A NOTE ON THE CONVEXITY OF $\mathbf{C} \mapsto h(\operatorname{det} \mathbf{C})$

SCOTT J. SPECTOR

Abstract

Recently, Lehmich, Neff, and Lankeit [Math. Mech. Solids 19 (2014), 369-375] obtained necessary and sufficient conditions for the function $\mathbf{C} \mapsto h(\operatorname{det} \mathbf{C})$ to be convex on strictly positive-definite, symmetric $n \times n$ matrices \mathbf{C}. In this note an alternate proof of their result is provided.

1. Introduction; Preliminaries

In [7] Lehmich, Neff, and Lankeit proved that, for functions $h:(0, \infty) \rightarrow \mathbb{R}$ which have two derivatives, necessary and sufficient conditions for the convexity of the composition map $h \circ \operatorname{det}: \mathbf{C} \mapsto h(\operatorname{det} \mathbf{C})$ on the set of strictly positive-definite, symmetric $n \times n$ matrices, $n \geq 2$, are that

$$
\begin{equation*}
n s h^{\prime \prime}(s)+(n-1) h^{\prime}(s) \geq 0 \quad \text { and } \quad h^{\prime}(s) \leq 0 \quad \text { for every } s>0, \tag{1.1}
\end{equation*}
$$

where $\operatorname{det} \mathbf{C}$ denotes the determinant of the $n \times n$ matrix \mathbf{C}. They noted that the convexity of the map h o det may be useful in analyzing stored-energy functions in nonlinear elasticity. For example, a compressible neo-Hookean material can be written as a function of the right Cauchy-Green strain matrix $\mathbf{C}:=\mathbf{F}^{\mathrm{T}} \mathbf{F}$, where \mathbf{F} is the (matrix with respect to an orthonormal basis of the) gradient of a deformation at any point in an elastic body (see, e.g., [2, p. 189]):

$$
W(\mathbf{C})=\frac{\mu}{2} \operatorname{tr} \mathbf{C}+h(\operatorname{det} \mathbf{C}) .
$$

Here $\operatorname{tr} \mathbf{C}$ denotes the trace of \mathbf{C}, i.e., the sum of the diagonal elements of the matrix \mathbf{C}.
Our analysis commences with the observation that, for C^{2} functions h, (1.1) is equivalent to

$$
\begin{equation*}
t \mapsto h\left(t^{n}\right) \text { is convex on }(0, \infty) \quad \text { and } \quad t \mapsto h(t) \text { is decreasing on }(0, \infty) . \tag{1.2}
\end{equation*}
$$

We will show that these alternative conditions are necessary and sufficient for any function (whether or not it is differentiable) $h:(0, \infty) \rightarrow \mathbb{R}$ to satisfy the condition that the composition $h \circ$ det is convex on the set of strictly positive-definite, symmetric $n \times n$ matrices.

[^0]Let \mathbf{E} be a symmetric $n \times n$ matrix. Then the spectral theorem (see, e.g., [5, §79]) implies that \mathbf{E} has exactly n (not necessarily distinct) eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ each of which is a root of the characteristic polynomial (see, e.g., [3, p. 70])

$$
\begin{equation*}
p(r):=\operatorname{det}(\mathbf{E}-r \mathbf{I})=\sum_{k=0}^{n}(-r)^{n-k} I_{k}(\mathbf{E})=\prod_{j=1}^{n}\left(\lambda_{j}-r\right), \quad r \in \mathbb{R}, \tag{1.3}
\end{equation*}
$$

where \mathbf{I} denotes the $n \times n$ identity matrix and $I_{k}(\mathbf{E})$ denotes the principal invariants of \mathbf{E}, which we assume are defined by the next to last equality in (1.3). Moreover, since this polynomial has n real roots the last equality in (1.3) implies that

$$
\begin{equation*}
I_{k}(\mathbf{E})=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{k}}, \tag{1.4}
\end{equation*}
$$

i.e., (see, e.g., [8, Theorem 4.19])

$$
\begin{aligned}
& I_{1}(\mathbf{E})=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\operatorname{tr} \mathbf{E} \\
& I_{2}(\mathbf{E})=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\cdots+\lambda_{1} \lambda_{n}+\lambda_{2} \lambda_{3}+\cdots+\lambda_{n-1} \lambda_{n}
\end{aligned}
$$

