
An Explicit Radial Cavitation Solution in Nonlinear Elasticity
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#�������& An explicit solution to the ordinary differential equation that governs the radial equilibrium behav-
ior of a particular compressible nonlinearly elastic material is obtained. The resulting deformation exhibits
cavitation at the center of a homogeneous isotropic ball in three or more dimensions.
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We take � � �, � � � and consider the problem of minimizing the energy

� ��� �

�
�

� ���� ��� � �� ��� � ��� �� � ���� � 	 ��	
�� � (1.1)

of a homogeneous, isotropic elastic material, which occupies the unit ball 
 � �
� , � � �,

in a homogeneous, stress-free reference configuration, among ���� �� in the Sobolev space
�����
��� �, which satisfy the displacement boundary condition ���� � � � �� on �
, and
which are injective ���
�� ��
	����
	��, i.e.,

���� �� �

 ��� ��

�
� for � � 
� � �� ��� � (1.2)


��� � � � ��� 
� � ���	�, and 
 � � � �)�) Here �	
 � denotes the determinant of the � 
 �

matrix �, while ���� is the sum of the squares of the elements of �.
If 	 � � �����	�� satisfies 	��� � �	 when the deformed volume � � �� and

	����� � �	 when � � �	 then results of Ball [1] show that a unique, injective radial
minimizer to (1.1) exists and satisfies the Euler–Lagrange (radial equilibrium) equation

��������
�� ��� ������
�� 	
 �	�
��� �� 87-93, 2002 DOI: 10.1177/108128602024227
��2002 Sage Publications

http:\\www.sagepublications.com


88 K. A. PERICAK-SPECTOR et al.

�
�

��

�
��
 � �

�
�
�

����
	��� �

�
� ���� 
�

�

 � � �

�

� �
�� � �

�
�

����
	��� �

�
� (1.3)

where
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Moreover, there exists a critical value � 	� � 
 with the property that:

(i) if � � � 	� the radial minimizer is the homogeneous map �
 ��� �� ��;
(ii) if � � � 	� the radial minimizer corresponds to a map of the form (1.2) that satisfies


��� �� � � and the natural boundary condition
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� � (1.4)

as � � �� for each fixed � . Thus in this case the minimizer is discontinuous; it
produces a hole of radius 
��� �� at the center of the ball (this is the phenomenon of
cavitation; it can also be interpreted as the rapid growth of a preexisting microvoid (see
2, 3)); and the material at the surface of this hole experiences no normal stresses.

Although there is an extensive literature on the existence of radial minimizers to elastic
energies and the existence of solutions to the corresponding Euler–Lagrange equation (see
the review article by Horgan and Polignone [4]) very few �	������
��� constitutive relations
permit an explicit solution of the Euler–Lagrange equation. The only (modulo a radial null-
Lagrangian, see Horgan [5] and Steigmann [6]) such solutions that appear in the literature are
for an elastic fluid (� � � in (1.1), see, e.g., [5] or [7]), where the minimizer is


��� �� � �� �
	� �

� � � � � � �
	� �

���
� (1.5)

for the Blatz–Ko constitutive relation for foam rubbers, � ��� � ���������� � ��	
��,
which was obtained, in two dimensions, by Horgan and Abeyaratne [2] and in three
dimensions, by Tian-hu [8]; and for the generalized Carroll material (a convex function of a
radial null Lagrangian), which was obtained by Murphy and Biwa [9].

We believe that such explicit solutions can help to develop one’s intuition concerning
the behavior of cavitating solutions and it is the purpose of this note to present another
such solution. Accordingly, we take � � � and restrict our attention to functions 	 that
are quadratic on the interval �
�	�. Thus for � � 
,

	��� � ����� � �� � ��
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with � � �. In addition, the requirement that the reference configuration be stress free yields
� � ���� 
� � �. For this constitutive relation Ball [1, p. 605] showed further that � 	� is
the unique solution of the equation
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(1.6)

and that the radial component of the Cauchy stress ��� (force per unit deformed area) can
be explicitly determined as a function of the circumferential strain � ��� �� �� 
��� � ���,
namely,
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(Note that the above equation in [1] is expressed using the reciprocal of the circumferential
strain � � 
�� .)

