Meeting: 1011, Lincoln, Nebraska, SS 17A, Special Session on Calculus of Variations

S. J. Spector* (sspector@math.siu.edu), Department of Mathematics, Southern Illinois University, Carbondale, IL 62901, and J. Sivaloganathan (js@maths.bath.ac.uk), Department of Mathematical Sciences, University of Bath, BA2 7AY Bath, England. Necessary Conditions for a Minimum at a Radial Cavitating Singularity in Nonlinear Elasticity.

It is still not known if the radial cavitating minimizers obtained by Ball [Phil. Trans. R. Soc. Lond. A 306 (1982), 557–611] (and subsequently by many others) are global minimizers of any physically reasonable energy

$$E(\mathbf{u}) = \int_{B} W(\nabla \mathbf{u}(\mathbf{x})) \, d\mathbf{x}$$

 $(B \subset \mathbb{R}^3)$ is the unit ball). We thus consider the related problem of obtaining necessary conditions for radial solutions to be minimizers with respect to non-radial perturbations. A standard blowup argument applied to either an inner or an outer variation yields a new inequality that has yet to be verified for most W. However, in the special case when $W(\mathbf{F}) = \frac{\mu}{2} |\mathbf{F}|^2 + h(\det \mathbf{F})$ we show that the inequality produced by an inner variation is a well-known inequality, first proven by Brezis, Coron, and Lieb [Comm. Math. Phys. 107 (1986), 649–705] and which arises in the theory of nematic liquid crystals:

$$\int_{B} |\nabla \mathbf{n}(\mathbf{x})|^{2} d\mathbf{x} \ge \int_{B} \left| \nabla \left(\frac{\mathbf{x}}{|\mathbf{x}|} \right) \right|^{2} d\mathbf{x} = 8\pi$$

for all $\mathbf{n} \in W^{1,2}(B, \partial B)$ that satisfy $\mathbf{n}(\mathbf{x}) = \mathbf{x}/|\mathbf{x}|$ on ∂B . (Received July 29, 2005)