(the sum of all 2-term products of the λ 's with distinct indices),

$$
I_{k}(\mathbf{E})=\lambda_{1} \lambda_{2} \cdots \lambda_{k}+\cdots+\lambda_{2} \lambda_{3} \cdots \lambda_{k+1}+\cdots+\lambda_{n-k+1} \lambda_{n-k+2} \cdots \lambda_{n}
$$

(the sum of all k-term products of the λ 's with distinct indices),

$$
\begin{aligned}
I_{n-1}(\mathbf{E}) & =\prod_{i \neq 1} \lambda_{i}+\prod_{i \neq 2} \lambda_{i}+\cdots+\prod_{i \neq n} \lambda_{i}=\operatorname{tr}(\operatorname{adj} \mathbf{E}), \\
I_{n}(\mathbf{E}) & =\prod_{i=1}^{n} \lambda_{i}=\lambda_{1} \lambda_{2} \cdots \lambda_{n}=\operatorname{det} \mathbf{E},
\end{aligned}
$$

where $\operatorname{adj} \mathbf{E}$ denotes the adjugate matrix $(\mathbf{E} \operatorname{adj} \mathbf{E}=(\operatorname{det} \mathbf{E}) \mathbf{I})$. Moreover, such a matrix is (strictly) positive definite if and only if all of its eigenvalues are (strictly) positive.

Our first result is a consequence of the arithmetic-geometric mean inequality (see, e.g., [9]): let $m>0$ be an integer and suppose that $a_{1}, a_{2}, \ldots, a_{m}$ are nonnegative real numbers. Then

$$
\begin{equation*}
\frac{1}{m} \sum_{i=1}^{m} a_{i} \geq\left(\prod_{i=1}^{m} a_{i}\right)^{1 / m} \tag{1.5}
\end{equation*}
$$

Lemma 1.1. The principal invariants $I_{k}(\mathbf{E}), k=0,1,2, \ldots, n$, of a positive-definite, symmetric $n \times n$ matrix \mathbf{E} satisfy

$$
\begin{equation*}
I_{k}(\mathbf{E}) \geq \mathrm{C}_{k}^{n}(\operatorname{det} \mathbf{E})^{k / n}, \quad \mathrm{C}_{k}^{n}=\frac{n!}{k!(n-k)!}, \tag{1.6}
\end{equation*}
$$

where the notation C_{k}^{n} denotes the number of ways to choose k distinct integers from the set $\{1,2,3, \ldots, n\}$ without regard to the order that each is chosen.

Remark 1.2. Notice that the constants C_{k}^{n} are those that also occur in the binomial theorem (see, e.g., [6, pp. 139-140]): let $n \geq 2$ be an integer. Then for all real numbers a and b

$$
\begin{equation*}
(a+b)^{n}=\sum_{k=0}^{n} \mathrm{C}_{k}^{n} a^{n-k} b^{k} \tag{1.7}
\end{equation*}
$$

