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Abstract

When a rectangular bar is subjected to uniaxial tension, the bar usually deforms (ap-
proximately) homogeneously and isoaxially until a critical load is reached. A bifurcation,
such as the formation of shear bands or a neck, may then be observed. In this paper such
an experiment is modelled as the in-plane extension of a two-dimensional, homogeneous,
isotropic, incompressible, hyperelastic material in which the length of the bar is prescribed,
the ends of the bar are assumed to be free of shear, and the sides are left completely free.
It is shown that standard, additional constitutive hypotheses on the stored-energy function
imply that no such bifurcation is possible in this model due to the fact that the homogeneous
isoaxial deformation is the unique absolute minimizer of the elastic energy. Thus, in order
for a bifurcation to occur either the material must cease to be elastic or the stored-energy
function must violate the additional hypotheses. The fact that no local bifurcations can
occur under the assumptions used herein was known previously, since these assumptions
prohibit the load on the bar from reaching a maximum value. However, the fact that the
homogeneous deformation is the absolute minimizer of the energy appears to be a new result.

Mathematics Subject Classifications (2010): 74B20, 35J50, 49K20, 74G65.

Key words: Incompressible, elastic, uniaxial tension, homogeneous absolute mini-
mizer.
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1 Introduction

Consider a homogeneous, isotropic, incompressible, hyperelastic material that occupies the
rectangular region

R := {(x, y) : −R < x < R, 0 < y < L}

in a fixed homogeneous reference configuration. A deformation u : R→ R2 of the body is then
a differentiable, one-to-one map that satisfies the constraint

det∇u ≡ 1 on R. (1.1)

The problem we herein consider is uniaxial extension. Specifically, we fix λ ≥ 1 and restrict
our attention to those deformations that satisfy the boundary conditions:

u2(x, 0) = 0, u2(x, L) = λL for all x ∈ [−R,R], (1.2)

where we have written

u(x, y) =
[
u1(x, y)
u2(x, y)

]
.

With each such deformation we associate a corresponding elastic energy

E(u) =
∫
R

W (∇u(x, y)) dx dy, (1.3)

where ∇u denotes the 2 × 2 matrix of partial derivatives of u, W : M2×2
1 → [0,∞) is the

stored-energy density, and M2×2
1 denotes the set of 2× 2 matrices with determinant equal to 1.

If W is both isotropic and frame-indifferent, then standard representation theorems (see, e.g.,
[4, 9]) imply that there is a function Φ : R+ → R that satisfies

W (F) = Φ(|F|) for all F ∈ M2×2
1 , (1.4)

where |F| denotes the square-root of the sum of the squares of the elements of F. Note that if
a deformation u satisfies (1.1), (1.2) and minimizes (1.3), (1.4), then so does g ◦ u where g is
any translation in the x-direction. In order to eliminate this trivial nonuniqueness we impose
the additional constraint ∫

R
u1(x, y) dx dy = 0. (1.5)

Our main result shows that if the function Φ is both convex1 and monotone increasing,
then the homogeneous deformation

uh
λ(x, y) :=

[
1
λx

λy

]
(1.6)

is an absolute minimizer of E. Moreover, if in addition Φ is strictly increasing, then uh
λ is the

only absolute minimizer of the elastic energy that satisfies (1.1), (1.2), and (1.5).
1If Φ is convex, then W is polyconvex in the sense of Ball [1, 2].
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The proof of our result uses the technique developed in [14] for energy minimization of thick
spherical shells. The main idea is fairly simple. We first consider the stored-energy function
W (F) = |F|. For this function we show that the constraint of incompressibility allows us to
bound the elastic energy below by an integral of a convex function of the deformed length of
line segments that were initially parallel to the loading axis. Moreover, this lower bound is an
equality when the image curves are straight lines that are deformed uniformly and are parallel
to the loading axis. Thus, energetically, the material prefers that each such straight line deform
homogeneously into another parallel straight line. The general case then follows from Jensen’s
inequality applied to the convex, increasing function Φ.

We note that the final remark in this paper demonstrates that our constitutive assumptions
include the Ogden [12] materials

W (F) =
M∑

k=1

µk

αk

[
λαk

1 + λαk
2

]
,

provided µk > 0 and αk ≥ 2. Here λ1 and λ2 are the principal stretches, i.e., the eigenvalues of
V =

√
FFT. One of the simplest such examples is the neo-Hookean material:

W (F) = µ
2 |F|

2 = µ
2

[
λ2

1 + λ2
2

]
,

which clearly satisfies our hypotheses.

