An Explicit Radial Cavitation Solution in Nonlinear Elasticity
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Abstract: An explicit solution to the ordinary differential equation that governsthe radial equilibrium behav-
ior of a particular compressible nonlinearly elastic material is obtained. The resulting deformation exhibits
cavitation at the center of a homogeneous isotropic ball in three or more dimensions.

1. INTRODUCTION, PRELIMINARIES, AND RESUITS

Wetakel > 0, u > 0 and consider the problem of minimizing the energy

E(u):/B W(Vou(x;2))dx, W(F):=ul|F|*+h(detF), (1.1)

of a homogeneous, isotropic elastic material, which occupiesthe unitbal B C R”, n > 3,
in a homogeneous, stress-free reference configuration, among u(-; 4) in the Sobolev space
W42(B; R"), which satisfy the displacement boundary condition u(x;A) = Ax on 4B, and
which areinjective radial deformations, i.€.,
u(x; 1) = ”(lz’l)x for x€B, R:=[x, (12)

r(+;4) 1 [0,1] — [0,00), and 7’ > 0 a.e. Here det F denotes the determinant of then x n
matrix F, while | F||” is the sum of the squares of the elements of F.

If h € C*((0,00)) satisfies #(v) — +oc when the deformed volumev — 0* and
h(v)/v — 400 whenv — +oc then results of Ball [1] show that a unique, injective radia
minimizer to (1.1) exists and satisfies the Euler—Lagrange (radial equilibrium) equation
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r'=r'(RiA) = 4r(Ri1), V(R;A):=r'(R;4) (M)n_l :

R

Moreover, there exists acritical value A, > 1 with the property that:

(i) if 2 < A, theradial minimizer is the homogeneous map u” (x) := Ax;
(i) if A > A, theradia minimizer corresponds to a map of the form (1.2) that satisfies
r(0;4) > 0 and the natural boundary condition

T (850 o= () o' (®i) + (42) 7 wora)| — 0

as R — 0" for each fixed A. Thus in this case the minimizer is discontinuous; it
produces a hole of radius 7(0; A) at the center of the ball (this is the phenomenon of
cavitation; it can also beinterpreted asthe rapid growth of a preexisting microvoid (see
2, 3)); and the material at the surface of this hole experiences no normal stresses.

Although there is an extensive literature on the existence of radial minimizersto elastic
energies and the existence of solutions to the corresponding Euler—Lagrange eguation (see
the review article by Horgan and Polignone [4]) very few compressible constitutive relations
permit an explicit solution of the Euler—Lagrange equation. The only (modulo aradial null-
Lagrangian, see Horgan [5] and Steigmann [6]) such solutionsthat appear in the literature are
for an elastic fluid (u = 0 in (1.1), see, eg., [5] or [7]), where the minimizer is

F(R;2) = A4, R" 4+ 2" =A%) (15)

for the Blatz—K o congtitutive relation for foam rubbers, W (F) = u(||F 7[> + 2det F),
which was obtained, in two dimensions, by Horgan and Abeyaratne [2] and in three
dimensions, by Tian-hu [8]; and for the generaized Carroll material (a convex function of a
radial null Lagrangian), which was obtained by Murphy and Biwa[9].

We believe that such explicit solutions can help to develop one's intuition concerning
the behavior of cavitating solutions and it is the purpose of this note to present another
such solution. Accordingly, we take u > 0 and restrict our attention to functions /4 that
are quadratic on theinterval [1, c0). Thusforv > 1,

h(v) = u(av?® — bv + )
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witha > 0. In addition, the requirement that the reference configuration be stressfree yields
b =2(a+ 1) > 0. For this constitutive relation Ball [1, p. 605] showed further that 1., is
the unique solution of the equation

om_1)11/2 _ 1ta B > do
Ao [L+a22Y ] = +(n—1) AT (1.6)

and that the radial component of the Cauchy stress Tz (force per unit deformed area) can
be explicitly determined as a function of the circumferential strain e (R;1) := r(R;4)/R,
namely,

/2"

Tre (€ ) +2u(l+a) _o 1+a+2,u(n—1)/1/6 ey
0 [a+l2(n—1)]

[e —2(n—1)+a]1/2 M Va

(Note that the above equation in [1] is expressed using the reciproca of the circumferential
stranw = 1/¢ .)
The main result of the paper is the following theorem.

Theorem. Let n > 3 and A > A... Then the unique injective radial minimizer of (1.1) that
satisfies the boundary condition r(1;1) = A is given by

r (R )
3

PR = / [1+a02-9]" g, (1.7)
Aer

P(2) ::/ [1+a02]"* do. (1.8)

2. PROOF OF THE THEOREM

Resultsin [1] show that the radial energy minimizer isthe only solution of (1.3) that satisfies
r(1;4) = 4 and the traction-free boundary condition (1.4). Thus all we need show is that
the function given by (1.7)—(1.8) satisfies (1.3), (1.4), and (1; 1) = A. However, since the
integrand in (1.7) is strictly positive, the boundary condition at the outer boundary must be
satisfied in order that (1.8) be compatible with (1.7) at R = 1.

