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Abstract. In this paper the tame estimate of Moser [17] is used to extend the standard regularity
estimate of Agmon, Douglis, and Nirenberg [4] for systems of strongly elliptic equations in linearized
elasticity so that the components of the elasticity tensor need only lie in the Sobolev space W m,p(Ω)
for p > n/m, rather than p > n, when one obtains W m+1,p–regularity of the solution. This
improvement is necessary if one wants to prove global continuation results in such spaces for the
equations of nonlinear elasticity.
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1. Introduction. Consider a nonlinearly elastic body that occupies the region
Ω ⊂ Rn, n = 2, 3, in its homogeneous reference configuration. Let the boundary
of the body, ∂Ω, be divided into two disjoint parts S and D and suppose one is
given smooth one-parameter families of boundary tractions s : S × [0,∞) → R

n and
boundary deformations d : D × [0,∞) → Rn. Assume, in addition, that one is given
a smooth one-parameter family of solutions fλ, λ ∈ [0, λ0], for some λ0 ≥ 0, to the
equations of equilibrium, with no body forces,

div S(∇fλ(x)) = 0 for (x, λ) ∈ Ω × [0, λ0] (1.1)

that satisfy the boundary conditions

S(∇fλ(x))n(x) = s(x, λ) for (x, λ) ∈ S × [0, λ0], (1.2)

fλ(x) = d(x, λ) for (x, λ) ∈ D × [0, λ0], (1.3)

where S is the Piola-Kirchhoff stress and n is the outward unit normal to the region.
Then it is well-known that, if S, D, s, d, and S are sufficiently smooth, D and S are
both closed and relatively open1, and if the linearized operator is strongly-elliptic,
satisfies the complementing condition, and is bijective, then one can use the inverse
or implicit function theorem, in an appropriately chosen Banach space B(Ω), to infer
the existence of a solution to (1.1)–(1.3) on some interval [λ0, λ0 + ǫ). Moreover, the
resulting one-parameter family of solutions satisfies2 det∇fλ > 0 on Ω × [0, λ0 + ǫ),
assuming it satisfies this condition on [0, λ0].

The complete analysis that yields the above results can be found in, for example,
the nice monograph by Valent [26]. One key ingredient in proving such results is the
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fundamental regularity estimate of Agmon, Douglis, and Nirenberg [4]: For m ∈ Z+

‖u‖B
m+1
t (Ω) ≤ N

[∥∥div C[∇u]
∥∥

B
m−1
t (Ω)

+
∥∥C[∇u]n

∥∥
Br

t (S)
+ ‖u‖L1(Ω)

]
(1.4)

for all u ∈ Bm+1
t (Ω) that satisfy u = 0 on D, where

Cijkl(x) :=

[
∂Sij(F)

∂Fkl

] ∣∣∣∣
F=∇fλ(x)

is the elasticity tensor and either (see §2)
(S) Bk

t (Ω) is the Hölder space Ck,t(Ω; Rn), t ∈ (0, 1), and r = m; or
(L) Bk

t (Ω) is the Sobolev space W k,t(Ω; Rn), t ∈ (1,∞), and r = m− 1
t
.

In the former case, assuming sufficient differentiability of the mapping F 7→ S(F)
and, for example, global strong ellipticity of the elasticity tensor, Healey and Simp-
son [12] have made use of degree theory and the above Schauder estimate (1.4)(S) to
show one can globally continue the solution for all λ ∈ [0,∞) unless perhaps, at some
finite value of λ, the solution should fail the complementing condition at an x ∈ S or
the local invertibility condition det∇fλ(x) > 0 at an x ∈ Ω.

In the latter case, the only significant obstacle to applying the method of [12] to
make use of the above Lp-estimate (1.4)(L) to obtain a similar global continuation
result (see [23]) is that the best previously known3 version of (1.4)(L) (see, e.g., [26,
pp. 75–77]) requires p := t > n. The purpose of this paper is give a proof of (1.4)(L)

under the weaker condition p > n/m.