The vast majority of prior results on elastic bars in uniaxial tension have analyzed the
linearization stability of uh

λ, that is, whether or not the system of partial differential equations
that one obtains upon linearizing the equilibrium equations, (1.2), and (1.5), about uh

λ, has a
nontrivial solution. This technique was utilized by Weso lowski [17] to show that a neo-Hookean
material is always stable in tension, while certain other constitutive relations do become un-
stable. Hill and Hutchinson [10] then employed this procedure to prove that an incompressible
elastic material is linearization stable in tension as long as the linear-elasticity tensor remains
elliptic and the force required to extend the rectangle is an increasing function of the extension
ratio λ. For compressible elastic materials similar results have been obtained by Del Piero [6]
and also in [16]. Recent results of Del Piero and Rizzoni [7] examine the stability of both
compressible and incompressible materials. There is also an extensive literature on plastic and
elastic/plastic materials, see, e.g., [8], [10], and the references therein.

We mention that linearization instability does not necessitate bifurcation. The additional
technical details needed to establish the existence of a second solution branch can be found in
[13]. Alternatively, another approach to this problem was proposed by Mielke [11, Chapter 10]
who used the center-manifold theorem to prove that an infinite strip will bifurcate when the
force required to extend the strip has a local maximum as a function of λ. When a bar is
compressed rather than extended, λ ∈ (0, 1), many authors have investigated this and many
similar problems; see, e.g., Davies [5] and the references therein.

Finally, we note that it is unclear whether or not one can use techniques similar to those
in [14, 15] and this paper to extend our results to compressible materials and also to three-
dimensional circular-cylindrical bars and shells.
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2 Isochoric Deformations.

Definition 2.1. We let λ > 0 and define the set of admissible isochoric deformations by

Aλ :=
{
u ∈ C1(R; R2) : det∇u ≡ 1, u is one-to-one, u satisfies (1.2) and (1.5)

}
.

In particular, the homogeneous deformation (1.6) is an admissible deformation that satisfies

∇uh
λ ≡

[
1
λ 0

0 λ

]
, |∇uh

λ|2 ≡ λ2 + λ−2. (2.1)

The unique shortest curve connecting two points is a straight line. We will need a slight
variant of this well-known result. We provide a proof for the convenience of the reader.

Lemma 2.2. Let λ > 0, u ∈ Aλ, and suppose that uh
λ is given by (1.6). Then, for each

x ∈ [−R,R],

length
(
u(Lx)

)
≥ length

(
uh

λ(Lx)
)
,

where Lx is the line segment
Lx := {(x, y) : 0 ≤ y ≤ L}.

Moreover, this inequality is strict unless u(x, ·) ≡ uh
λ(x, ·).

Proof. Let λ > 0, u ∈ Aλ, and x ∈ [−R,R]. Then

length
(
u(Lx)

)
=

∫ L

0

∣∣∣∣∂u
∂y

∣∣∣∣ dy ≥
∣∣∣∣∫ L

0

∂u
∂y

dy

∣∣∣∣ = |u(x, L)− u(x, 0)|.

However,

|u(x, L)− u(x, 0)| ≥ |u2(x, L)− u2(x, 0)| = λL = length
(
uh

λ(Lx)
)
,

where we have made use of u2(·, L) ≡ λL, u2(·, L) ≡ 0, and (1.6).

To prove strictness when u 6= uh
λ we first observe that if b 6= 0, the Cauchy-Schwarz

inequality implies that |a||b| ≥ a · b, with equality if and only if a = kb for some k ≥ 0. Thus,
for fixed (x, y) ∈ R, the choice a = ∂u/∂y and b = ∂uh

λ/∂y yields2 (after some algebra)

∣∣∣∣∂u
∂y

∣∣∣∣ >

∣∣∣∣∂uh
λ

∂y

∣∣∣∣ +
∂uh

λ
∂y∣∣∣∂uh

λ
∂y

∣∣∣ ·
[
∂u
∂y

−
∂uh

λ

∂y

]
(2.2)

2Equation (2.2) also follows from the strict convexity of the norm on lines that do not contain the origin.
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unless [∂u/∂y] = k[∂uh
λ/∂y] for some k = k(x, y) ≥ 0. If we then integrate (2.2) with respect

to y over the interval [0, L] and make use of (1.6) and the boundary conditions (1.2), we find
that

length
(
u(Lx)

)
=

∫ L

0

∣∣∣∣∂u
∂y

∣∣∣∣ dy >

∫ L

0

∂u2

∂y
dy = λL = length

(
uh

λ(Lx)
)

(This argument also provides an alternative proof of the first part of this lemma.)

