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Abstract. Recently, Lehmich, Neff, and Lankeit [Math. Mech. Solids 19 (2014),
369–375] obtained necessary and sufficient conditions for the function C 7→ h(det C) to
be convex on strictly positive-definite, symmetric n × n matrices C. In this note an
alternate proof of their result is provided.

1. Introduction; Preliminaries

In [7] Lehmich, Neff, and Lankeit proved that, for functions h : (0, ∞) → R which
have two derivatives, necessary and sufficient conditions for the convexity of the compo-
sition map h◦det : C 7→ h(det C) on the set of strictly positive-definite, symmetric n×n

matrices, n ≥ 2, are that

nsh′′(s) + (n − 1)h′(s) ≥ 0 and h′(s) ≤ 0 for every s > 0, (1.1)

where det C denotes the determinant of the n × n matrix C. They noted that the con-
vexity of the map h ◦ det may be useful in analyzing stored-energy functions in nonlinear
elasticity. For example, a compressible neo-Hookean material can be written as a function
of the right Cauchy-Green strain matrix C := FTF, where F is the (matrix with respect
to an orthonormal basis of the) gradient of a deformation at any point in an elastic body
(see, e.g., [2, p. 189]):

W (C) = µ
2 tr C + h(det C).

Here tr C denotes the trace of C, i.e., the sum of the diagonal elements of the matrix C.

Our analysis commences with the observation that, for C2 functions h, (1.1) is
equivalent to

t 7→ h(tn) is convex on (0, ∞) and t 7→ h(t) is decreasing on (0, ∞). (1.2)

We will show that these alternative conditions are necessary and sufficient for any function
(whether or not it is differentiable) h : (0, ∞) → R to satisfy the condition that the
composition h ◦ det is convex on the set of strictly positive-definite, symmetric n × n
matrices.
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Let E be a symmetric n × n matrix. Then the spectral theorem (see, e.g., [5, §79])
implies that E has exactly n (not necessarily distinct) eigenvalues λ1, λ2, . . . , λn each of
which is a root of the characteristic polynomial (see, e.g., [3, p. 70])

p(r) := det(E − rI) =
n∑

k=0
(−r)n−kIk(E) =

n∏
j=1

(λj − r), r ∈ R, (1.3)

where I denotes the n × n identity matrix and Ik(E) denotes the principal invariants of
E, which we assume are defined by the next to last equality in (1.3). Moreover, since
this polynomial has n real roots the last equality in (1.3) implies that

Ik(E) =
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · · λik
, (1.4)

i.e., (see, e.g., [8, Theorem 4.19])
I1(E) = λ1 + λ2 + · · · + λn = tr E,

I2(E) = λ1λ2 + λ1λ3 + · · · + λ1λn + λ2λ3 + · · · + λn−1λn

(the sum of all 2-term products of the λ’s with distinct indices),
...

Ik(E) = λ1λ2 · · · λk + · · · + λ2λ3 · · · λk+1 + · · · + λn−k+1λn−k+2 · · · λn

(the sum of all k-term products of the λ’s with distinct indices),
...

In−1(E) =
∏
i̸=1

λi +
∏
i ̸=2

λi + · · · +
∏
i ̸=n

λi = tr(adj E),

In(E) =
n∏

i=1
λi = λ1λ2 · · · λn = det E,

where adj E denotes the adjugate matrix (E adj E = (det E)I). Moreover, such a matrix
is (strictly) positive definite if and only if all of its eigenvalues are (strictly) positive.

Our first result is a consequence of the arithmetic-geometric mean inequality (see,
e.g., [9]): let m > 0 be an integer and suppose that a1, a2, . . . , am are nonnegative real
numbers. Then

1
m

m∑
i=1

ai ≥
(

m∏
i=1

ai

)1/m

. (1.5)

Lemma 1.1. The principal invariants Ik(E), k = 0, 1, 2, . . . , n, of a positive-definite,
symmetric n × n matrix E satisfy

Ik(E) ≥ Cn
k(det E)k/n, Cn

k = n!
k!(n − k)!

