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Abstract. Consider an incompressible, nonlinear, hyperelastic material which occupies the region
A ⊂ Rn, n ≥ 2, in its reference configuration, where A denotes the annular region

A = {x ∈ Rn : a < |x| < b } ,

0 < a < b. Deformations of A are therefore isochoric maps u : A → Rn and so satisfy the incom-
pressibility constraint

det∇u = 1.

The boundary of the annulus ∂A is separated into two disjoint pieces ∂A = ∂Ao ∪ ∂AI , where
∂AI = {x ∈ Rn : |x| = a} and ∂Ao = {x ∈ Rn : |x| = b} denote the inner and outer boundary
components respectively. We study displacement and mixed displacement/zero-traction boundary-
value problems in which we impose a displacement boundary condition of the form

u(x) = σx

on one of the boundary components (where σ > 0 is a given constant) and the displacement on the
remaining boundary component is either prescribed (in the case of the pure displacement boundary-
value problem) or left unspecified (in the case of the mixed boundary-value problem).

In this paper we use isoperimetric arguments to prove that the radially symmetric solutions to
these problems are global energy minimisers in various classes of (possibly non-symmetric) isochoric
deformations of the annulus.

Mathematics Subject Classifications (2000): 74B20, 49K20, 35J50, 74G65

Key words: Symmetry, incompressible elasticity, radial minimiser.
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1. Introduction

Consider an incompressible, nonlinearly elastic body that occupies the annular region

A = {x ∈ Rn : a < |x| < b } , (1.1)

0 < a < b, in its reference configuration (the physically relevant values of n are 2 and 3).
An admissible deformation of the body corresponds to a mapping u : A → Rn which is
one-to-one almost everywhere and satisfies the incompressibility1 constraint

det∇u = 1 for a.e. x ∈ A. (1.2)

Deformations satisfying the above condition are known as isochoric deformations. In non-
linear hyperelasticity, with each such deformation we associate a corresponding energy

E(u) =
∫

A
W (∇u(x)) dx, (1.3)

where W : Mn×n
1 → [0,∞) is the stored-energy function and Mn×n

1 denotes the set of n× n

matrices with determinant equal to one. If W is both isotropic and frame indifferent then

W (FQ) = W (QF) = W (F) for all F ∈ Mn×n
1 and Q ∈ SO(n),

where SO(n) denotes the special orthogonal group of n × n matrices. We next recall the
notion of a polyconvex stored-energy function in two and three dimensions:

• If n = 2, then W is polyconvex if

W (F) = G(F) for all F ∈ M2×2
1 ,

where G : M2×2
+ → R is convex;

• If n = 3, then W is polyconvex if

W (F) = G(F, adjF) for all F ∈ M3×3
1 ,

where G : M3×3
+ ×M3×3

+ → R is convex and adjF denotes the adjugate matrix2 of F.

1Vulcanized rubber is often modelled as an incompressible material.
2That is, the unique 3× 3 matrix satisfying (adjF)F = I for each F ∈ M3×3

1 .
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The results contained in this paper apply to stored-energy functions that have the fol-
lowing forms:

• If n = 2, then
W (F) = Φ(|F|), (1.4)

where Φ : R+ → R is convex and monotone increasing;

• If n = 3, then
W (F) = Φ(|F|2, |adjF|), (1.5)

where Φ : R+×R+ → R is monotone increasing in each of its arguments and convex.3

Boundary Value Problems.

Let
∂AI = {x ∈ Rn : |x| = a} , ∂Ao = {x ∈ Rn : |x| = b}

denote the inner and outer boundaries of the annulus, respectively. We seek equilibrium
states by minimising (1.3) on classes of admissible deformations satisfying given boundary
conditions (pure displacement and mixed displacement/traction).

Pure Displacement Boundary Value Problem.

In the pure displacement boundary-value problem we take µ > 0 and specify the conditions

u(x) = µx for all x ∈ ∂AI , u(x) = λx for all x ∈ ∂Ao, (1.6)

where λ > 0 satisfies λnbn − µnan = bn − an.

Mixed Displacement/Traction Boundary Value Problem.

In the mixed displacement/zero-traction boundary value problem we only consider tensile
boundary conditions; we specify the condition

u(x) = µx for all x ∈ ∂AI , (1.7)

where µ ≥ 1 and the outer boundary ∂Ao is left free; or the condition

u(x) = λx for all x ∈ ∂Ao, (1.8)

where λ ≥ 1 and the inner boundary ∂AI is left free.

3Note that all such stored-energy functions are frame-indifferent, isotropic, and polyconvex. This class of
energy functions includes the neo-Hookean and Mooney-Rivlin energy functions.
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For polyconvex stored-energy functionsW , the existence theory of Ball [1] gives hypothe-
ses under which a minimiser of (1.3) exists for either of the above problems in a general class
of deformations satisfying (1.2).

In section 2 we show that the unique radial deformation satisfying (1.8) (or (1.7)) and
(1.2) is the map

urad
λ (x) = (Rn + bn(λn − 1))

1
n

x
|x|

for all x ∈ A. (1.9)

In section 3 of this paper we use a symmetrisation argument based on isoperimetric
estimates on deformed spheres to prove that the radial incompressible deformation (1.9)
is a global minimiser of the energy (given by (1.3) and (1.5)) amongst all (possibly non-
symmetric) C1 isochoric deformations of the annulus. In section 5 we extend our arguments
to deformations lying in the Sobolev space W 1,p(A; R3), p > 3. We prove, in particular, that
these radial deformations must coincide with the energy minimisers given by the existence
theory of Ball in [1].

Finally, we note that the results in this paper yield a one-parameter family of inho-
mogeneous deformations, each of which is a global minimiser of a homogeneous energy for
corresponding homogeneous boundary values. To our knowledge, the only other construc-
tion of inhomogeneous energy-minimising deformations is due to Zhang [28] who shows that,
in a neighborhood of a linearization-stable, stress-free reference configuration, the solutions
obtained by the implicit function theorem are indeed the global minimisers obtained by
Ball [1].

For ease of exposition we will present the results in sections 3–5 for the case n = 3 and
note the corresponding results and extensions for the case n = 2.

2. Radial Deformations of A.

It is well known (see, e.g., [4]) that if u ∈ C1(A; Rn), is a radial deformation:

u(x) =
r(R)
R

x, R := |x|, r : [a, b] → [0,∞),

then

∇u(x) = r′(R)
(

x⊗ x
|x|2

)
+
r

R

(
I− x⊗ x

|x|2

)
. (2.1)

Condition (1.2) then forces

r′(R)
(
r(R)
R

)n−1

= 1, (2.2)
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from which it follows that r(R) = (Rn + cn)
1
n , where c is a constant. Hence, the only

kinematically admissible isochoric radial deformation satisfying (1.6) (or (1.6)1 only) is

urad
µ (x) =

rinc
µ (R)
R

x, (2.3)

rinc
µ (R) := [Rn + an(µn − 1)]

1
n = [Rn + bn(λn − 1)]

1
n (2.4)

(see, e.g., [4]). Dropping the subscript µ, for the moment, it then follows from (2.1) and
(2.2) that

∇urad(x) =
(

R

rinc(R)

)n−1(x⊗ x
|x|2

)
+
rinc(R)
R

(
I− x⊗ x

|x|2

)
, (2.5)

adj
(
∇urad(x)

)
=
(
rinc(R)
R

)n−1(x⊗ x
|x|2

)
+

R

rinc(R)

(
I− x⊗ x

|x|2

)
, (2.6)

and hence that

|∇urad|2 = tr
[
(∇urad)T∇urad

]
=
(

R

rinc(R)

)2(n−1)

+ (n− 1)
(
rinc(R)
R

)2

(2.7)

and ∣∣∣adj
(
∇urad

)∣∣∣2 =
(
rinc(R)
R

)2(n−1)

+ (n− 1)
(

R

rinc(R)

)2

. (2.8)

Remark 2.1. It is clear that, in general, there are infinitely many isochoric (non-radial)
deformations of an annulus: e.g., in the case n = 2 consider deformations of the form

u(x) = ρ(R)
(

cos(θ + ψ(R))
sin(θ + ψ(R))

)
for all x ∈ A, (2.9)

where (R, θ) are polar coordinates in the plane, R = |x|, and ρ ∈ C1([a, b]; [a, b]) and
ψ ∈ C1([a, b]) satisfy the boundary conditions ρ(a) = µa, ρ(b) = λb, λnbn − µnan = bn − an,
ψ(a) = 0, and ψ(b) = 2Nπ (corresponding to N ∈ N “twists” of the annulus). It follows
that

∇u =
[
ρ′c− ρψ′s
ρ′s+ ρψ′c

]
⊗ 1
R

[
x1

x2

]
+

1
R

[
−ρs
ρc

]
⊗ 1
R

[
−x2

x1

]
,

where c = c(R, θ) := cos(θ + ψ(R)) and s = s(R, θ) := sin(θ + ψ(R)), and consequently

|∇u|2 = tr
[
(∇u)(∇u)T

]
=
( ρ
R

)2
+ (ρ′)2 + (ρψ′)2 (2.10)

and
(det∇u)2 = det

[
(∇u)(∇u)T

]
=
[
ρ′
ρ

R

]2
.