Alternatively, if [∂u/∂y] = k[∂uh
λ/∂y], then ∂u1/∂y = 0, ∂u2/∂y = λk(x, y), and conse-

quently

u(x, y) =
[

ρ(x)
Λ(x, y)

]
for some functions ρ : [−R,R] → R and Λ : R → R. However, since u is isochoric it follows
that Λ(x, y) = ρ̂(x) + y/ρ′(x) for some function ρ̂ : [−R,R] → R. We next apply the boundary
condition Λ(·, 0) ≡ 0 to conclude that ρ̂ = 0. The boundary condition Λ(·, L) ≡ λL then yields
ρ′ ≡ 1/λ. Therefore

u(x, y) =
[

1
λx + a

λy

]
for some a ∈ R. Finally the integral constraint (1.5) implies that a = 0 and so u = uh

λ.

3 The Homogeneity of Isochoric Energy-Minimizing Deformations.

Let u ∈ Aλ. Our aim is to prove that the energy functional (1.3) satisfies

E(u) ≥ E(uh
λ)

for any polyconvex stored-energy function W of the form

W (F) = Φ(|F|), (3.1)

where Φ : R+ → R is convex and monotone increasing.

To present the main ideas in our proof we present our results first for the energy W (F) =
|F|. The more general result will then be a consequence of Jensen’s inequality. To simplify the
technical details we will assume that u ∈ C1(R; R2), however, the proofs easily generalize to
wider classes of deformations in an appropriate Sobolev space.

3.1 The case W (F) = |F|.

Lemma 3.1. Let λ > 0 and u ∈ Aλ. Then, for (x, y) ∈ R,

|∇u|2 ≥ 1∣∣∣∂u
∂y

∣∣∣2 +
∣∣∣∣∂u
∂y

∣∣∣∣2 . (3.2)
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Proof. We first observe that

|∇u(x, y)|2 =
∣∣∣∣∂u
∂x

∣∣∣∣2 +
∣∣∣∣∂u
∂y

∣∣∣∣2 . (3.3)

Next, since u is isochoric the Cauchy-Schwarz inequality implies

1 = det∇u =
∂u
∂x

·
[

0 −1
1 0

]
∂u
∂y

≤
∣∣∣∣∂u
∂x

∣∣∣∣ ∣∣∣∣∂u
∂y

∣∣∣∣ (3.4)

since the above matrix is orthogonal. The desired result now follows from (3.3) and (3.4).

A straightforward computation then gives us the following result.

Lemma 3.2. Let

g(t) =

√
1
t2

+ t2 for t ∈ (0,∞).

Then g is convex on (0,∞) and monotone increasing for t ≥ 1.

Lemma 3.3. Let λ > 0 and u ∈ Aλ. Then, for each x ∈ [−R,R],

−
∫ L

0
|∇u| dy ≥ −

∫ L

0
g

(∣∣∣∣∂u
∂y

∣∣∣∣) dy ≥ g

(
−
∫ L

0

∣∣∣∣∂u
∂y

∣∣∣∣ dy

)
, (3.5)

where −
∫ L
0 φ dy denotes the average value of φ over [0, L], i.e.,

−
∫ L

0
φ(x, y) dy :=

1
L

∫ L

0
φ(x, y) dy.

Proof. If we take the square-root of (3.2) and then integrate the result over [0, L] and divide
by L, the result will follow from Jensen’s inequality since g is convex by Lemma 3.2.

Lemma 3.4. Let λ > 0 and u ∈ Aλ. Then, for each x ∈ [−R,R],

−
∫ L

0

∣∣∣∣∂u
∂y

∣∣∣∣ dy ≥ −
∫ L

0

∣∣∣∣∂uh
λ

∂y

∣∣∣∣ dy = λ

with equality if and only if u ≡ uh
λ.

Proof. This result is an immediate consequence of Lemma 2.2 since∫ L

0

∣∣∣∣∂v
∂y

∣∣∣∣ dy = length
(
v
(
x× [0, L]

))
for any v ∈ Aλ and x ∈ [−R,R].
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If we now combine Lemmas 3.2–3.4 and make use of the identity (see (2.1)2)

g

(
−
∫ L

0

∣∣∣∣∂uh
λ

∂y

∣∣∣∣ dy

)
= g (λ) ≡ |∇uh

λ(x, y)|,

we arrive at the following result.

Proposition 3.5. Let λ ≥ 1, u ∈ Aλ, and x ∈ [−R,R]. Then

−
∫ L

0
|∇u(x, y)| dy ≥ −

∫ L

0
|∇uh

λ(x, y)| dy. (3.6)

Moreover, this inequality is strict when u(x, ·) 6≡ uh
λ(x, ·).