Proof of Lemma 1.1. First note that $I_{n}(\mathbf{E})=\operatorname{det} \mathbf{E}$ and $I_{0}(\mathbf{E})=1=\mathrm{C}_{0}^{n}(\operatorname{det} \mathbf{E})^{0}$. Next, fix an integer $k \in[1, n-1]$. Then the summation in (1.4) consists of C_{k}^{n} terms. Thus, by the arithmetic-geometric mean inequality (1.5) with $m:=\mathrm{C}_{k}^{n}$

$$
\begin{align*}
\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{k}} & \geq \mathrm{C}_{k}^{n}\left(\prod_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{k}}\right)^{1 / \mathrm{C}_{k}^{n}} \tag{1.8}\\
& =\mathrm{C}_{k}^{n}\left(\prod_{i=1}^{n}\left[\lambda_{i}\right]^{M}\right)^{1 / \mathrm{C}_{k}^{n}}
\end{align*}
$$

where the integer $M=M(k, n)$ denotes the number of times that each eigenvalue λ_{i}, $i=1,2, \ldots, n$, occurs in the sum of products (1.4). We claim that $M(k, n)=\mathrm{C}_{k}^{n}(k / n)$, which, together with (1.4), (1.8), and the fact that $\operatorname{det} \mathbf{E}=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$, will yield the desired result $(1.6)_{1}$.

In order to determine $M=M(k, n)$ let's fix attention on one eigenvalue, say λ_{1}, and count the number of terms in which it occurs in the sum (1.4). Note that, in each term, λ_{1} must multiply $k-1$ other eigenvalues chosen, without regard to order, from the remaining $n-1$, i.e., $\lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$. Thus, this number is C_{k-1}^{n-1} and so

$$
M=\mathrm{C}_{k-1}^{n-1}=\frac{(n-1)!}{(k-1)!([n-1]-[k-1])!}=\frac{k}{n} \frac{n!}{k!(n-k)!}=\frac{k}{n} \mathrm{C}_{k}^{n},
$$

as claimed.

2. Sufficiency

Proposition 2.1. Let $h:(0, \infty) \rightarrow \mathbb{R}$ and let $n \geq 2$ be an integer. Suppose that $t \mapsto h\left(t^{n}\right)$ is convex and $t \mapsto h(t)$ is decreasing on $(0, \infty)$. Then $h \circ \operatorname{det} i s$ convex on the set of strictly positive-definite, symmetric $n \times n$ matrices.

Proof. Let \mathbf{C} and \mathbf{D} be strictly positive-definite, symmetric $n \times n$ matrices. Suppose that $\sigma \in(0,1)$. Define $x:=(\operatorname{det} \mathbf{C})^{1 / n}$ and $y:=(\operatorname{det} \mathbf{D})^{1 / n}$. Then by the convexity of the map $t \mapsto h\left(t^{n}\right)$

$$
\sigma h\left(x^{n}\right)+(1-\sigma) h\left(y^{n}\right) \geq h\left([\sigma x+(1-\sigma) y]^{n}\right)
$$

Therefore,

$$
\begin{equation*}
\sigma h(\operatorname{det} \mathbf{C})+(1-\sigma) h(\operatorname{det} \mathbf{D}) \geq h\left(\left[\sigma(\operatorname{det} \mathbf{C})^{1 / n}+(1-\sigma)(\operatorname{det} \mathbf{D})^{1 / n}\right]^{n}\right) \tag{2.1}
\end{equation*}
$$

Next, define $\mathbf{E}:=\mathbf{C}^{-1} \mathbf{D}$ and $s:=\sigma /(1-\sigma)$. Then by the binomial theorem (1.7), Lemma 1.1, and (1.3) (with $r:=-s$)

$$
\begin{aligned}
{\left[\sigma(\operatorname{det} \mathbf{C})^{1 / n}+(1-\sigma)(\operatorname{det} \mathbf{D})^{1 / n}\right]^{n} } & =(1-\sigma)^{n}(\operatorname{det} \mathbf{C})\left[s+(\operatorname{det} \mathbf{E})^{1 / n}\right]^{n} \\
& =(1-\sigma)^{n}(\operatorname{det} \mathbf{C}) \sum_{k=0}^{n} \mathrm{C}_{k}^{n} s^{n-k}(\operatorname{det} \mathbf{E})^{k / n} \\
& \leq(1-\sigma)^{n}(\operatorname{det} \mathbf{C}) \sum_{k=0}^{n} s^{n-k} I_{k}(\mathbf{E}) \\
& =(1-\sigma)^{n}(\operatorname{det} \mathbf{C}) \operatorname{det}(s \mathbf{I}+\mathbf{E}) \\
& =\operatorname{det}[\sigma \mathbf{C}+(1-\sigma) \mathbf{D}]
\end{aligned}
$$