Hence, for isochoric maps,

ρ(R) =
(
R2 + (λ2 − 1)b2)

) 1
2 (2.11)

and so (2.9) is a map of the annulus satisfying (1.6) for any choice of ψ and N .
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3. Symmetry of Energy Minimising Deformations in Tension.

Let u ∈ C1(A; R3) be any isochoric deformation that satisfies4 (1.6)1 for some µ ≥ 1.
Our aim is to prove, in particular, that the energy functional (1.3) satisfies

E(u) ≥ E(urad
µ )

for any polyconvex stored-energy function W of the form

W (F) = Φ(|F|2, |adjF|), (3.1)

where Φ : R+ × R+ → R is convex and monotone increasing in each of its arguments.

To present the main ideas in our proof we present our results first for the Dirichlet
integral W (F) = |F|2 (so that Φ(x, y) = x in (3.1)) and secondly for the case W (F) =
| adjF| (so that Φ(x, y) = y). To present the key ideas and simplify the technical details
we will assume that u ∈ C1(A; R3), however, the proofs easily generalise to wider classes of
deformations u in the Sobolev space W 1,p(A; R3), p > 3. (See section 5.)

Definition 3.1. For the displacement problem and the mixed problem where the outer
boundary is left free we let µ > 0 and define the set of admissible deformations by

AI
µ =

{
u ∈ C1(A; R3) : det∇u ≡ 1, u is one-to-one, u(x) = µx for x ∈ ∂AI

}
.

For the mixed problem where the inner boundary is left free we let λ > 0 and define the set
of admissible deformations by

Ao
λ =

{
u ∈ C1(A; R3) : det∇u ≡ 1, u is one-to-one, u(x) = λx for x ∈ ∂Ao

}
.

For simplicity of exposition we present all of our results for u ∈ AI
µ and note that the proof

for u ∈ Ao
λ is similar.

The next proposition will be central to the arguments in this paper and shows that
the radial map (2.3)–(2.4) has the property that, amongst all maps in AI

µ, it minimises the
deformed area of each sphere SR, R ∈ [a, b].

Proposition 3.2. Let µ > 0 and u ∈ AI
µ. Then, for each R ∈ [a, b],

area(u(SR)) ≥ area(urad
µ (SR)),

where urad
µ is given by (2.3)–(2.4) and SR is the sphere of radius R centred at the origin.

Moreover, the above inequality is strict at any R for which u(SR) is not a sphere.

4By Remark 2.1 there are an infinite number of such deformations.
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Proof. Fix R ∈ [a, b]. Let u ∈ C2(A; R3). Then the well-known divergence identity

det∇u =
∂

∂xα

(
1
3
ui(adj∇u)α

i

)
= div

(
1
3
(adj∇u)u

)
,

when integrated over BR\Ba, yields5∫
BR\Ba

det∇u dx =
∫

SR

1
3
u · (adj∇u)Tn −

∫
Sa

1
3
u · (adj∇u)Tn, (3.2)

where n = (n1, n2, n3) is the outward unit normal to BR\Ba. However, C2 is dense in C1

and so the bounded convergence theorem implies that (3.2) is satisfied by all u ∈ C1(A; R3)
and hence, in particular, for all u ∈ AI

µ.

Now fix u ∈ AI
µ. The proof will follow from the classical isoperimetric inequality once

we prove that the volumes of the regions enclosed by the surfaces u(SR) and urad
µ (SR) are

the same. To this end we first note that, since det∇u ≡ 1,∫
BR\Ba

det∇u dx =
4
3
π(R3 − a3) (3.3)

while the boundary condition u(x) = µx for x ∈ Sa together with (2.3)–(2.6) implies that
the boundary integral on Sa is given by∫

Sa

1
3
u · (adj∇u)Tn =

4
3
πµ3a3, (3.4)

and hence is constant for all maps u ∈ AI
µ. In particular, applying (3.2)–(3.4) to urad

µ yields∫
SR

1
3
u · (adj∇u)Tn =

∫
SR

1
3

(
urad

µ

)
.
(
adj∇urad

µ

)T
n, (3.5)

where n is now the outward unit normal to BR. Next, in view of (2.3) and (2.6), the
right-hand integral in (3.5) is given by∫

SR

1
3

(
urad

µ

)
.
(
adj∇urad

µ

)T
n =

4
3
π
[
rinc
µ (R)

]3
, (3.6)

which is the volume of the region bounded by the spherical surface urad
µ (SR).

Finally, the Jordan separation theorem implies that u(SR) divides R3 into two open
regions, one bounded and one unbounded. Setting y = u(x) and using the change of
variables formula for surface integrals6 in the left-hand integral in (3.5) we obtain∫

SR

1
3
u · (adj∇u)Tn =

∫
u(SR)

1
3

y ·N, (3.7)

5In order to simplify our presentation we drop the surface measure, dS, from integrals over SR.
6Since our deformations preserve orientation (3.7) is satisfied with N(u(y)) = [A(x)]Tn(x)/|[A(x)]Tn(x)|,

A(x) = adj∇u(x). However, (3.7) is also valid for smooth injective mappings that reverse orientation; in
this case the outward unit normal N is given by minus this quantity.
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where N is the outward unit normal to the C1 surface u(SR), that is, where N points into
the unbounded region. Consequently, an application of the divergence theorem to the right-
hand side of (3.7) shows that it is equal to the volume of the bounded region enclosed by
u(SR). Therefore, by (3.5)–(3.7) it follows that u(SR) and urad

µ (SR) both enclose the same
volume; the claims of the lemma, both the area inequality and its strictness when u(SR) is
not a sphere, now follow from the classical isoperimetric inequality.

3.1. The case W (F) = |F|2.

Lemma 3.3. Let µ > 0, u ∈ AI
µ, and R ∈ [a, b]. At each point x ∈ SR let n, t1, t2 denote a

right-handed orthonormal basis with n = x
|x| . Then

|∇u(x)|2 =
∣∣∣∣∂u∂n

∣∣∣∣2 +
∣∣∣∣ ∂u∂t1

∣∣∣∣2 +
∣∣∣∣ ∂u∂t2

∣∣∣∣2 for x ∈ SR.

Proof. This is a standard consequence of the invariance of the Dirichlet integral under
orthogonal changes of coordinates that follows easily on writing

∇u = ∇u [n⊗ n + t1 ⊗ t1 + t2 ⊗ t2]

=
∂u
∂n

⊗ n +
∂u
∂t1

⊗ t1 +
∂u
∂t2

⊗ t2

and then observing that

|∇u|2 = tr
(
(∇u)(∇u)T

)
= tr

(
∂u
∂n

⊗ ∂u
∂n

+
∂u
∂t1

⊗ ∂u
∂t1

+
∂u
∂t2

⊗ ∂u
∂t2

)

=
∣∣∣∣∂u∂n

∣∣∣∣2 +
∣∣∣∣ ∂u∂t1

∣∣∣∣2 +
∣∣∣∣ ∂u∂t2

∣∣∣∣2 ,
as claimed.

