The convergence of regularised minimisers for cavitation problems in nonlinear elasticity

Jeyabal Sivaloganathan Department of Mathematical Sciences University of Bath Bath BA2 7AY, U.K.,

> Scott J. Spector Department of Mathematics Southern Illinois University Carbondale, IL 62901-4408, U.S.A.

> > and

V. Tilakraj Abingdon Technology Centre Schlumberger Geoquest Abingdon OX14 1DZ, UK

ABSTRACT. Consider a nonlinearly elastic body which occupies the region $\Omega \subset \mathbb{R}^m$ in its reference state and which is held in tension under prescribed boundary displacements on $\partial \Omega$. Let $\mathbf{x}_0 \in \Omega$ be any fixed point in the body. It is known from variational arguments that, for sufficiently large boundary displacements, there may exist discontinuous weak solutions of the equilibrium equations corresponding to a hole forming at \mathbf{x}_0 in the deformed body (this is the phenomenon of cavitation). For each $\epsilon > 0$, define the regularised domains $\Omega_{\epsilon} = \Omega \setminus B_{\epsilon}(\mathbf{x}_0)$ which contain a pre-existing hole of radius $\epsilon > 0$ centred on \mathbf{x}_0 . Now consider the corresponding mixed displacement/traction problem on Ω_{ϵ} in which the boundary $\partial \Omega$ is subject to the same boundary displacements and the deformed cavity surface (i.e. the image of ∂B_{ϵ}) is required to be stress free. It follows from variational arguments that there exists a weak solution \mathbf{u}_{ϵ} of this problem for each $\epsilon > 0$. In this paper we prove convergence of these regularised minimisers \mathbf{u}_{ϵ} in the limit as $\epsilon \to 0$. In particular, we show that if $\epsilon_n \searrow 0$ then, passing to a subsequence, $\mathbf{u}_{\epsilon_n} \to \mathbf{u}$ where \mathbf{u} is a minimiser for the original pure displacement problem on Ω . Finally, we study the effect on cavitation of regularising the variational problem by introducing a surface energy term which penalises the formation and growth of cavities.

Mathematics Subject Classification (2000): 74B20 (49K20, 74G65)