The main result of the paper is the following theorem.
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Results in [1] show that the radial energy minimizer is the only solution of (1.3) that satisfies

�
� �� � � and the traction-free boundary condition (1.4). Thus all we need show is that
the function given by (1.7)–(1.8) satisfies (1.3), (1.4), and 
�
� �� � � . However, since the
integrand in (1.7) is strictly positive, the boundary condition at the outer boundary must be
satisfied in order that (1.8) be compatible with (1.7) at � � 
.

We next show that any function 
��� �� that satisfies (1.7) will also satisfy the radial
equilibrium equation (1.3). To accomplish this we first follow [1] and change both the
independent and the dependent variables in (1.3); we suppress the dependence upon � and let

� �� ���� ���� ��
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(2.1)
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which yields the autonomous equation
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for � � ��	� ��. However, 	���� � ����� � ��� 
�� and so the last equation simplifies:
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 � �� ������

�
� ���� 
��� �� ���� � �� (2.3)

Now consider our proposed solution (1.7). The change of variables (2.1) yields
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 � �� ������

����
�� � (2.4)

Before proceeding further we note that, by (1.8), � � �. Therefore, in view of the strict
positivity and continuity of the integrand it follows (intermediate-value theorem) that for
each � there is a unique � � ���� � �� 	� �	� such that (2.4) is satisfied. Moreover, the
implicit function theorem can be used to show that the resulting function � �� ���� is ��.
In addition, it is clear from (2.4) that � �� ���� 
� ���
���� �	�	�	�� �������
�4 ��� �����
	��
	��%�	%	��)

We next differentiate (2.4) with respect to � to get

� ����
� � �����



 � �������������

����
(2.5)

and hence, if we substitute for ���
� from (2.4), we conclude
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� (2.6)

If we then differentiate (2.6) with respect to � we discover that
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which when multiplied by the square root of �
��� ������ � is (2.3). Thus any function 
��� � �
that satisfies (1.7) will also satisfy (1.3).

Finally, we consider the traction-free boundary condition, (1.4), on the surface of the
newly formed cavity. The change of variables (2.1)–(2.2) yields the equivalent formulation:

�������� � �������������� � 	�
�
������ � ��������������

� � � as � � �	� (2.7)
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In order to prove (2.7) we first take the limit as � � �	 in (2.4); since � is continuous and
strictly monotone decreasing we must have

���� � �	 as � � �	� (2.8)

We claim that

���

���

������ � �������������� � ���
�

(2.9)

and, moreover, that (2.7) is a consequence of (2.9). The latter is clear since 	���
������ � �
and
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To obtain (2.9) we recall that the mapping � �� ���� is one-to-one and hence, in view of
(2.8), the limit in (2.9) can be replaced by the limit as � � �	 provided �� is considered as
a function of � through equation (2.6); thus,
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Now,
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and so a straightforward computation shows that the numerator in the right-hand side of (2.10)
is equal to
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Figure 1. Typical values of the Cauchy stress.

� 	�




 � �� ������

	�

���� � ��� 
�

� �

� ��

��

�
 � �� ������ �
���

� (2.11)

Therefore, if we make use of (2.11) to take the limit in the right-hand side of (2.10) we
conclude, with the aid of (1.6), that (2.9) is satisfied, which concludes the proof.

�� �	�
��
�� �
�	��� �� ���

 ���
������

In the case of physical interest, � � �, the integral cannot be computed explicitly since it is
an elliptic integral. We have however used � as a parameter to obtain numerical results (see
Figure 1). The radial and tangential components of the Cauchy stress are given by
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respectively, where (by (2.4), (2.10), and (2.11))
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A simple computation shows that Young’s modulus and Poisson’s ratio at the stress-free
reference configuration are given by � � ���� � �

�
� and  � �� � �

��
, respectively. The

choice � � 
�� ��� will make the material nearly incompressible and the choice � � �
	

MPa
then yields a Young’s modulus of approximately 
�� MPa, which is typical of an elastomer
that cavitates. The critical value of the load parameter is � 	� � 
���� ��� and the value at
which the stresses have been graphed is � � 
���
.
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