Lemma 3.4. Let µ > 0 and u ∈ AI
µ. Then for each x ∈ SR, R ∈ [a, b], we have

|∇u|2 ≥ 1∣∣∣ ∂u
∂t1

× ∂u
∂t2

∣∣∣2 + 2
∣∣∣∣ ∂u∂t1 × ∂u

∂t2

∣∣∣∣ . (3.8)

Proof. It follows from Lemma 3.3 and the arithmetic-geometric inequality that

|∇u|2 ≥
∣∣∣∣∂u∂n

∣∣∣∣2 + 2
∣∣∣∣ ∂u∂t1

∣∣∣∣ ∣∣∣∣ ∂u∂t2
∣∣∣∣ ≥ ∣∣∣∣∂u∂n

∣∣∣∣2 + 2
∣∣∣∣ ∂u∂t1 × ∂u

∂t2

∣∣∣∣ . (3.9)

Next note that since u is isochoric the Cauchy-Schwarz inequality implies

1 = det∇u =
∂u
∂n

·
(
∂u
∂t1

× ∂u
∂t2

)
≤
∣∣∣∣∂u∂n

∣∣∣∣ ∣∣∣∣ ∂u∂t1 × ∂u
∂t2

∣∣∣∣ . (3.10)

If we combine this with (3.9) it follows that (3.8) holds.
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Lemma 3.5. Let

g(t) =
1
t2

+ 2t for t ∈ (0,∞)

then g is convex on (0,∞) and monotone increasing for t ≥ 1.

Remark 3.6. Note that the function
√
g(t), which corresponds to the choice of stored

energy function W (F) = |F| (rather than W (F) = |F|2), is not convex for large values of t.

Lemma 3.7. Let µ > 0 and u ∈ AI
µ. Then, for each R ∈ [a, b],

∫
SR

|∇u|2 ≥
∫

SR

g

(∣∣∣∣ ∂u∂t1 × ∂u
∂t2

∣∣∣∣) ≥ 4πR2g

∫SR

∣∣∣ ∂u
∂t1

× ∂u
∂t2

∣∣∣
4πR2

 . (3.11)

Proof. If we integrate (3.8) over SR the result will follow from Jensen’s inequality since g
is convex by Lemma 3.5.

Lemma 3.8. Let µ ≥ 1 and u ∈ AI
µ. Then, for each R ∈ [a, b],

∫
SR

∣∣∣∣ ∂u∂t1 × ∂u
∂t2

∣∣∣∣ ≥ ∫
SR

∣∣∣∣∣∂urad
µ

∂t1
×
∂urad

µ

∂t2

∣∣∣∣∣ = 4π
[
rinc
µ (R)

]2 ≥ 4πR2

and hence ∫
SR

∣∣∣ ∂u
∂t1

× ∂u
∂t2

∣∣∣
4πR2

≥

∫
SR

∣∣∣∂urad
µ

∂t1
× ∂urad

µ

∂t2

∣∣∣
4πR2

≥ 1.

Proof. This result is an immediate consequence of (2.3), (2.4), and Proposition 3.2 since,
for any v ∈ AI

µ and R ∈ [a, b],

∫
SR

∣∣∣∣ ∂v∂t1 × ∂v
∂t2

∣∣∣∣ = area(v(SR)) and
[
rinc
µ (R)

]3
= R3 + a3(µ3 − 1) ≥ R3

for µ ≥ 1.

Theorem 3.9. Let µ ≥ 1 and u ∈ AI
µ. Then∫

A
|∇u|2dx ≥

∫
A
|∇urad

µ |2dx. (3.12)
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Proof. If we integrate (3.11) with respect to R and make use of Lemmas 3.5 and 3.8 we
find that ∫

A
|∇u|2dx ≥

∫ b

a
4πR2g

∫SR

∣∣∣ ∂u
∂t1

× ∂u
∂t2

∣∣∣
4πR2

 dR

≥
∫ b

a
4πR2g


∫
SR

∣∣∣∂urad
µ

∂t1
× ∂urad

µ

∂t2

∣∣∣
4πR2

 dR. (3.13)

Next note that by (2.1) and (2.7)

g


∫
SR

∣∣∣∂urad
µ

∂t1
× ∂urad

µ

∂t2

∣∣∣
4πR2

 = g

(rinc
µ (R)
R

)2
 = |∇urad

µ |2,

where urad
µ and rinc

µ are given by (2.3) and (2.4). If we multiply the above equation by 4πR2

and integrate with respect to R we find, with the aid of (3.13), that (3.12) is satisfied.

Remark 3.10. In the two-dimensional case, n = 2, the result corresponding to Theorem
3.9 is that ∫

A
|∇u| dx ≥

∫
A
|∇urad

µ | dx for all u ∈ AI
µ,

where urad
µ is given by (2.3)–(2.4) with n = 2. This follows by analogous arguments to the

case n = 3 with the following modifications:

1. For n = 2, the result corresponding to Proposition 3.2 is that urad
µ minimises the

deformed length of each circle SR for each R ∈ [a, b].

2. For n = 2, the estimate corresponding to Lemma 3.4 is that for each x ∈ SR and
R ∈ [a, b]

|∇u| ≥

(∣∣∣∣∂u∂t
∣∣∣∣−2

+
∣∣∣∣∂u∂t

∣∣∣∣2
) 1

2

.

3. The convex function g(t) in Lemma 3.5 is replaced by the convex function

g̃(t) =
(
t−2 + t2

) 1
2 for t ∈ (0,∞).

3.2. The case W (F) = | adjF|.

In this section we derive similar estimates to those obtained in the previous section
but this time for the energy function W (F) = | adjF|. We will make use of the following
standard vector identities which are stated together in the following lemma for convenience.
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Lemma 3.11. Let n, t1, t2 be a right-handed orthonormal set of vectors in R3. Then:

(i) Let A ∈M3×3
1 then adj (adjA) = A;

(ii) Let G ∈M3×3 and a,b ∈ R3 then Ga×Gb = (adjG)T(a× b);

(iii) Since n = t1 × t2 it follows from (ii) that, for any G ∈M3×3,

|(Gt1)× (Gt2)| =
∣∣∣(adjG)T n

∣∣∣ .
Lemma 3.12. Let µ > 0 and u ∈ AI

µ. Then for each x ∈ SR, R ∈ [a, b], we have

| adj∇u|2 ≥
∣∣∣(adj∇u)Tn

∣∣∣2 +
2∣∣∣(adj∇u)Tn

∣∣∣ . (3.14)

Proof. Writing G := adj∇u we note that

|G|2 =
∣∣GT

∣∣2 =
∣∣GTn

∣∣2 +
∣∣GTt1

∣∣2 +
∣∣GTt2

∣∣2
≥
∣∣GTn

∣∣2 + 2
∣∣(GTt1

)
×
(
GTt2

)∣∣ . (3.15)

Next, observe that, by (i) and (iii) of Lemma 3.11,(
(adj∇u)Tt1

)
×
(
(adj∇u)Tt2

)
= (∇u)n. (3.16)

Finally, by the Cauchy-Schwarz inequality and the fact that det∇u = 1,

1 = |n|2 =
∣∣∣(∇u)n · (adj∇u)Tn

∣∣∣ ≤ ∣∣∣(∇u)n
∣∣∣ ∣∣∣(adj∇u)Tn

∣∣∣ . (3.17)

The result (3.14) now follows on combining (3.15)–(3.17).

Lemma 3.13. Define

h(t) =

√
t2 +

2
t

for t ∈ (0,∞).

Then h is convex on (0,∞) and monotone increasing for t ≥ 1.

Theorem 3.14. Let µ ≥ 1 and u ∈ AI
µ. Then∫

A
| adj∇u| dx ≥

∫
A
| adj∇urad

µ | dx. (3.18)
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Proof. The proof is analogous to that of Theorem 3.9. By Lemmas 3.12, 3.13, and Jensen’s
inequality

∫ b

a

∫
SR

| adj∇u| dx ≥
∫ b

a
4πR2h

∫SR

∣∣∣(adj∇u)Tn
∣∣∣

4πR2

 dR

≥
∫ b

a
4πR2h

∫SR

∣∣∣(adj∇urad
µ

)Tn
∣∣∣

4πR2

 dR,

where the last inequality follows from the monotonicity of h and Proposition 3.2. We have
also used the fact that

∫
SR
|(adj∇u)Tn| is the area of u (SR) since, by Lemma 3.11(iii),∫

SR

∣∣∣(adj∇u)Tn
∣∣∣ = ∫

SR

∣∣∣∣ ∂u∂t1 × ∂u
∂t2

∣∣∣∣ = area(u(SR)).