and hence, since h is monotone decreasing,

$$
\begin{equation*}
h\left(\left[\sigma(\operatorname{det} \mathbf{C})^{1 / n}+(1-\sigma)(\operatorname{det} \mathbf{D})^{1 / n}\right]^{n}\right) \geq h(\operatorname{det}[\sigma \mathbf{C}+(1-\sigma) \mathbf{D}]) \tag{2.2}
\end{equation*}
$$

The desired result, the convexity of $h \circ$ det, now follows from (2.1) and (2.2).
When h is differentiable on $(0, \infty)$ a simpler proof, which does not require the use of Lemma 1.1, the characteristic polynomial, the principal invariants, or the binomial theorem, is possible.

Alternate proof of Prop. 2.1, assuming that h is differentiable on $(0, \infty)$. Let \mathbf{C} and \mathbf{D} be strictly positive-definite, symmetric $n \times n$ matrices and define $\mathbf{U}:=\mathbf{D}^{-1} \mathbf{C}$. First note, for future reference, that the arithmetic-geometric mean inequality (1.5) implies that

$$
\begin{equation*}
\operatorname{tr} \mathbf{U}=\sum_{i=1}^{n} \hat{\lambda}_{i} \geq n\left(\prod_{i=1}^{n} \hat{\lambda}_{i}\right)^{1 / n}=n(\operatorname{det} \mathbf{U})^{1 / n} \tag{2.3}
\end{equation*}
$$

where $\hat{\lambda}_{i}>0, i=1,2, \ldots, n$, here denote the eigenvalues of \mathbf{U}.
Define $x:=(\operatorname{det} \mathbf{C})^{1 / n}$ and $y:=(\operatorname{det} \mathbf{D})^{1 / n}$. Then a well-known consequence (see, e.g., [1, §3.1.3]) of the convexity of the map $t \mapsto h\left(t^{n}\right)$ is that it lies above its tangent lines:

$$
h\left(x^{n}\right) \geq h\left(y^{n}\right)+n y^{n-1} h^{\prime}\left(y^{n}\right)(x-y) .
$$

Therefore,

$$
\begin{align*}
h(\operatorname{det} \mathbf{C}) & \geq h(\operatorname{det} \mathbf{D})+n(\operatorname{det} \mathbf{D})^{1-1 / n} h^{\prime}(\operatorname{det} \mathbf{D})\left[(\operatorname{det} \mathbf{C})^{1 / n}-(\operatorname{det} \mathbf{D})^{1 / n}\right] \\
& =h(\operatorname{det} \mathbf{D})+(\operatorname{det} \mathbf{D}) h^{\prime}(\operatorname{det} \mathbf{D})\left[n(\operatorname{det} \mathbf{U})^{1 / n}-n\right] \tag{2.4}\\
& \geq h(\operatorname{det} \mathbf{D})+(\operatorname{det} \mathbf{D}) h^{\prime}(\operatorname{det} \mathbf{D})[\operatorname{tr} \mathbf{U}-n]
\end{align*}
$$

where we have made use of (2.3) and the fact that $h^{\prime}(\operatorname{det} \mathbf{D}) \leq 0$, which is a consequence of the assumption that h is decreasing and differentiable.