, (1.6)

where the notation Cn
k denotes the number of ways to choose k distinct integers from the

set {1, 2, 3, . . . , n} without regard to the order that each is chosen.
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Remark 1.2. Notice that the constants Cn
k are those that also occur in the binomial

theorem (see, e.g., [6, pp. 139–140]): let n ≥ 2 be an integer. Then for all real numbers
a and b

(a + b)n =
n∑

k=0
Cn

kan−kbk. (1.7)

Proof of Lemma 1.1. First note that In(E) = det E and I0(E) = 1 = Cn
0 (det E)0. Next,

fix an integer k ∈ [1, n − 1]. Then the summation in (1.4) consists of Cn
k terms. Thus, by

the arithmetic-geometric mean inequality (1.5) with m := Cn
k∑

1≤i1<i2<···<ik≤n

λi1λi2 · · · λik
≥ Cn

k

( ∏
1≤i1<i2<···<ik≤n

λi1λi2 · · · λik

)1/Cn
k

= Cn
k

(
n∏

i=1
[λi]M

)1/Cn
k

,

(1.8)

where the integer M = M(k, n) denotes the number of times that each eigenvalue λi,
i = 1, 2, . . . , n, occurs in the sum of products (1.4). We claim that M(k, n) = Cn

k(k/n),
which, together with (1.4), (1.8), and the fact that det E = λ1λ2 · · · λn, will yield the
desired result (1.6)1.

In order to determine M = M(k, n) let’s fix attention on one eigenvalue, say λ1,
and count the number of terms in which it occurs in the sum (1.4). Note that, in each
term, λ1 must multiply k − 1 other eigenvalues chosen, without regard to order, from the
remaining n − 1, i.e., λ2, λ3, . . . , λn. Thus, this number is Cn−1

k−1 and so

M = Cn−1
k−1 = (n − 1)!

(k − 1)!([n − 1] − [k − 1])!
= k

n

n!
k!(n − k)!

= k

n
Cn

k ,

as claimed. □

2. Sufficiency

Proposition 2.1. Let h : (0, ∞) → R and let n ≥ 2 be an integer. Suppose that
t 7→ h(tn) is convex and t 7→ h(t) is decreasing on (0, ∞). Then h ◦ det is convex on the
set of strictly positive-definite, symmetric n × n matrices.

Proof. Let C and D be strictly positive-definite, symmetric n×n matrices. Suppose that
σ ∈ (0, 1). Define x := (det C)1/n and y := (det D)1/n. Then by the convexity of the map
t 7→ h(tn)

σh(xn) + (1 − σ)h(yn) ≥ h
(
[σx + (1 − σ)y]n

)
.

Therefore,

σh(det C) + (1 − σ)h(det D) ≥ h
([

σ(det C)1/n + (1 − σ)(det D)1/n
]n)

. (2.1)
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Next, define E := C−1D and s := σ/(1 − σ). Then by the binomial theorem (1.7),
Lemma 1.1, and (1.3) (with r := −s)[

σ(det C)1/n + (1 − σ)(det D)1/n
]n

= (1 − σ)n(det C)
[
s + (det E)1/n

]n
= (1 − σ)n(det C)

n∑
k=0

Cn
ksn−k(det E)k/n

≤ (1 − σ)n(det C)
n∑

k=0
sn−kIk(E)

= (1 − σ)n(det C) det(sI + E)

= det
[
σC + (1 − σ)D

]
,

and hence, since h is monotone decreasing,

h
([

σ(det C)1/n + (1 − σ)(det D)1/n
]n)

≥ h
(

det
[
σC + (1 − σ)D

])
. (2.2)

The desired result, the convexity of h ◦ det, now follows from (2.1) and (2.2). □

When h is differentiable on (0, ∞) a simpler proof, which does not require the use
of Lemma 1.1, the characteristic polynomial, the principal invariants, or the binomial
theorem, is possible.

Alternate proof of Prop. 2.1, assuming that h is differentiable on (0, ∞). Let C and D
be strictly positive-definite, symmetric n × n matrices and define U := D−1C. First
note, for future reference, that the arithmetic-geometric mean inequality (1.5) implies
that

tr U =
n∑

i=1
λ̂i ≥ n

(
n∏

i=1
λ̂i

)1/n

= n(det U)1/n, (2.3)

where λ̂i > 0, i = 1, 2, . . . , n, here denote the eigenvalues of U.