Next, note that by (2.6) and (2.8),

h

∫SR

∣∣∣(adj∇urad
µ

)Tn
∣∣∣

4πR2

 = h

(rinc
µ (R)
R

)2
 = | adj∇urad

µ |,

where rinc
µ and urad

µ are related by (2.3). If we multiply the above equation by 4πR2 and
integrate with respect to R we arrive at (3.18) as claimed.

3.3. The general case: W (F) = Φ(|F|2, | adjF|).

Now suppose thatW (F) = Φ(|F|2, | adjF|). If we now combine the arguments of sections
3.1 and 3.2 we obtain the following result.

Theorem 3.15. Let µ ≥ 1 and

W (F) = Φ(|F|2, | adjF|),

where Φ : R+×R+ → R is convex, and Φ is an increasing function in each of its arguments.
Then, for any u ∈ AI

µ, ∫
A
W (∇u) dx ≥

∫
A
W (∇urad

µ ) dx.

Proof. We sketch the proof of this energy inequality since it is analogous to the proofs of
Theorems 3.9 and 3.14: using Jensen’s inequality, the monotonicity of Φ, and the isoperi-
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metric inequality∫
A
W (∇u) dx =

∫ b

a

(∫
SR

Φ(|∇u|2, | adj∇u|)
)
dR

≥
∫ b

a
4πR2Φ

(
g

(∫
SR
|∇u|2

4πR2

)
, h

(∫
SR
| adj∇u|
4πR2

))
dR

≥
∫ b

a
4πR2 Φ

(
g

(∫
SR
|∇urad

µ |2

4πR2

)
, h

(∫
SR
| adj∇urad

µ |
4πR2

))
dR

=
∫ b

a
4πR2Φ

(
|∇urad

µ |2 , | adj∇urad
µ |

)
dR =

∫
A
W (∇urad

µ ) dx,

where g and h are given by Lemmas 3.5 and 3.13.

Remark 3.16. The energy of u will be strictly greater than the energy of urad
µ if any of the

inequalities used in our derivation is strict. In particular, in equation (3.17) (and (3.10))∣∣∣(∇u)n · (adj∇u)Tn
∣∣∣ ≤ ∣∣∣(∇u)n

∣∣∣ ∣∣∣(adj∇u)Tn
∣∣∣

is a strict inequality unless the vectors (∇u)n and (adj∇u)Tn are parallel. In this case it
then follows that n is an eigenvector of (∇u)T∇u.

Remark 3.17. The corresponding result in the two-dimensional case, n = 2, is that if

W (F) = Φ(|F|),

where Φ : R+ → R is convex and monotone increasing, then for any u ∈ AI
µ∫

A
W (∇u) dx ≥

∫
A
W (∇urad

µ ) dx.

The proof of this follows exactly as in Theorem 3.15 on noting the results of Remark 3.10.

4. Symmetry of Energy Minimising Deformations in Compression.

In this section we will show that, for the pure displacement problem, the results in the
previous section can be extended to compression (i.e., to the case µ ∈ (0, 1)).

Definition 4.1. Fix µ > 0 and define the set of admissible deformations by

AD
µ =

{
u(x) = µx for x ∈ ∂AI ,u ∈ C1(A; R3) : det∇u ≡ 1,
u(x) = λx for x ∈ ∂Ao

}
,

where λ > 0 satisfies λ3b3 − µ3a3 = b3 − a3.
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We note results from degree theory (see, e.g., [9] or [21]) imply that the image of A
under any continuous, one-to-one map that satisfies the given boundary conditions is the
annulus

A∗ =
{
x ∈ R3 : µa < |x| < λb

}
,

and, moreover, that such a map is open and satisfies u(A) = A∗. The following result then
follows from degree theory and the inverse function theorem.7

Proposition 4.2. Let µ > 0 and u ∈ AD
µ . Then u is one-to-one and satisfies u(A) = A∗.

Moreover, u has an inverse v = vu := u−1 ∈ C1(A∗;A); this inverse is one-to-one and
satisfies v(A∗) = A, det∇v ≡ 1, and

v(y) = µ−1y for y ∈ ∂A∗
I , v(y) = λ−1y for y ∈ ∂A∗

o,

where ∂A∗
I and ∂A∗

o are the inner and outer boundaries of A∗, respectively.

In order to compare energies in compression we follow Ball [2, pp. 210–211] and change
variables to the deformed configuration.

Proposition 4.3. Let µ > 0 and u ∈ AD
µ . Suppose that Ψ : R+ × R+ → R is continuous.

Then u and its inverse v satisfy∫
A

Ψ
(
|∇xu(x)|, | adj∇xu(x)|2

)
dx =

∫
A∗

Ψ
(
| adj∇yv(y)|, |∇yv(y)|2

)
dy.

Proof. Let u ∈ AD
µ with inverse v. Then x 7→ Ψ

(
|∇u(x)|, | adj∇u(x)|2

)
is continuous and

so the change of variables formula together with det∇v ≡ 1 yields∫
A

Ψ
(
|∇xu(x)|, | adj∇xu(x)|2

)
dx =

∫
A∗

Ψ
(
|∇xu(v(y))|, | adj∇xu(v(y))|2

)
dy. (4.1)

Next, (u ◦ v)(y) = y and hence [∇xu(v(y))][∇yv(y)] = I. Therefore, since adj∇v =
[∇v]−1 for any isochoric deformation,

∇xu(v(y)) = adj
[
∇yv(y)

]
for every y ∈ A∗.

Consequently, if we take the adjugate of both sides and apply Lemma 3.11(i) we find that

adj
[
∇xu(v(y))

]
= ∇yv(y) for every y ∈ A∗.

The last two equations and (4.1) then yield the desired result.

Since µ−1 ≥ 1 when µ ≤ 1 the results in the previous section together with Proposi-
tion 4.3 then yield the main result of this section.

7See, e.g., [6, Theorem 5.5-2] and recall that u ∈ C1(A) means u is C1 on a open set containing A.
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Theorem 4.4. Let µ ∈ (0, 1] and

W (F) = Ψ(|F|, | adjF|2),

where Ψ : R+×R+ → R is convex and Ψ is an increasing function in each of its arguments.
Then, for any u ∈ AD

µ , ∫
A
W (∇u) dx ≥

∫
A
W (∇urad

µ ) dx.

Finally, Theorems 3.15 and 4.4 together yield the following result.

Corollary 4.5. Let µ > 0 and

W (F) = Ψ(|F|2, | adjF|2),

where Ψ : R+×R+ → R is convex and Ψ is an increasing function in each of its arguments.
Then, for any u ∈ AD

µ , ∫
A
W (∇u) dx ≥

∫
A
W (∇urad

µ ) dx.

Remark 4.6. The results in Section 3 rely on the idea that the image of each spherical shell
centred at the origin in the reference configuration, SR ⊂ A, prefers to retain its spherical
shape in order to minimize the elastic energy. The results in this section instead use the
property that the preimage of any spherical shell centred at the origin, in the deformed
configuration, Sr ⊂ A∗, prefers to be the image of some spherical shell centred at the origin.
This idea cannot be applied unless the deformed configuration is the union of such shells,
which necessitates that the image of the annulus A be another annulus; thus the technique
in this section is only applicable to the pure displacement problem.