Next, note that the mapping $\mathbf{F} \mapsto \operatorname{det} \mathbf{F}$ is differentiable (on the set of $n \times n$ matrices with strictly positive determinant) with derivative given by (see, e.g., [4, p. 23])

$$
\frac{d}{d \mathbf{F}}(\operatorname{det} \mathbf{F})[\mathbf{H}]=(\operatorname{det} \mathbf{F}) \operatorname{tr}\left[\mathbf{F}^{-1} \mathbf{H}\right]
$$

Thus, by the chain rule

$$
\begin{align*}
\frac{d}{d \mathbf{D}} h(\operatorname{det} \mathbf{D})[\mathbf{C}-\mathbf{D}] & =(\operatorname{det} \mathbf{D}) h^{\prime}(\operatorname{det} \mathbf{D}) \operatorname{tr}\left[\mathbf{D}^{-1}(\mathbf{C}-\mathbf{D})\right] \tag{2.5}\\
& =(\operatorname{det} \mathbf{D}) h^{\prime}(\operatorname{det} \mathbf{D})[\operatorname{tr} \mathbf{U}-n]
\end{align*}
$$

Finally, (2.4) and (2.5) imply that the differentiable mapping $h \circ$ det lies above all of its tangent hyperplanes. A well-known consequence (see, e.g., [1, §3.1.3]) of that property is the convexity of $h \circ$ det.

3. Necessity

Proposition 3.1. Let $h:(0, \infty) \rightarrow \mathbb{R}$ and let $n \geq 2$ be an integer. Suppose that $h \circ \operatorname{det} i s$ convex on the set of strictly positive-definite, symmetric $n \times n$ matrices. Then $t \mapsto h\left(t^{n}\right)$ is convex and $t \mapsto h(t)$ is decreasing on $(0, \infty)$.

Proof. We first show that $t \mapsto h\left(t^{n}\right)$ is convex on $(0, \infty)$. Towards that end let $x \neq y$ be strictly positive real numbers and suppose that $\sigma \in(0,1)$. Define \mathbf{C} and \mathbf{D} to be the strictly positive-definite, symmetric $n \times n$ matrices given by $\mathbf{C}:=x \mathbf{I}$ and $\mathbf{D}:=y \mathbf{I}$. Then $\operatorname{det} \mathbf{C}=x^{n}, \operatorname{det} \mathbf{D}=y^{n}$,

$$
\operatorname{det}(\sigma \mathbf{C}+(1-\sigma) \mathbf{D})=\operatorname{det}([\sigma x+(1-\sigma) y] \mathbf{I})=[\sigma x+(1-\sigma) y]^{n}
$$

and hence the convexity of the map $h \circ$ det yields

$$
\begin{aligned}
\sigma h\left(x^{n}\right)+(1-\sigma) h\left(y^{n}\right) & =\sigma h(\operatorname{det} \mathbf{C})+(1-\sigma) h(\operatorname{det} \mathbf{D}) \\
& \geq h(\operatorname{det}[\sigma \mathbf{C}+(1-\sigma) \mathbf{D}]) \\
& =h\left([\sigma x+(1-\sigma) y]^{n}\right)
\end{aligned}
$$

which establishes the convexity of the map $t \mapsto h\left(t^{n}\right)$.
We next show that $t \mapsto h(t)$ is decreasing on $(0, \infty)$. Suppose that x and y are real numbers that satisfy $y>x>0$. Define the real number $a>0$ by

$$
a:=(\sqrt{y}-\sqrt{y-x}) / x
$$

so that a satisfies the quadratic equation $x a^{2}-2 a \sqrt{y}+1=0$ and hence

$$
\begin{equation*}
a x+a^{-1}=2 \sqrt{y} \tag{3.1}
\end{equation*}
$$

Define \mathbf{C} and \mathbf{D} to be the strictly positive-definite, symmetric $n \times n$ diagonal matrices given by

$$
\mathbf{C}:=\operatorname{diag}\left\{a x, a^{-1}, 1,1,1, \ldots, 1\right\}, \quad \mathbf{D}:=\operatorname{diag}\left\{a^{-1}, a x, 1,1,1, \ldots, 1\right\} .
$$