2. Sobolev Inequalities. Throughout this paper, Ω ⊂ Rn, n ∈ Z+, will be a
nonempty open region. In addition, we will assume that either Ω is all of Rn; Ω is a
half-space:

H = {x ∈ R
n : (x − x0) · n0 < 0} ;

or Ω is bounded with Lipschitz4 boundary, ∂Ω. We write ∇ for the gradient operator
in Ω; for a vector field u, ∇u is the tensor field with components

(∇u)ij =
∂ui

∂xj

.

We let Cm(Ω), m ∈ N, denote the set of functions with m continuous derivatives in
Ω. The space Cm(Ω) will denote the set of functions φ ∈ Cm(Ω) for which Dαφ is
bounded and uniformly continuous on Ω for 0 ≤ |α| ≤ m. Cm(Ω) is a Banach space
under the norm

‖φ‖Cm(Ω) :=
∑

|α|≤m

sup
x∈Ω

|Dαφ(x)|,

where α = (α1, . . . , αn) is a multi-index with |α| = α1+. . .+αn andDα = ∂α1
x1
. . . ∂αn

xn
.

By Lp(Ω) and Wm,p(Ω), 1 ≤ p < ∞ and m ∈ Z+, we denote the usual spaces
of p-summable and Sobolev functions, respectively. We use the notation Lp(Ω; Rn),

3The original proof in [4] uses Cijkl ∈ Cm(Ω) rather than Cijkl ∈ W m,p(Ω).
4More precisely we assume that each x ∈ ∂Ω has an open neighborhood whose intersection with

∂Ω is the graph of a Lipschitz function. See, e.g, [2, p. 83].
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etc,̇ for vector-valued maps. Sobolev functions on manifolds are defined by the use of
local charts (see, e.g., [2, 16]). We note the norm on Wm,p(Ω) is

‖φ‖
p

m,p,Ω =
∑

|α|≤m

‖Dαφ‖
p

p,Ω , ‖φ‖
p

p,Ω :=

∫

Ω

|φ(x)|p dx.

Wm,p
0 (Ω) will denote those functions inWm,p(Ω) that are limits of functions in Cm(Ω),

each of which has support in a compact subset of Ω.
We will also make use of the space

CB(Ω) := C0(Ω) ∩ L∞(Ω),

which is a Banach space under the L∞-norm. For 0 < λ < 1 we write C0,λ(Ω) for the
Hölder spaces, i.e., the functions in C0(Ω) that are Hölder continuous with exponent
λ. C0,λ(Ω) is a Banach space under the norm

‖φ‖C0,λ(Ω) := sup
x∈Ω

|φ(x)| + sup
x,z∈Ω

x6=z

|φ(x) − φ(z)|

|x − z|λ
.

We will use the following special cases of the standard Sobolev inequalities. For
a proof of I–III see, for example, [2, pp. 85–86, 106–108]. Part IV can be found in
Nirenberg [19] or, e.g., [9, p. 24]. See, also, Gagliardo [10].

Proposition 2.1. Let Ω ⊂ Rn be a nonempty, bounded open region with Lipschitz
boundary. Suppose 1 ≤ p < ∞, k ∈ Z+, and j ∈ N. Then there exists a constant
K = K(n, p, k, j,Ω) that has the following properties.

I. (Sobolev Imbedding Theorem). If k > n/p then W k,p(Ω) ⊂ CB(Ω) with

sup
Ω

|φ| ≤ K ‖φ‖k,p,Ω for all φ ∈W k,p(Ω).

II. (Morrey’s Inequality). If kp > n ≥ (k − 1)p then W k,p(Ω) ⊂ C0,λ(Ω) with

‖φ‖C0,λ(Ω) ≤ K ‖φ‖k,p,Ω for all φ ∈W k,p(Ω)

and λ ∈ (0, k − n
p
] if n > (k − 1)p and λ ∈ (0, 1) if n = (k − 1)p.

III. (Banach Algebra Property). If k > n/p then W k,p(Ω) is a Banach algebra,
that is,

‖φψ‖k,p,Ω ≤ K ‖φ‖k,p,Ω ‖ψ‖k,p,Ω for all φ, ψ ∈ W k,p(Ω).