5. Sobolev Deformations: Symmetry of Global Minimisers

We now generalize the results of sections 3 and 4 to allow for deformations given by
the existence theory of Ball [1] (and subsequent generalisation in [5, 19, 24, 25]). In this
section we restrict attention to the displacement boundary-value problem and the mixed
problem with a free outer boundary. There are technical difficulties associated with the
mixed problem with a free inner boundary: in particular, it is not clear to us that part (f)
of Proposition 5.5 remains valid for this problem.8

Definition 5.1. Suppose that p > 2 and µ > 0. For the pure displacement problem we
define the set of admissible Sobolev deformations by

Sp
µ =

{
u(x) = µx for x ∈ ∂AI ,u ∈W 1,p(A; R3) : det∇u = 1 a.e.,
u(x) = λx for x ∈ ∂Ao

}
,

8However, this difficulty can be avoided by additional assumptions as to what constitutes a deformation,
see, e.g., Henao [13].
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where λ > 0 satisfies λ3b3−µ3a3 = b3−a3 and W 1,p(A; R3) denotes the usual Sobolev space
of vector-valued functions u ∈ Lp(A; R3), whose distributional derivative also lies in Lp. If
p > 3 then, by the Sobolev imbedding theorem, each u ∈ Sp

µ has a representative that is
continuous9 and so we may then assume that u ∈W 1,p(A) ∩ C0(A).

For the mixed problem, where the outer boundary is free, we take p > 3 and define the
set of admissible Sobolev deformations by

Ŝp
µ =

{
det∇u = 1 a.e., u(x) /∈ Bµa for a.e. x ∈ A,

u ∈W 1,p(A) ∩ C0(A) :
vol(u(A)) = 4π(b3−a3)

3 , u(x) = µx for x ∈ ∂AI

}
.

Remark 5.2. The inclusion u(P ) ⊂ Bµa for a set of positive measure P can occur when u
is not isochoric (see, e.g. Figure 6 in [17]). However, for p > 6 (p > n(n−1) in n-dimensions)
isochoric mappings in W 1,p are open, by a result of Villamor and Manfredi [26] (see, also
[12, 15]). It follows that if, in addition, u is one-to-one a.e. then u(x) /∈ Bµa for a.e. x ∈ A.
When p ∈ (3, 6] it is not clear to us if this containment constraint is then a consequence of
our other hypotheses. Note that n = 2 yields p > 2(2− 1) = 2 and so the constraint is not
needed.

The next two results, which give invertibility properties of deformations, are due to
Ball [3] and Ciarlet and Nečas [5], respectively (see also [9, Chapter 6]).

Proposition 5.3. Let p > 3 and µ > 0. Suppose that u ∈ Sp
µ. Then

(a) There exists a Lebesgue null set N ⊂ A such that u is one-to-one on A\N ; and

(b) u(A) = A∗.

Moreover, if in addition adj∇u ∈ Lq(A) for some q > 3 then

(c) u is one-to-one on A;

(d) u(A) = A∗; and

(e) u has an inverse v ∈ W 1,q(A∗) ∩ C0(A∗) that satisfies ∇yv(y) = [∇xu(v(y))]−1 for
a.e. y ∈ A∗, where ∇w denotes the matrix of weak derivatives of a mapping w.

Proposition 5.4. Let p > 3 and µ > 0. Suppose that u ∈ Ŝp
µ. Then there exists a Lebesgue

null set N ⊂ A such that u is one-to-one on A\N .

Before proceeding further we note certain other key properties of such mappings.

Proposition 5.5. Let p > 2 and suppose that u ∈ W 1,p(A; R3) is one-to-one a.e. and
satisfies det∇u > 0 a.e. on A. Then for L1 a.e. R ∈ (a, b),

9For p ∈ [2, 3] see [27, Theorem 2.3.2] and [19, 24, 25].
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(a) u|SR
∈W 1,p(SR) ∩ C0(SR);

(b) u(SR) is H2 measurable with H2 (u(SR)) ≤
∫
SR
|(adj∇u)Tn| dH2

x;

(c) ∂∗ (imT (u, SR)) is H2 measurable with H2 (∂∗(imT(u, SR))) = H2 (u(SR));

(d) 36π
[
L3 (imT(u, SR))

]2 ≤ [H2 (∂∗(imT(u, SR)))
]3;

(e) For any v ∈ C1(R3)∫
R3

degree(u, SR,y) div v(y) dy =
∫

SR

v(u(x)) · (adj∇u(x))Tn(x) dH2
x; and

(f) If p > 3, µ > 0, and u ∈ Sp
µ ∩ C0(A) or u ∈ Ŝp

µ then each y ∈ R3\u(SR) satisfies
degree(u, SR,y) = 1 or degree(u, SR,y) = 0.

Here
imT(u, SR) :=

{
y ∈ R3\u(SR) : degree(u, SR,y) 6= 0

}
(5.1)

is the topological image of SR under u, H2 denotes two-dimensional Hausdorff measure, ∂∗Ω
denotes the reduced boundary10 of Ω, L3 denotes three-dimensional Lebesgue measure, and
degree denotes the Brouwer degree.11

Remark 5.6. Proposition 5.5(a) is well known, see, e.g., [7, 9, 29]. Part (b) is due to Marcus
and Mizel [16] (see also [8, 9]). Part (c) can be found in, e.g., the proof of Lemma 3.5 (steps
1–3) in [17]. Part (d) is a version of the classical isoperimetric inequality. It can be found
in, for example, [7, p. 190] or [29, Theorem 5.4.3]; the given (dimensionally dependent)
constant 36π can be found in Federer [8, pp. 275, 278]. Part (e) can be found in, e.g., [18,
Proposition 2.1].

Proof of (f). Let p > 3 and u ∈ Sp
µ ∩ C0(A) or u ∈ Ŝp

µ. Define an extension of u by

ue(x) =

{
u(x), if x ∈ A,
µx, if x ∈ Ba = Bb\A.

Clearly, ue ∈W 1,p(Bb) ∩ C0(Bb) and det∇ue > 0 a.e. in Bb.

If u ∈ Sp
µ ∩ C0(A) then, in view of Proposition 5.3, ue is one-to-one a.e. on Bb. If

instead u ∈ Ŝp
µ the same conclusion follows from Proposition 5.4 together with the exclusion

property u(x) /∈ Bµa for a.e. x ∈ A. In either case it follows that ue satisfies condition
(INV) of Müller and Spector [17]. Thus, we can apply Lemma 3.5 in [17] to conclude that
the degree only assumes the values zero and one. Finally, for R ∈ (a, b) the functions u and
ue are equal, which establishes (f) as the degree only depends on the boundary values.

10See, e.g., Chapter 5 in either [7] or [29].
11See, e.g., [9] or [21].
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We are now ready to prove the analogue of Proposition 3.2 in a Sobolev space.

Lemma 5.7. Let µ > 0, p > 3, and u ∈ Sp
µ (or Ŝp

µ). Then for almost every R ∈ (a, b)

H2(u(SR)) ≥ H2(urad
µ (SR)),

where urad
µ is given by (2.3)–(2.4).

Proof. We first note that, since urad
µ (SR) is the sphere of radius rinc

µ (R),

36π
[
L3
(
Brinc

µ (R)

)]2
=
[
H2
(
urad

µ (SR)
)]3

. (5.2)

The desired result will follow from (5.2) and the isoperimetric inequality, Proposition 5.5(c,d),
once we establish that the open set imT(u, SR) has the same volume as Brinc

µ (R), i.e.,
4
3πr

inc
µ (R)3 = 4

3π[R3 + a3(µ3 − 1)], by (2.4).

Now, we have previously shown that equation (3.2) is satisfied by all mappings u ∈
C2(A; R3). If, in addition, such a u satisfies the displacement boundary condition u(x) = µx
on Sa then u also satisfies (3.4). Combining (3.2) and (3.4) we conclude that∫

BR\Ba

det∇u dx =
∫

SR

1
3
u · (adj∇u)Tn − 4

3
πµ3a3 (5.3)

for every u ∈ C2(A; R3) that satisfies u(x) = µx on Sa.

However, the boundary is smooth and so C2(A; R3) is dense in W 1,p(A). Now let u ∈
W 1,p(A) and consider a sequence of C2 mappings un → u strongly in W 1,p(A). Then, p > 3
yields un → u uniformly on A, by the Sobolev imbedding theorem, and det∇un → det∇u
strongly in L1(A). Next, by Proposition 5.5(a) together with Fubini’s theorem, for L1 a.e.
R ∈ (a, b), there is a subsequence (not relabeled) that satisfies un → u strongly in W 1,p(SR)
and consequently adj∇un → adj∇u strongly in L1(SR). We therefore conclude that, for
a.e. R ∈ (a, b), (5.3) is satisfied by all u ∈ W 1,p(A; R3) that obey u(x) = µx on Sa and, in
particular, for all u ∈ Sp

µ (or Ŝp
µ).