Then

$$
\begin{gather*}
\operatorname{det} \mathbf{C}=x=\operatorname{det} \mathbf{D} \tag{3.2}\\
\frac{1}{2}(\mathbf{C}+\mathbf{D})=\operatorname{diag}\left\{\frac{1}{2}\left(a x+a^{-1}\right), \frac{1}{2}\left(a^{-1}+a x\right), 1,1,1, \ldots, 1\right\}
\end{gather*}
$$

and hence, in view of (3.1),

$$
\begin{equation*}
\operatorname{det}\left[\frac{1}{2} \mathbf{C}+\frac{1}{2} \mathbf{D}\right]=\frac{1}{4}\left[a x+a^{-1}\right]^{2}=y \tag{3.3}
\end{equation*}
$$

The desired result now follows from (3.3), (3.2), and the convexity of the composition $h \circ$ det, i.e.,

$$
h(y)=h\left(\operatorname{det}\left[\frac{1}{2} \mathbf{C}+\frac{1}{2} \mathbf{D}\right]\right) \leq \frac{1}{2} h(\operatorname{det} \mathbf{C})+\frac{1}{2} h(\operatorname{det} \mathbf{D})=h(x)
$$

4. Concluding Remarks

Simple examples show that (1.1) does not yield the convexity of $h \circ$ det on the set of $n \times n$ matrices with strictly positive determinant. However, if one first fixes any matrix \mathbf{G}_{0} that satisfies $\operatorname{det} \mathbf{G}_{0}>0$, then (1.1) implies that $\phi(\mathbf{F}):=h(\operatorname{det} \mathbf{F})$ is convex at \mathbf{G}_{0} in certain directions, that is, assuming h is twice differentiable at \mathbf{G}_{0},

$$
\mathbf{C}: \frac{d^{2} \phi}{d \mathbf{F}^{2}}\left(\mathbf{G}_{0}\right)[\mathbf{C}] \geq 0
$$

for all strictly positive-definite, symmetric $n \times n$ matrices \mathbf{C}.
Note that $(1.2)_{1}$ is also equivalent to the convexity of the map $t \mapsto t h\left(t^{-n}\right)$. Thus, one could establish a similar result with $(1.2)_{1}$ replaced by this alternate condition. Finally, we note that any function h that satisfies (1.2) is itself convex and continuous.

References

[1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[2] P. G. Ciarlet, Mathematical Elasticity, vol. 1, North-Holland, 1988.
[3] F. R. Gantmacher, The Theory of Matrices, vol. 1, Chelsea, 1959.
[4] M. E. Gurtin, An Introduction to Continuum Mechanics, Academic Press, 1981.
[5] P. R. Halmos, Finite-Dimensional Vector Spaces, 2 ${ }^{\text {nd }}$ ed., Van Nostrand, 1958.
[6] J. M. Harris, J. L. Hirst, and M. J. Mossinghoff, Combinatorics and Graph Theory, 2 ${ }^{\text {nd }}$ ed., Springer, 2008.
[7] S. Lehmich, P. Neff, and J. Lankeit, On the convexity of the function $\mathbf{C} \mapsto f(\operatorname{det} \mathbf{C})$ on positivedefinite matrices, Math. Mech. Solids 19 (2014), 369-375.
[8] A. D. Martin and V. J. Mizel, Introduction to Linear Algebra, McGraw-Hill, 1966.
[9] R. F. Muirhead, Proof's that the arithmetic mean is greater than the geometric mean, Math. Gazette 2 (1903), 283-287 (http://www.jstor.org/stable/3603556).

Department of Mathematics, Southern Illinois University, Carbondale, IL 62901, USA

E-mail address: sspector@siu.edu

[^0]: Date: 5 June 2014.
 2010 Mathematics Subject Classification. 74B20.
 Key words and phrases. Convexity, Elasticity.
 This material is based upon work supported by the National Science Foundation under Grant No. DMS-1107899. The author thanks K. Pericak-Spector and R. Fosdick for their helpful comments.