IV. (Gagliardo-Nirenberg Calculus Inequality). Let 0 < j ≤ k. Then

∑

|α|=j

‖Dαφ‖ pk

j
,Rn ≤ K

(
‖φ‖k,p,Rn

) j

k
(
‖φ‖∞,Rn

)1− j

k

for all φ ∈W k,p(Rn) ∩ L∞(Rn).
An important consequence of the above calculus inequality is the following result.
Proposition 2.2. (Moser’s [17, pp. 273–274] Tame Inequality). Suppose 1 ≤

p <∞ and k ∈ Z+. Then there exists a constant C = C(n, p, k) > 0 such that

C−1 ‖φψ‖k,p,Rn ≤ ‖φ‖∞,Rn ‖ψ‖k,p,Rn + ‖ψ‖∞,Rn ‖φ‖k,p,Rn
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for all φ, ψ ∈W k,p(Rn) ∩ L∞(Rn).
Proof. One can bound ‖Dα(φψ)‖p above by the indicated terms through the use

of the product rule, followed by Hölder’s inequality, the Gagliardo-Nirenberg calculus
inequality, and finally the arithmetic-geometric mean inequality. The desired result
then follows upon summing on |α| ≤ k. See Klainerman and Majda [13, pp. 516–517]
for details.

We next recall the following special cases of the trace theorem, for regions with
sufficiently smooth boundary, and the Rellich-Kondrachov compactness theorem.

Proposition 2.3 (Trace Theorem, see, e.g., [1, p. 216], [25, p. 330], or [14, pp.
41–43 for p = 2]). Let Ω ⊂ Rn, n ≥ 2, be a half-space or a nonempty, bounded
open region with Lipschitz boundary ∂Ω. Suppose 1 < p < ∞ and k ∈ Z+. Assume
S ⊂ ∂Ω is a relatively open, Ck subset of the boundary. Then there exists a constant
T = T (n, p, k,S,Ω) such that

‖φ‖k− 1
p

,p,S ≤ T ‖φ‖k,p,Ω for all φ ∈W k,p(Ω), (2.1)

where φ|S is to be interpreted in the sense of trace.
Proposition 2.4 (Rellich-Kondrachov Compactness Theorem, see, e.g., [2, p.

168]). Let Ω ⊂ Rn be a nonempty, bounded open region with Lipschitz boundary ∂Ω.
Suppose 1 ≤ p < ∞, j ∈ N, and k ∈ Z+ with kp > n. Then the following embedding
is compact:

W k+j,p(Ω) →֒ Cj(Ω).

We will use the above proposition in conjunction with the following interpolation
result.

Proposition 2.5 (Ehrling’s Lemma [8], see, e.g., [14, p. 102] or [16, p. 85] ). Let
X, Y , and Z be Banach spaces with5 X →֒ Y , Y ⊂ Z, and ‖y‖Z ≤ C‖y‖Y for all
y ∈ Y and some C > 0. Then for every ε > 0 there exists Λε > 0 such that

‖x‖Y ≤ ε‖x‖X + Λε‖x‖Z for every x ∈ X.

3. Half-Balls and Further Properties of Sobolev Spaces. Of fundamental
importance to estimates at the boundary for systems of linear elliptic partial differ-
ential equations are Sobolev spaces on balls and half-balls. With this in mind, for
x0 ∈ Rn and R > 0 we let

BR(x0) := {x ∈ R
n : |x− x0| < R} (3.1)

denote the open ball of radius R centered at x0. Given n0 ∈ Rn with |n0| = 1 we
write

H = H (x0,n0) := {x ∈ R
n : (x − x0) · n0 < 0} (3.2)

for the open half-space with outward unit normal n0 and x0 ∈ ∂H. The open half-ball
BR(x0) ∩H will be denoted by

HBR(x0,n0) := {x ∈ R
n : |x − x0| < R, (x − x0) · n0 < 0}. (3.3)

5We use the notation X →֒ Y to denote that X is compactly imbedded in Y .
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Note that the relative interior of the flat portion of the boundary of HBR(x0,n0) is
given by

BR(x0) ∩ ∂H = {x ∈ R
n : |x − x0| < R, (x − x0) · n0 = 0}.