3.2 The general case: W (F) = Φ(|F|).

We now suppose that W (F) = Φ(|F|) to obtain the following result.

Theorem 3.6. Let λ ≥ 1 and
W (F) = Φ(|F|),

where Φ : R+ → R is convex and monotone increasing. Then, for any u ∈ Aλ,

E(u) =
∫
R

W (∇u) dx dy ≥
∫
R

W (∇uh
λ) dx dy = E(uh

λ).

Moreover, if in addition Φ is strictly increasing, then the inequality is strict when u 6≡ uh
λ.

Proof. By Jensen’s inequality, the monotonicity of Φ, Proposition 3.5, and (2.1)2∫
R

W (∇u) dx dy = L

∫ R

−R

(
−
∫ L

0
Φ(|∇u|) dy

)
dx

≥ L

∫ R

−R
Φ

(
−
∫ L

0
|∇u| dy

)
dx

≥ L

∫ R

−R
Φ

(
−
∫ L

0
|∇uh

λ| dy

)
dx

= L

∫ R

−R
Φ

(
|∇uh

λ|
)

dx =
∫
R

W (∇uh
λ) dx dy.

In order to see that the inequality is strict when u 6≡ uh
λ we observe that Proposition 3.5 and

the strict monotonicity of Φ imply that the second of the above inequalities is a strict inequality
when u 6≡ uh

λ.

Remark 3.7. Under appropriate growth conditions on W (see [1, 2, 3, 4]), uh
λ is also the (strict)

minimizer of the energy E over the larger sets:

{u ∈ W 1,p(R; R2) : det∇u = 1 a.e., u is one-to-one a.e., u satisfies (1.2) and (1.5)},

p ∈ [1,∞]. The details are similar to those used in [14, Section 5].
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Remark 3.8. The (Piola-Kirchhoff) stress for the constitutive model used in this paper is
given by

S(F) :=
dW

dF
− π[adj F]T = Φ′(|F|) F

|F|
− π[adj F]T for all F ∈ M2×2

1 ,

where π ∈ R is a pressure. In particular when F = ∇uh
λ it follows that the force (per unit

undeformed length) on the sides of the rectangle is

S11 =
1
λ

Φ′(
√

λ−2 + λ2)√
λ−2 + λ2

− λπ = 0,

while the force (per unit undeformed length) on the top and bottom is

S22 = λ
Φ′(
√

λ−2 + λ2)√
λ−2 + λ2

− 1
λ

π.

If we combine these two equations we conclude that

S22(λ) = Φ′
(√

λ−2 + λ2
) λ− λ−3

√
λ−2 + λ2

and hence

dS22

dλ
=

2λ−6 + 6λ−2(
λ2 + λ−2

)3/2
Φ′

(√
λ−2 + λ2

)
+

(
λ− λ−3

)2

λ−2 + λ2
Φ′′

(√
λ−2 + λ2

)
,

which is nonnegative if Φ is convex and monotone increasing. Thus the force increases with
increasing extension, which has been shown by Hill and Hutchinson [10] (see, also, [6, 7, 16]) to
be a sufficient condition to prohibit bifurcation of an incompressible elastic material that has
an elasticity tensor that is elliptic.

Remark 3.9. Among the many papers in the literature that develop constitutive relations for
rubber-like materials, one of the most influential is that of Ogden [12]. The energies developed
there are of the form:

W (F) = φ(λ1) + φ(λ2),

where λi are the principal stretches, i.e., the eigenvalues of V =
√

FFT and φ : (0,∞) → R. If
φ is convex and monotone increasing, then such energies are polyconvex (see [1, pp. 363–367]).
In order to compare restrictions on φ and Φ we note that the eigenvalues of V satisfy the
characteristic equation (recall det V = 1)

λ2 − tr(V)λ + 1 = 0,

where tr(V) = λ1 + λ2 denotes the trace of V. The identity [tr(V)]2 = |F|2 + 2 together with
the quadratic formula then yield

λL(t) = 1
2

[√
t2 + 2 +

√
t2 − 2

]
, λS(t) = 1

2

[√
t2 + 2−

√
t2 − 2

]
(3.7)
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for t:=|F| ≥
√

2. Consequently, if we differentiate (3.7) with respect to t we find that

λ̇L(t) =
t√

t4 − 4
λL(t), λ̇S(t) = − t√

t4 − 4
λS(t), (3.8)

and hence

λ̈L(t) =
[

t2

t4 − 4
− t4 + 4

(t4 − 4)3/2

]
λL(t), λ̈S(t) =

[
t2

t4 − 4
+

t4 + 4
(t4 − 4)3/2

]
λS(t). (3.9)

Thus t 7→ λL(t) is monotone increasing and concave while t 7→ λS(t) is monotone decreasing
and convex.