We now note that, by (5.1) and Proposition 5.5(e,f), with v(y) = y/3,

L3 (imT(u, SR)) =
1
3

∫
SR

u · (adj∇u)Tn dH2
x. (5.4)

Finally, since det∇u = 1 a.e.,∫
BR\Ba

det∇u dx =
4
3
π(R3 − a3), (5.5)

and the desired result follows from (5.3)–(5.5).
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The next theorem then extends the results in section 3 to such Sobolev deformations.

Theorem 5.8. Let µ ≥ 1 and λ ∈ [µ,∞) satisfy λ3b3 − µ3a3 = b3 − a3. Let W satisfy

W (F) = Φ(|F|2, | adjF|),

where Φ : R+×R+ → R is convex and Φ is an increasing function in each of its arguments.
Then urad

µ , given by (2.3)–(2.4), is a global minimiser of the energy in Sp
µ and also in Ŝp

µ.

Remark 5.9. Suppose that, in addition to the hypotheses of the last theorem, there are
constants p > 3, c0 > 0, and c2 ≥ 0 such that, for all s > 0 and t > 0,

Φ(s, t) ≥ c0s
p
2 − c2.

Then one may then apply the theory of Ball [1] to deduce the existence of an absolute mini-
mizer, um, of the energy. Theorem 5.8 then shows that the radial incompressible minimiser,
urad

µ , is either equal to um or has the same energy as um.

Proof of Theorem 5.8. We first note that since Φ is convex it is continuous; thus since
urad

µ ∈ C1(A; R3) it follows that urad
µ has finite energy. Now let u ∈ Ŝp

µ (or Sp
µ). We will

show that urad
µ has less energy than u.

If u has infinite energy then the result is trivial since W is bounded below. Otherwise,
since u ∈ Ŝp

µ and has finite energy, each of the integrals∫
SR

Φ(|∇u|2, | adj∇u|) dH2
x,

∫
SR

|∇u|2 dH2
x,

∫
SR

| adj∇u| dH2
x

must be finite for L1 almost every R ∈ (a, b). Moreover, since det∇u = 1 a.e. it follows
that, for L1 almost every R ∈ (a, b),

det∇u(x) = 1 for H2 a.e. x ∈ SR

and hence, for such R, the arguments in section 3 (see Lemma 3.4, Lemma 3.12, and their
proofs) yield, for H2 a.e. x ∈ SR,

g
(∣∣ (adj∇u)Tn

∣∣) = 2
∣∣ (adj∇u)Tn

∣∣+ ∣∣ (adj∇u)Tn
∣∣−2 ≤ |∇u|2,

h
(∣∣ (adj∇u)Tn

∣∣) =
√∣∣ (adj∇u)Tn

∣∣2 + 2
∣∣ (adj∇u)Tn

∣∣−1 ≤ | adj∇u|.

Finally, since |∇u|2, | adj∇u|, and Φ(|∇u|2, | adj∇u|) are H2 integrable for each such
R the result follows from Proposition 5.5(b) and the corresponding proofs in section 3, with
Lemma 5.7 replacing Proposition 3.2.
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We now give the analogues of the results in Section 4.

Theorem 5.10. Let µ ∈ (0, 1] and λ > 0 satisfy λ3b3 − µ3a3 = b3 − a3. Let W satisfy

W (F) = Ψ(|F|, | adjF|2),

where Ψ : R+×R+ → R is convex and Ψ is an increasing function in each of its arguments.
Suppose that there are constants p > 3, q > 3, c0 > 0, c1 > 0, and c2 ≥ 0 such that, for all
s > 0 and t > 0,

Ψ(s, t) ≥ c0s
p + c1t

q
2 − c2. (5.6)

Then urad
µ , given by (2.3)–(2.4), is a global minimiser of the energy in Sp

µ.

Proof. In view of the proof of the previous result and without loss of generality, let u ∈ Sp
µ

have finite energy. Then (5.6) implies that adj∇u ∈ Lq(A), where q > 3. Therefore, we can
apply Proposition 5.3(c)–(e) to conclude that u has an inverse v ∈W 1,q(A∗) ∩ C0(A∗) that
satisfies ∇yv(y) = [∇xu(v(y))]−1 for a.e. y ∈ A∗. Consequently, since v is isochoric, the
change of variables formula12 of Marcus and Mizel [16] yields (cf. the proof of Proposition 4.3)∫

A
Ψ
(
|∇u(x)|, | adj∇u(x)|2

)
dx =

∫
A∗

Ψ
(
| adj∇v(y)|, |∇v(y)|2

)
dy.

The desired result will then follow as in the proof of Theorem 5.8.

Finally, Theorems 5.8 and 5.10 together yield the following result.

Corollary 5.11. Let
W (F) = Ψ(|F|2, | adjF|2),

where Ψ : R+×R+ → R is convex, and Ψ is an increasing function in each of its arguments.
Suppose, in addition, there are constants p > 3, q > 3, c0 > 0, c1 > 0, and c2 ≥ 0 such that,
for all s > 0 and t > 0,

Φ(s, t) ≥ c0s
p
2 + c1t

q
2 − c2.

Then, for every µ > 0, urad
µ given by (2.3)–(2.4) is a global minimiser of the energy in Sp

µ.

6. Concluding Remarks.

In this section we indicate some of the implications and possible extensions of the
methods and results developed in this current paper to other problems in nonlinear elasticity.

Compressible Materials. The results on symmetry obtained in this paper can be further
developed to apply to compressible materials to prove that that the corresponding radially
symmetric compressible equilibria are energy minimisers (see [22]).

12See also, e.g., [9, p. 141], [24, Theorem 2], and [8, Theorems 2.10.43, 3.1.8, and 3.2.5].
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Cavitation. The methods in this paper can also be adapted to study discontinuous equilib-
ria arising in the study of cavitation of a solid incompressible elastic ball (see, e.g, [4]) to prove
that the radially symmetric solution (given by (1.9) on the entire ball Bb = {x : |x| < b})
is a global energy minimiser amongst all deformations opening a cavity at the centre of the
ball (see [23]).

Pressure Loading.

Another problem of interest for an annular region is the existence and stability of equilibrium
solutions when such a thick spherical shell is subject to a pressure on its inner boundary.
For example, Haughton and Ogden [11] (see, also, [14]) determine constitutive restrictions
that are necessary and also others that are sufficient for the radial minimizer to become
linearization unstable.13 One might then expect a second solution branch would bifurcate
from the radial solution branch and, when this second branch is supercritical, the solutions
on it should have less energy than the radial solution. We now show that our constitutive
restrictions complement those of [11] in the sense that our hypotheses imply that the radial
minimizer is a strong relative minimizer for this problem when the pressure is positive.

Definition 6.1. For the pressure problem we fix a constant pressure P > 0 and define the
set of admissible deformations and the total energy, respectively, by

A :=
{
u ∈ C1(A; R3) : u is one-to-one and det∇u ≡ 1

}
,

EP (u) :=
∫

A
W (∇u(x)) dx− P

∫
u(Sa)

y ·N(y) dSy

for any u ∈ A, where N is the outward unit normal to u(A).

Let’s now restrict our attention to stored energies W of the form

W (F) = Φ(|F|2, | adjF|),

where Φ : R+×R+ → R is convex and an increasing function in each of its arguments. Also,
suppose there are constants q > 3, c0 > 0, and c2 ≥ 0 such that, for all s > 0 and t > 0,

Φ(s, t) ≥ c0s
q
2 − c2. (6.1)

In particular for the radial deformation given by (2.3)–(2.4) the total energy is equal to

ÊP (τ) = Eelas(τ)− 4πPa3τ, Eelas(τ) = 4π
∫ b

a
Φ̂(R, τ)R2 dR,

Φ̂(R, τ) := Φ
(
D
(
r,R),A

(
r,R

))
,

13That is, the linear elliptic system of partial differential equations, which one obtains upon linearizing the
equilibrium equations about the radial equilibrium solution, has a nontrivial solution.
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where τ = µ3, r3 = r(R, τ)3 = R3 + a3(τ − 1),

D(r,R) =
(
R

r

)4

+ 2
( r
R

)2
, A(r,R) =

[( r
R

)4
+ 2

(
R

r

)2
] 1

2

.