We next show that any function »(R; A) that satisfies (1.7) will also satisfy the radial
equilibrium eguation (1.3). To accomplish this we first follow [1] and change both the
independent and the dependent variablesin (1.3); we suppress the dependence upon A and let

s = InR, z(s) = r(e;:i) = r(li;i) (2.1)
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Hs) = La(s) = r(esia) = LA 22)

which yields the autonomous eguation

% 2uz+z)+z" "W (G422 )] =—(n— Dz [2u —z" 2K ((+2)z" )]

fors € (—o0,0). However, ' (v) = 2u(av — (a + 1)) and so the last equation simplifies:
Z+nz] [14az?" V] +a(n— 1) = 0. (2.3

Now consider our proposed solution (1.7). The change of variables (2.1) yields
B z(s) 2(e=1) 1/2
Pe™" = [1+a0*"" V] " db. (2.4)

Before proceeding further we note that, by (1.8), P > 0. Therefore, in view of the strict
positivity and continuity of the integrand it follows (intermediate-value theorem) that for
each s thereisauniquez = z(s) € (4. ,00) such that (2.4) is satisfied. Moreover, the
implicit function theorem can be used to show that the resulting function s — z(s) is C°.
In addition, it is clear from (2.4) that s +— z(s) is strictly monotone decreasing and therefore
one-to-one.

We next differentiate (2.4) with respect to s to get

—nPe™™ = 3(s) [1 + alz(s)]*" ] 2 (2.5
and hence, if we substitute for Pe—*" from (2.4), we conclude
—n /)Z(S) [1+a02=9]"%d0 = x(s) [1 + alz(s)]20- D], (2.6)
If we then differentiate (2.6) with respect to s we discover that
—nz [1+az?"V] Y2 _ [14az?""V] V2 a(n —1)2°z*"% [1 4+ az?" V] e ,

which when multiplied by the squareroot of [1+az2"~Y ] is(2.3). Thusany functionr(R; 1)
that satisfies (1.7) will also satisfy (1.3).

Finally, we consider the traction-free boundary condition, (1.4), on the surface of the
newly formed cavity. The change of variables (2.1)—2.2) yields the equivalent formulation:

20 (2(s) + z(s))[z(s)]* " + A ((z(s) +Z(S))[Z(S)]n71) — 0 ass — —oo. 2.7
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In order to prove (2.7) wefirst take the limit ass — —oo in (2.4); since z is continuous and
strictly monotone decreasing we must have

z(s) — +o00 ass — —o0. (2.8)
We claim that
lim (2(s) +2(s))[z(s)]" 7 = 12 (29

and, moreover, that (2.7) isaconsequence of (2.9). Thelatterisclear since/’((1+a)/a) =0
and

(2(s) + ()] = [E(s) +2()) ()] [[2()]2™]

— [H2][0]=0 & s— —oc.

a

To obtain (2.9) we recall that the mapping s — z(s) is one-to-one and hence, in view of
(2.8), the limit in (2.9) can be replaced by the limit asz — oo provided z is considered as
afunction of z through equation (2.6); thus,

§— — 00 z— 400

71+ q20=1) 1/2d9
lim (Z”_l[zq-é}) = lim Zn—l z nf/l(,,.[ a } .
[1+ az2(=1] /

z——+00

|z [1 + azQ("*l)] Y2 _ g f;l[l + a92("*1)] Y240
= lim o 73 .(2.10)
[z720=1) 4 g]

Now,

z [1 + aZQ("_l)}% — Ao [1 + a/lfr(”_l)]%

_ : i 2(n—1) 3
= [ — (0 [1+a0%"0]%) a0

z 1 _ 2(n—1)
= / [1 + a92(n—1)] LR % deo
Ler [1 + af2(-1) ] 2

and so astraightforward computation showsthat the numerator in theright-hand side of (2.10)
isequa to
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Figure 1. Typical values of the Cauchy stress.

do
1+ a020—]"%

hor [L4+a220-DT7 — (n = 1) / [ (2.1)
Aer

Therefore, if we make use of (2.11) to take the limit in the right-hand side of (2.10) we
conclude, with the aid of (1.6), that (2.9) is satisfied, which concludes the proof.

3. NUMERICAL RESULTS IN THREE DIMENSIONS

In the case of physicdl interest, n = 3, the integral cannot be computed explicitly sinceit is
an dliptic integral. We have however used z as a parameter to obtain numerical results (see
Figure 1). Theradial and tangential components of the Cauchy stress are given by

Tw (2) = 2 F;Z g | S I 1)} ,
@) = Tool®) = | s ~ 1+ a2~ 1)

respectively, where (by (2.4), (2.10), and (2.11))
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4 Z db
Ao /14 ald QL —W
V14 azt ’

z = —z+

* VT +ab*do ’
Rz, ) = 14 Pj(Lﬂo)l : P(/l):/ V1+ab"db.
Aer

A simple computation shows that Young's modulus and Poisson’s ratio at the stress-free

reference configuration are given by £ = 2u(3 — 2) andv = .5 — 5-, respectively. The
choicea = 10, 000 will make the material nearly incompressible and the choice u = % MPa
then yields a Young's modulus of approximately 1.5 MPa, which is typical of an elastomer
that cavitates. The critical value of the load parameter is1.,. ~ 1.000 083 and the value at
which the stresses have been graphed is4A = 1.001.
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