We observe that our constitutive relation can be written

W (F) = Φ(|F|), Φ(t) := φ
(
λL(t)

)
+ φ

(
λS(t)

)
. (3.10)

Differentiating the last equation with respect to t yields

Φ̇(t) = φ′
(
λL(t)

)
λ̇L(t) + φ′

(
λS(t)

)
λ̇S(t), (3.11)

which together with (3.7) and (3.8) implies that

Φ̇(t) =
t

2
√

t2 + 2

[
φ′

(
λL

)
+ φ′

(
λS

)]
+

t

2
√

t2 − 2

[
φ′

(
λL

)
− φ′

(
λS

)]
. (3.12)

Thus if φ is convex and increasing, then Φ will be monotone increasing on [
√

2,∞). In particular
this is true when (cf. Ogden [12, p. 570–571])

φ(λ) :=
M∑
i=1

µi

αi
λαi , (3.13)

with µi > 0 and αi ≥ 1. Moreover, if we differentiate (3.11) with respect to t we arrive at

Φ̈(t) = φ′′
(
λL

)[
λ̇L

]2 + φ′′
(
λS

)[
λ̇S

]2 + φ′
(
λL

)
λ̈L + φ′

(
λS

)
λ̈S.

Thus if φ is given by (3.13) it follows from (3.8) and (3.9) that Φ̈(t) will be the sum of terms of
the form

N(t)(
t4 − 4

)3/2
, (3.14)

N(t) := αt2
√

t4 − 4
([

λL(t)
]α +

[
λS(t)

]α
)

+
(
t4 + 4

)([
λS(t)

]α −
[
λL(t)

]α
)
.

We observe that the denominator of (3.14) is strictly positive on (
√

2,∞), N(
√

2) = 0, and

dN

dt
= 3αt

√
t4 − 4

([
λL(t)

]α +
[
λS(t)

]α
)

+ t3
(
α2 − 4

)([
λL(t)

]α −
[
λS(t)

]α
)
, (3.15)
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which is strictly positive on (
√

2,∞) when α ≥ 2. The numerator of (3.14) is therefore also
strictly positive on (

√
2,∞) for α ≥ 2.

Finally, we note that our hypotheses require that Φ have an extension to all of R+ that
is monotone increasing and convex. To see that such an extension exists when φ is given by
(3.13) we observe that (3.7), (3.8), (3.12), and (3.13) yield, with the aid of l’Hôpital’s rule,

lim
t↘
√

2
Φ̇(t) =

√
2

2
[
φ′(1) + φ′′(1)

]
=
√

2
2

M∑
i=1

µiαi > 0

for µiαi > 0. Similarly, (3.7), (3.8), (3.13), (3.14), (3.15) together with two applications of
l’Hôpital’s rule yield, for µiαi > 0 and αi ≥ 2,

lim
t↘
√

2
Φ̈(t) =

M∑
i=1

[
µiαi

(
1
2

+
α2

i − 4
12

)]
> 0.

We therefore conclude that the constitutive relation given by (3.7), (3.10), and (3.13), with
µi > 0 and αi ≥ 2, satisfies (3.10)1, where Φ is convex and strictly monotone increasing. It
therefore follows from Theorem 3.6 that uh

λ, given by (1.6), is the unique absolute minimizer of
these energies for every λ ≥ 1.

Finally, we remark that given any stored-energy Ψ = Ψ(λ1, λ2), expressed as a function
of the principal stretches, different extensions of Ψ off the curve λ1λ2 = 1 will in general yield
different representations for Φ(|F|) = Ψ(λ1, λ2). The resulting Φ may or may not be convex
and increasing on R+ depending on the extension. For example, although the previous remark
demonstrates that the Ogden material Ψ(λ1, λ2) = λ6

1 + λ6
2 does satisfy our conditions, a direct

computation using λ1λ2 = 1 shows that

Ψ(λ1, λ2) := λ6
1 + λ6

2 =
(
λ2

1 + λ2
2

)3 − 3
(
λ2

1 + λ2
2

)
= |F|6 − 3|F|2 =: Φ(|F|),

which is neither convex nor monotone increasing on all of R+. However, the constraint det F = 1
implies that |F| ≥

√
2 and so all one need show is that Φ restricted to [

√
2,∞) has an extension

to R+ that is convex and increasing, which is straightforward.
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