇v,α ]n̂dS =

µ2

εn

∫

∂Bε
mα(x− x0) ·C[∇v,α ]n̂dS

=
µ2

εn

∫

Bε
mαI : C[∇v,α ] dx

→ µ2ωnm
αI : C[∇v,α (x0,x0)]

= µ2ωn(a+ b+ nc)m · ∇div v(x0,x0) (4.22)

as ε→ 0+, where we have once again made use of (4.7)1.
Finally, we subtract (4.22) from the sum of (4.19) and (4.20) and use (4.7)3 to

obtain the desired result. 2

5. An Example

For the remainder of the paper we take n = 3 and Ω = B, the unit ball in IR3. We
also assume that C is strongly elliptic so that (see, e.g., [48, Theorem A.1]) a > 0
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and a + b + c > 0. The next result gives a formula for v(x,x0) from which we can
explicitly calculate ∇xdivxv(x,x0) and hence evaluate the coefficient in the above
expansion. The formula is due originally to Lord Kelvin [50]) and can also be found
in [36]. To begin, choose a rectangular coordinate system (x1, x2, x3) on IR3 so that
x0 ∈ B satisfies x0 = (0, 0, |x0|) and define spherical coordinates ρ, φ, and θ by

x1 = ρ(cos θ)(sinφ), x2 = ρ(sinθ)(sinφ), x3 = ρ(cosφ).

PROPOSITION 5.1. ([48, Proposition 7.1]) Let C be strongly elliptic. Then the unique
solution of (4.4)–(4.5) is given by

v(x,x0) =
∞∑

k=1

v(k)(x,x0) + (1− ρ2)
∞∑

k=2

τk∇x(divxv(k)(x,x0)), (5.1)

where

v(k) = −ρk|x0|k−1(P ′k(cosφ) cos θ sinφ, P ′k(cosφ) sin θ sinφ, kPk(cosφ)), (5.2)

Pk denotes the kth-Legendre polynomial, and

τk :=
1
2(b+ c)

(2a+ b+ c)k − (a+ b+ c)
. (5.3)

Remark. Strong ellipticity is used to obtain the uniqueness of solutions to (4.4)–
(4.5).

The next result uses the above formula for v to explicitly calculate ∇div v.

THEOREM 5.2. Let v(x,x0) satisfy (5.1)–(5.3) then

[∇x (divxv) ]|x=x0
= −a

[ ∞∑

k=2

|x0|2k−4 k(k − 1)(2k− 1)(2k+ 1)

(2a+ b+ c)k − (a+ b+ c)

]
x0. (5.4)

Proof. In order to compute the required derivatives of v we first take the divergence
of (5.2) and make use of the identities (1 − t2)P ′′k (t) = 2tP ′k(t) − k(k + 1)Pk(t) and
(1− t2)P ′k(t) + ktPk(t) = Pk−1(t) to get

divxv(k) = −k(2k + 1)ρk−1|x0|k−1P ′k−1(cosφ)

and consequently ∇(div v(k)) is equal to

−k(2k + 1)ρk−2|x0|k−1




cos θ sinφ
[
(k − 1)Pk−1 − (cosφ)P ′k−1

]

sin θ sinφ
[
(k − 1)Pk−1 − (cosφ)P ′k−1

]

(k− 1)(cosφ)Pk−1 + (sin2 φ)P ′k−1


 . (5.5)
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We now consider two cases: (I) b+ c = 0 and (II) b+ c 6= 0. If b+ c = 0 then τk = 0
and hence if we let x = x0 = (0, 0, |x0|) and consequently φ = 0, ρ = |x0|, we find that
(5.1), (5.5), and the fact that Pk−1(1) = 1 imply

[∇x(divxv(k))]|x=x0
= −k(2k + 1)|x0|2k−3(0, 0, (k− 1)), (5.6)

and therefore

[∇x (divxv)] |x=x0
=
∞∑

k=1

−k(2k + 1)(k− 1)|x0|2k−3(0, 0, 1),

which is (5.4) with b+ c = 0.
If b+ c 6= 0 then by (4.7)3

∇(div v) =
−a
b+ c

∆v. (5.7)

We next compute ∆xv from the infinite series (5.1)–(5.2).
First, ∆v(k) = 0 and so does not contribute. Next,

∇[(1− ρ2)w(k)] = (1− ρ2)∇w(k) + w(k) ⊗∇(1− ρ2), w(k) := ∇(div v(k)),

and thus if we take the divergence of both sides

∆[(1− ρ2)w(k)] = (1− ρ2)∆w(k) + 2(∇w(k))[∇(1− ρ2)] + (∆(1− ρ2))w(k).

However,

∆w(k) = 0, ∇(1− ρ2) = −2(x1, x2, x3), ∆(1− ρ2) = −6,

and consequently

∆[(1− ρ2)w(k)] = −4(∇w(k))[(x1, x2, x3)]− 6w(k). (5.8)

Now

(∇w(k))[(x1, x2, x3)] = ρ
∂

∂ρ
w(k) = ρ

∂

∂ρ
∇div v(k)

and so if we take the partial derivative of (5.5) with respect to ρ, multiply by ρ, and
set x = x0 = (0, 0, |x0|) (φ = 0, ρ = |x0|, Pk−1(1) = 1) we find that

(∇w(k))[(x1, x2, x3)]
∣∣∣
x=x0

= −k(2k + 1)(k − 2)|x0|2k−3(0, 0, (k− 1)),

which together with (5.1), (5.6), and (5.8) yields

∆xv(x,x0)|x=x0
=
∞∑

k=1

τkk(2k + 1)(k − 1)[4(k − 2) + 6]|x0|2k−3(0, 0, 1). (5.9)

The desired result now follows from (5.3), (5.7), and (5.9). 2
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6. Conclusions

Our main result is the following.