We note that D(r,R) > 2b−2r2 ≥ 2b−2r(a, τ)2 = 2τ2/3(a/b)2 and hence (6.1) implies

ÊP (τ) ≥ C1τ
q/3 − C2Pτ

for some positive constants C1 and C2. Therefore, q > 3 yields ÊP → +∞ as τ → +∞.
Also,

∂

∂r
D(r,R) =

4
r5R2

[
r6 −R6

]
,

∂

∂r
A(r,R) =

2
r3R4A

[
r6 −R6

]
,

∂

∂τ
r(R, τ) =

a3

3r2
. (6.2)

Now, r(R, τ) < R when τ < 1 and hence, in view of (6.2) and the monotonicity of Φ,
d
dτE

elas(τ) < 0 for τ < 1. Thus, for P strictly positive, d
dτ ÊP (τ) < 0 on (0, 1]. We have

therefore shown that for each pressure P > 0 there is at least one minimizer of the total
energy EP amongst all isochoric radial deformations rinc

µ , µ ∈ R+. Moreover, this minimizer
satisfies µ > 1 and hence rinc

µ (a) = aµ > a.

Next, for each u ∈ A choose σ ∈ R+ so that u(Sa) and urad
σ (Sa) enclose the same

volume, that is,

[rinc
σ (a)]3 = a3σ3 =

1
4π

∫
u(Sa)

y ·N(y) dSy.

Then the energy contribution from the boundary load is the same for u and urad
σ ; the results

in Section 3 show that, whenever σ ≥ 1, the elastic energy of u is greater than or equal to
the elastic energy of urad

σ . We have thus established the following result.

Theorem 6.2. Suppose that the previously stated convexity, monotonicity, and growth con-
ditions on Φ are satisfied. Then for any P > 0 there exists a µ > 1 such that urad

µ given by
(2.3)–(2.4) is a strong relative minimizer of the energy, i.e., there is an εP > 0 such if u ∈ A
satisfies

sup
x∈A

|urad
µ (x)− u(x)| < εP then E(u) ≥ E(urad

µ ).

Remark 6.3. Haughton and Ogden [11] show that for linearization instability to occur the
constitutive relation must satisfy

B(ν) := νŴ ′′(ν)− Ŵ ′(ν) < 0 for some ν > 1,

where (in our notation)

Ŵ (ν) := Φ
(
ν−4 + 2ν2,

[
ν4 + 2ν−2

]1/2
)
, Ŵ ′ :=

d

dν
Ŵ .

A straightforward computation shows that Φ convex and monotone increasing in each of its
arguments yields B(ν) ≥ 0 for all ν > 1, which prohibits bifurcation in tension.
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Remark 6.4. It is clear from our proofs that if, in addition, the displacement is prescribed
on the outer boundary, i.e., u(x) = λx for x ∈ Sb, where λ ≥ 1 then the radial minimizer is
a global mininimiser of the total energy EP for any P ∈ R.

An example of Fritz John revisited.

Motivated by a heuristic example originally due to F. John, the paper [20] studies, in
particular, energy minimising deformations u : A → R2 of a two-dimensional annulus
A = {x ∈ R2 : a < |x| < b}, which equal the identity on ∂A. It is shown therein that
there exist energy minimisers to this displacement boundary-value problem in various homo-
topy classes of deformations of A. Each homotopy class corresponds to deformations that fix
one of the boundaries of A and twist the other boundary through an integer multiple N ∈ Z
of 2π. Suppose that we now restrict attention to isochoric deformations and generalise the
boundary condition from u(x) = x on ∂A as considered in [20] to u(x) = µx on ∂AI and
u(x) = λx on ∂Ao (as in (1.6)). Then the two-dimensional versions of the arguments con-
tained in sections 3 and 5 can be adapted (see Remarks 3.10 and 3.17) to show that, for
stored-energy functions of the form (1.4), the radially symmetric deformation of the annulus
given by (2.3)–(2.4) is a global energy minimiser amongst all general isochoric deformations
of the annulus. Although our results do not demonstrate that any of the twisted solutions
has strictly14 greater energy, an argument that shows that a solution with a sufficient number
of twists has strictly greater energy than the radial minimiser is given in [20, Section 3].

As an example, consider deformations that have the special form (2.9) for a neo-Hookean
material, W (F) = µ

2 |F|
2. Then an analysis similar to that in [20, Section 4] shows that there

are an infinite number of equilibrium solutions, one for each winding number N ∈ Z. The
function ρ for all such solutions is given by (2.11). A straightforward calculation yields the
corresponding equilibrium “twist” functions (recall ψ(b) = 2Nπ)

ψ(R) =
K

(λ2 − 1)b2

[
ln
(
R

a

)
− 1

2
ln
(
R2 + (λ2 − 1)b2

a2 + (λ2 − 1)b2

)]
,

where the constant K is determined by the number of twists and is given by

K =
4Nπ(λ2 − 1)b2

ln
(

a2+(λ2−1)b2

a2λ2

) .
Our results show that the radial function, which corresponds to K = N = 0 and ψ ≡ 0, is
an energy minimiser; however, one can also obtain this result directly from (2.10).

14However, see the appendix of this paper.
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A. Appendix

We here address the problem of whether or not the radial minimizer is a strict global
minimizer of the energy. We will assume that W (F) = Φ(|F|2, | adjF|), where Φ is strictly
convex, i.e., if z 6= a or w 6= b

Φ(z, w) > Φ(a, b) + Φ,1 (a, b)(z − a) + Φ,2 (a, b)(w − b).

Before proceeding with our analysis, we first note (cf. Proposition 3.2) that the isoperimetric
inequality is a strict inequality unless the image of each spherical shell centred at the origin
is again a spherical shell.

We will prove the following result.

Proposition A.1. Let W (F) = Φ(|F|2, | adjF|), where Φ is strictly convex and an increasing
function in each of its arguments. Let µ > 0 and suppose that u ∈ AI

µ satisfies E(u) =
E(urad

µ ). Then u ≡ urad
µ is radial.

This result will follow immediately from the three Lemma’s below.

Lemma A.2. Let W (F) = Φ(|F|2, | adjF|), where Φ is strictly convex and an increasing
function in each of its arguments. Let µ > 0 and suppose that u ∈ AI

µ satisfies E(u) =
E(urad

µ ). Then each of the eigenvalues of the right Cauchy-Green strain tensor C(x) :=
[∇u(x)]T∇u(x) is radial and x is an eigenvector of C(x).

Lemma A.3. Let µ > 0 and u ∈ AI
µ. Suppose that the image of each spherical shell centred

at the origin is again a spherical shell. More precisely suppose that, for each R ∈ [a, b], there
exists a point z(R) ∈ R3 and a scalar β(R) ≥ 0 such that

|u(x)− z(R)|2 = 2β(R), R := |x| for every x ∈ SR. (A.1)

Then z ∈ C1([a, b]; R3) and β ∈ C1([a, b]; R) with β > 0 and β′ > 0.

Lemma A.4. Let µ > 0 and suppose that u ∈ AI
µ satisfies (A.1), where z ∈ C1([a, b]; R3)

and β ∈ C1([a, b]; R) with β > 0. Suppose in addition that, for each x ∈ A, x is an
eigenvector of the right Cauchy-Green strain tensor C(x) := [∇u(x)]T∇u(x) and that the
corresponding eigenvalue σ = σ(|x|) is radial, i.e.,(

[∇u(x)]T∇u(x)
)
x = σ(R)x. (A.2)

Then u ≡ urad
µ is radial.

Proof of Lemma A.2. Let µ > 0 and u ∈ AI
µ. Then in view of Remark 3.16 the energy of

u will be strictly greater than the energy of urad
µ unless x is an eigenvector of C(x). Next,

for each x ∈ A let λi(x) denote the eigenvalues of C(x). It then follows from the proof of
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Theorem 3.15 and the hypothesis that Φ is strictly convex that the energy of u is strictly
greater that the energy of urad

µ unless |∇u|2 and | adj∇u| are both radial. Thus we find
with the aid of the identity tr(adjC) = 1

2 [(tr(C))2 − tr(C2)] that

τ(R) := |∇u|2 = tr(C) = λ1(x) + λ2(x) + λ3(x),

α(R) := | adj∇u|2 = tr(adjC) = λ2(x)λ3(x) + λ1(x)λ3(x) + λ1(x)λ2(x), (A.3)

1 = (det∇u)2 = detC = λ1(x)λ2(x)λ3(x).