Define x := (det C)1/n and y := (det D)1/n. Then a well-known consequence (see,
e.g., [1, §3.1.3]) of the convexity of the map t 7→ h(tn) is that it lies above its tangent
lines:

h(xn) ≥ h(yn) + nyn−1h′(yn)(x − y).
Therefore,

h(det C) ≥ h(det D) + n(det D)1−1/nh′(det D)
[
(det C)1/n − (det D)1/n

]
= h(det D) + (det D)h′(det D)

[
n(det U)1/n − n

]
≥ h(det D) + (det D)h′(det D)

[
tr U − n

]
,

(2.4)

where we have made use of (2.3) and the fact that h′(det D) ≤ 0, which is a consequence
of the assumption that h is decreasing and differentiable.
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Next, note that the mapping F 7→ det F is differentiable (on the set of n×n matrices
with strictly positive determinant) with derivative given by (see, e.g., [4, p. 23])

d

dF(det F)[H] = (det F) tr
[
F−1H

]
.

Thus, by the chain rule
d

dDh(det D)[C − D] = (det D)h′(det D) tr
[
D−1(C − D)

]
= (det D)h′(det D)[tr U − n].

(2.5)

Finally, (2.4) and (2.5) imply that the differentiable mapping h ◦ det lies above all of
its tangent hyperplanes. A well-known consequence (see, e.g., [1, §3.1.3]) of that property
is the convexity of h ◦ det. □

3. Necessity

Proposition 3.1. Let h : (0, ∞) → R and let n ≥ 2 be an integer. Suppose that h◦det is
convex on the set of strictly positive-definite, symmetric n × n matrices. Then t 7→ h(tn)
is convex and t 7→ h(t) is decreasing on (0, ∞).

Proof. We first show that t 7→ h(tn) is convex on (0, ∞). Towards that end let x ̸= y

be strictly positive real numbers and suppose that σ ∈ (0, 1). Define C and D to be the
strictly positive-definite, symmetric n × n matrices given by C := xI and D := yI. Then
det C = xn, det D = yn,

det
(
σC + (1 − σ)D

)
= det

(
[σx + (1 − σ)y]I

)
= [σx + (1 − σ)y]n,

and hence the convexity of the map h ◦ det yields
σh(xn) + (1 − σ)h(yn) = σh(det C) + (1 − σ)h(det D)

≥ h
(

det
[
σC + (1 − σ)D

])
= h

(
[σx + (1 − σ)y]n

)
,

which establishes the convexity of the map t 7→ h(tn).

We next show that t 7→ h(t) is decreasing on (0, ∞). Suppose that x and y are real
numbers that satisfy y > x > 0. Define the real number a > 0 by

a :=
(√

y −
√

y − x
)
/x

so that a satisfies the quadratic equation xa2 − 2a
√

y + 1 = 0 and hence
ax + a−1 = 2√

y. (3.1)
Define C and D to be the strictly positive-definite, symmetric n × n diagonal matrices
given by

C := diag{ax, a−1, 1, 1, 1, . . . , 1}, D := diag{a−1, ax, 1, 1, 1, . . . , 1}.
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Then
det C = x = det D, (3.2)

1
2(C + D) = diag{1

2(ax + a−1), 1
2(a−1 + ax), 1, 1, 1, . . . , 1},

and hence, in view of (3.1),

det
[

1
2C + 1

2D
]

= 1
4

[
ax + a−1

]2
= y. (3.3)

The desired result now follows from (3.3), (3.2), and the convexity of the composition
h ◦ det, i.e.,

h(y) = h
(
det

[
1
2C + 1

2D
])

≤ 1
2h(det C) + 1

2h(det D) = h(x). □

4. Concluding Remarks

Simple examples show that (1.1) does not yield the convexity of h ◦ det on the set of
n × n matrices with strictly positive determinant. However, if one first fixes any matrix
G0 that satisfies det G0 > 0, then (1.1) implies that ϕ(F) := h(det F) is convex at G0 in
certain directions, that is, assuming h is twice differentiable at G0,

C : d2ϕ

dF2 (G0)[C] ≥ 0

for all strictly positive-definite, symmetric n × n matrices C.

Note that (1.2)1 is also equivalent to the convexity of the map t 7→ th(t−n). Thus, one
could establish a similar result with (1.2)1 replaced by this alternate condition. Finally,
we note that any function h that satisfies (1.2) is itself convex and continuous.
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