THEOREM 6.1. Let (M1)–(M4) hold. Suppose C is strongly elliptic, n = 3, and
Ω = B, the unit ball in IR3. Then the configurational force on x0 satisfies

f(x0, λ) = −Ψ(|x0|, λ)x0, Ψ(t, λ) = (λ− λcrit)
2ψ(t) + o(|λ− λcrit|2),

where ψ > 0. Consequently if x0 6= 0 then f(x0, λ) 6= 0 for λ−λcrit > 0 and sufficiently
small.

Proof. In light of the example at the end of Section 3.1, f(x0, λ) is parallel to x0

and its length only depends on the norm of x0 (and λ). Thus

f(x0, λ) = −Ψ(|x0|, λ)x0,

for an appropriate scalar-valued function Ψ. However, by (2.2), Lemma 3.1, Theo-
rem 4.2, and Theorem 5.2

−f(x0, λ) · x0

|x0|
= δE = (λ− λcrit)

2ψ(|x0|)|x0|+ o(|λ− λcrit|2),

where

ψ(s) := κnµ(s)2

[ ∞∑

k=2

|x0|2k−4 ak(k − 1)(2k− 1)(2k+ 1)

(2a+ b+ c)k− (a+ b+ c)

]
.

Finally, the strong ellipticity of C (a > 0, a + b+ c > 0) yields the indicated sign for
ψ. 2

Consequently, the center is the only point in the ball where cavitation does not
generate configurational forces and so it is the only possible optimal cavitation point.

COROLLARY 6.2. Let the hypotheses of Theorem 6.1 be satisfied. Then for every
x0 ∈ B, with x0 6= 0, and every sufficiently small λ− λcrit > 0 there is a z ∈ B such
that

E(u(·, z, λ))< E(u(·,x0, λ)),

where E is the total elastic energy given by (1.2) and u(·,y, λ) is the minimizer of
(1.2) among all deformations that satisfy (1.1) and open at most a single new hole at
y ∈ B.

Proof. Fix x0 ∈ B with x0 6= 0. Then in view of Theorem 6.1 and (2.2)

E(ut(·,x0, λ)) < E(u(·,x0, λ)), (6.1)
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whenever t > 0 and λ− λcrit > 0 are sufficiently small. However, ut(·,x0, λ) creates a
cavity at the point x0 − tm, m := x0/|x0| and thus

E(u(·,x0− tm, λ)) ≤ E(ut(·,x0, λ)), (6.2)

since u(·,x0− tm, λ) is the minimizer of E among deformations that create a cavity
at x0 − tm. The desired result now follows from (6.1) and (6.2). 2

Figure 1. Cavitation followed by Fracture.

Finally, Figure 1 shows our speculation as to how fracture might follow cavitation,
in 2-dimensions, as mentioned in the Introduction. The imposed displacements on the
boundary (solid arrows) first induce a cavity to form in the illustration on the left.
This cavity has a configurational force (dotted-arrow) in the direction of the center.
In a purely elastic theory there must necessarily be no other precursors closer to the
origin. If additional energy (e.g., surface energy) is instead attributed to each precursor
then cavitation could occur first at this point provided a single large microvoid, with
small added energy inhibiting cavitation, were located there. We hypothesize that
further boundary displacement generates a crack that propagates toward the center
of the material in the illustration on the right. The analysis of Rice [42, 43] (see also
[9, 10, 16, 17, 23, 30]) may be particularly relevant here since δE is the J-integral in
this problem.

Appendix

In this section we prove the following result
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PROPOSITION A.1. Let G : Ω → Mn×n be continuously differentiable in a neigh-
borhood of x0. Then

lim
ε→0+

1

εn+2

∫

Bε(x0)
G(x)(x− x0) dx =

ωn
n+ 2

Div G(x0),

where ωn is the volume of the unit ball in IRn.

Proof. We first note that (x− x0) = 1
2∇x|x− x0|2 and hence

2G(x)(x− x0) = Div
(
|x− x0|2G(x)

)
− |x− x0|2Div G(x).

Therefore, by the divergence theorem
∫

Bε

[
2G(x)(x− x0) + |x− x0|2Div G(x)

]
dx

=

∫

∂Bε
|x− x0|2Gn dS = ε2

∫

∂Bε
Gn dS = ε2

∫

Bε
Div G dx,

where n is the outward unit normal to the boundary of Bε := Bε(x0): the ball of radius
ε centered at x0. Consequently,

2

εn+2

∫

Bε
G(x)(x− x0) dx =

1

εn

∫

Bε
Div G dx

− 1

εn+2

∫

Bε
|x− x0|2Div G dx

and the desired result now follows from the continuity of Div G at x0 and the Lebesgue
differentiation theorem for Lebesgue measure dx as well as the measure dmx := |x−
x0|pdx (for p > −n, m(Bε(x0)) = nωnε

n+p/(n+ p)). 2
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