However, the eigenvalues of C satisfy the characteristic equation

λ3 − τ(R)λ2 + α(R)λ− 1 = 0,

which implies that the eigenvalues depend only on R.

Remark A.5. If instead u ∈ Sp
µ (or Ŝp

µ) then, for L1 a.e. R ∈ (a, b), (A.3)1−3 are satisfied
for H2 a.e. x ∈ SR. Thus the fact that the eigenvalues satisfy the characteristic equation
again yields their dependence on R alone.

Proof of Lemma A.3. Let µ > 0, u ∈ AI
µ, and fix R ∈ [a, b]. Then (3.7) (the change of

variables formula) states

1
3

∫
SR

u · (adj∇u)Tn =
1
3

∫
u(SR)

y ·N, (A.4)

where n is the outward unit normal to BR and N is the outward unit normal to the ball
defined by (A.1). However, by the divergence theorem, the integral on the right-hand side
of (A.4) is equal to the volume of this ball. Also, (3.5) and (3.6) imply that the integral on
the left-hand side of (A.4) is equal to the volume of the ball of radius rinc

µ (R). Thus, in view
of (2.4) we conclude that

β(R)3 =
1
8
[
R3 + a3(µ3 − 1)

]2
. (A.5)

Therefore, β ∈ C1([a, b]) , β > 0, and β′ > 0, as claimed.

Next, replace y in the above computation by the tensor 3
4y ⊗ y, i.e., use the change of

variables formula for surface integrals with the tensor y ⊗ y = u(x) ⊗ u(x). Then (A.4) is
replaced by

1
4

∫
SR

[u⊗ u] (adj∇u)Tn =
1
4

∫
u(SR)

[y ⊗ y]N. (A.6)

Again the divergence theorem, together with a straightforward computation, shows that the
integral on the right-hand side of (A.6) is equal to the volume of this ball times z(R). (Here
we use the fact that the integral of y over this ball is equal to the integral of the constant
vector z(R) over this ball since y = (y − z) + z and y − z is normal to the ball.)
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Next, we consider the left-hand side of (A.6). Suppose that w ∈ C2(A; R3). Then, in
view of the identity div(adj∇w)T = 0,

[w ⊗w] (adj∇w)T = w ⊗ [(adj∇w)w] , (adj∇w)∇w = (det∇w)I,

div(w ⊗ v) = (∇w)v + w div v, div ((adj∇w)w) = (adj∇w)T : ∇w,

and hence

div
(
[w ⊗w] (adj∇w)T

)
= 4(det∇w)w. (A.7)

If we then integrate (A.7) over the region BR\Ba and make use of the divergence theorem
we find that∫

SR

[w ⊗w] (adj∇w)Tn =
∫

Sa

[w ⊗w] (adj∇w)Tn + 4
∫

BR\Ba

(det∇w)w dx. (A.8)

However, just as in the proof of Proposition 3.2, we now note that C2 is dense in C1 and so
the bounded convergence theorem yields (A.8) for all w ∈ C1(A; R3) and, in particular, for
all w ∈ AI

µ.

We now consider the first integral on the right-hand side of (A.8) with w = u. The
boundary condition u(x) = µx for x ∈ Sa implies [u⊗ u] (adj∇u)Tn = µ4a2n and so an
application of the divergence theorem over the ball Ba yields∫

Sa

[u⊗ u] (adj∇u)Tn = 0. (A.9)

Finally, we combine (A.8)–(A.9) to conclude, with the aid of the (A.6) and the text imme-
diately following it, that z times the volume of the ball given by (A.1) is equal to the final
integral on the right-hand side of (A.8) with w = u and det∇u = 1, that is,

4
3
π
(√

2β(R)
)3

z(R) =
∫

BR\Ba

u(x) dx. (A.10)

The continuity of u together with the strict positivity of β and β′ then yield z ∈ C1([a, b]; R3).

Remark A.6. If one replaces the classical area formulae (A.4) and (A.6) with their appro-
priate Sobolev version, i.e., Proposition 5.5(e,f) with v(y) = y/3 and V(y) = 3

4y ⊗ y, then
it is clear from the above proof (and the proof of Lemma 5.7) that (A.5) and (A.10) are also
satisfied, for a.e. R ∈ (a, b), when u ∈ Sp

µ (or Ŝp
µ). Consequently, Lemma A.3 is also valid

for such u.

Proof of Lemma A.4. Let µ > 0 and u ∈ AI
µ. Define

v(x) := u(x)− z(R), ∇v = ∇u− z′ ⊗ n, n :=
x
|x|
, R := |x|. (A.11)
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Then |v|2 = 2β(R) and hence if we take the gradient with respect to x we find that

β′n = (∇v)Tv = (∇u)Tv −
[
n⊗ z′

]
v. (A.12)

Next, multiply (A.12) by (adj∇u)T and rearrange terms to conclude[
β′ + z′ · v

]
(adj∇u)Tn = v.

We now apply hypothesis (A.2); equivalently (cf. Remark 3.16),

α(R)(∇u)n = (adj∇u)Tn, α := 1/σ,

which when combined with the previous equation and (A.11)2 implies

α
[
β′ + z′ · v

] [
(∇v)n + z′

]
= v. (A.13)

Also, the first equality in (A.12) yields

β′ = n ·
(
β′n
)

= n · (∇v)Tv = (∇v)n · v. (A.14)

Thus, if we take the inner product of (A.13) with v and make use of (A.14) and the fact
that v · v = 2β we find that

β′ + z′ · v =

√
2β
α
. (A.15)

We next substitute (A.15) into (A.13) to get√
2αβ

[
vR + z′

]
= v, (A.16)

where vR := (∇v)n. For each fixed unit vector n = x/|x| we view (A.16) as a system of
ordinary differential equations for the function R 7→ v(R,n). The general solution of (A.16)
is v(R,n) = q̂(R) + δ(R)w(n) for appropriate functions q̂ ∈ C1([a, b]; R3), δ ∈ C1([a, b]; R),
and w ∈ C1(S2; R3). Consequently, in view of (A.11)1,

u(x) = q(R) + δ(R)w
(

x
|x|

)
. (A.17)

We next note that since u ∈ AI
µ it follows that u(x) = µx for x ∈ Sa. Thus by (A.17)

µ|x| x
|x|

= u(x) = q(a) + δ(a)w
(

x
|x|

)
for all x ∈ Sa.

Therefore, there are constants κ ∈ R and u0 ∈ R3 such that

w
(

x
|x|

)
= κ

x
|x|

+ u0 for all x ∈ A,



28 J. Sivaloganathan and S. J. Spector

which together with (A.17) yields

u(x) = r(R)
x
|x|

+ c(R) for all x ∈ A. (A.18)

Next, we take the gradient of (A.18) with respect to x and find that

∇u(x) =
r(R)
R

I +
(
r′ − r(R)

R

)
x
R
⊗ x
R

+ c′ ⊗ n.

Consequently, [∇u]n = r′n + c′ and hence[
(∇u)T∇u

]
n = η(R)n +

r(R)
R

c′.

Now recall that n is an eigenvector of (∇u)T∇u. Therefore, since R and r are nonzero,

c′(R) = |c′(R)| x
|x|
,

which is only possible if c′ ≡ 0. It follows that c(R) ≡ c0, a constant, and so (A.18) reduces
to

u(x) = r(|x|) x
|x|

+ c0 for all x ∈ A. (A.19)

Finally, apply the boundary condition u(x) = µx for x ∈ Sa once again, this time to
(A.19), to conclude that, for such x,

µx = u(x) = r(a)
x
|x|

+ c0,

or, equivalently,
c0 = (µa− r(a))

x
|x|
.

Therefore, r(a) = µa, c0 = 0, and consequently u is radial, as claimed.
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