We define6

Cm
0,C (HBR(x0,n0)) := {φ ∈ Cm(HBR(x0,n0)) : sptφ ⊂⊂ BR(x0)}.

Each such function will be thus be zero in an open neighborhood of the curved

portion of the boundary of a half-ball. We then define the Sobolev space

Wm,p
0,C (HBR(x0,n0)) := closure of Cm

0,C (HBR(x0,n0)) in Wm,p (HBR(x0,n0)) .

This space satisfies Wm,p
0 ⊂ Wm,p

0,C ⊂ Wm,p, with each containment a closed sub-
space, from which one can deduce many of its properties. Further, if we let E :
Wm,p (H (x0,n0)) → Wm,p(Rn) be the standard extension7 operator it is clear that
if we restrict the domain of E to Wm,p

0,C (HBR(x0,n0)) its range will be contained in

Wm,p
0 (BR(x0)). Thus we can also view Wm,p

0,C (HBR(x0,n0)) as a closed subspace of

Wm,p
0 (BR(x0)).

For the remainder of this section we assume that x0 ∈ Rn and a unit vector n0 ∈
Rn are given and we define BR := BR(x0), HBR := HBR(x0,n0), and H := H(x0,n0).
We note that each φ ∈Wm,p

0,C (HBR) has a natural extension φe ∈ Wm,p(H), i.e.,

φe(x) :=

{
φ(x), if x ∈ HBR,

0, if x ∈ H \ HBR

(3.4)

with8

‖φe‖m,p,H = ‖φ‖m,p,HBR
, ‖φe‖m− 1

p
,p,∂H ≥ ‖φ‖m− 1

p
,p,BR∩∂H . (3.5)

Of particular interest is the following special case of Moser’s tame inequality on half-
balls.

Proposition 3.1. Let p ∈ [1,∞) and k ∈ Z+. Then there is a constant C =
C(n, p, k) > 0 such that, for any x0 ∈ Rn and R0 > 0,

C−1 ‖φψ‖k,p,HBR0
≤ ‖φ‖∞,HBR0

‖ψ‖k,p,HBR0
+ ‖ψ‖∞,HBR0

‖φ‖k,p,HBR0

for all φ, ψ ∈W k,p
0,C (HBR0

) ∩ L∞(HBR0
).

Proof. If φ, ψ ∈ W k,p
0,C (HBR0

) ∩ L∞(HBR0
) then φe, ψe ∈ W k,p(H). We can next

use the aforementioned standard extension, E, to obtain functions defined on all of
Rn with support in BR0

. The desired result then follows from Proposition 2.2.
Also of interest is the following simple corollary to the trace theorem.
Corollary 3.2. Let n ≥ 2, 1 < p <∞, and m ∈ Z

+. Then for any R > 0

‖φe‖m− 1
p

,p,∂H ≤ T̂ ‖φ‖m,p,HBR
for all φ ∈ Wm,p

0,C (HBR) ,

6As usual we write U ⊂⊂ Ω for the requirement that U be contained in a compact subset of Ω.
7E is defined as a suitable linear combination of scaled reflections of the function across the

hyperplane perpendicular to n0, see, e.g., [2, p. 148].
8The asserted inequality in the fractional-order norms is clear from their intrinsic definition (see,

e.g., [1, pp. 208–214]). Neither this inequality nor a reverse inequality is needed here since, following
ADN [3, 4], we instead use the fractional-order norm of the extended function φe on ∂H.
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where T̂ is the constant from the trace theorem on H with S = ∂H. Thus T̂ =
T̂ (n, p,m) is independent of R.

Proof. This result follows immediately from (3.5)1 and Proposition 2.3 with Ω =
H and S = ∂H.

We will also make use of the following corollary to the Rellich-Kondrachov theo-
rem and Ehrling’s lemma. Once again the fact the constant is independent of R will
be important in our estimates.

Corollary 3.3. Let 1 ≤ p < ∞, j ∈ N, and k ∈ Z+ with kp > n. Then for
every ε > 0 there exists Λε = Λε(n, p, k, j) > 0 such that, for every R ∈ (0, 1],

‖φ‖Cj(HBR) ≤ ε‖φ‖k+j,p,HBR
+ Λε‖φ‖p,HBR

for every φ ∈W k+j,p
0,C (HBR).

Proof. Let 1 ≤ p < ∞, k ∈ Z+, j ∈ N, and R ∈ (0, 1). As in the previous

proofs we note that each φ ∈ W k+j,p
0,C (HBR) can be extended (by zero) to a function

φe ∈ W k+j,p
0,C (HB1) in such a manner that the extension preserves the norm. Moreover,

this extension also preserves the Lp and Cj -norms, provided each is finite on the
original half-ball HBR. Thus the desired results will follow once we prove them on the
unit half-ball.

On the unit half-ball the result now follows immediately from Ehrling’s lemma
with X = W k+j,p

0,C (HB1), Y = Cj(HB1), and Z = Lp(HB1) since W k+j,p(HB1) →֒

Cj(HB1) by the Rellich-Kondrachov theorem and Cj(HB1) ⊂ Lp(HB1).

Finally, we note a useful consequence of Morrey’s inequality (II of Proposition 2.1)
on half-balls.

Corollary 3.4. Let 1 ≤ p <∞, n ≥ 2, and m ∈ Z+ satisfy mp > n ≥ (m−1)p.
Define λ > 0 by λ = λ(n, p,m) := m − n/p, if n > (m − 1)p, and λ := 1

2 , if
n = (m − 1)p. Fix Rl > 0. Then there is a constant M = M(n, p,m,Rl) such that
for every R ∈ (0, Rl],

sup
x∈HBR

|φ(x) − φ(x0)| ≤MRλ ‖φ‖m,p,HBRl

for all φ ∈Wm,p(HBRl
).

Proof. Let 1 ≤ p < ∞, n ≥ 2, and m ∈ Z+ satisfy mp > n ≥ (m − 1)p. Then
by Morrey’s inequality (II of Proposition 2.1) applied to HBRl

there is a constant
M = M(n, p,m,Rl) such that

‖φ‖C0,λ(HBRl
) ≤M ‖φ‖m,p,HBRl

for all φ ∈Wm,p(HBRl
).

Thus, in particular, by the definition of the Hölder norm,

|φ(x) − φ(x0)| ≤M |x − x0|
λ ‖φ‖m,p,HBRl

≤MRλ ‖φ‖m,p,HBRl

for every x ∈ HBR, from which the desired result follows.

4. The Elasticity Tensor; Strong Ellipticity; The Complementing Con-

dition. We let Linn = Lin(Rn; Rn) denote the space of all linear transformations
from Rn into Rn with inner product and norm, respectively, given by:

G :H := trace(GHT), |G|
2

:= G :G,
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where HT denotes the transpose of H. We write (see Del Piero [6]) LinLinn =
Lin(Linn; Linn) for the space of all linear transformations from Linn into Linn; thus,
in components, if C ∈ LinLinn and A ∈ Linn

(C[A])ij =
n∑

k,l=1

CijklAkl.

Although LinLinn is also an inner product space we will not make use of the inner
product structure here. Instead we will use the equivalent operator norm

|C| := max
A∈Linn

|A|=1

∣∣C[A]
∣∣ for C ∈ LinLinn.

We denote by a ⊗ b the tensor product of any two vectors a,b ∈ Rn; in components
(a ⊗ b)ij = aibj . We write div for the divergence operators in Rn; for a tensor field
S, div S is the vector field with components

(div S)i =

n∑

j=1

∂Sij

∂xj

.

Let C0 ∈ LinLinn. We say C0 satisfies the strong-ellipticity condition provided
there is a constant k0 > 0 such that

a ⊗ b :C0[a ⊗ b] ≥ k0|a|
2|b|2 for all a,b ∈ R

n.

Let x0 ∈ Rn and suppose n0 ∈ Rn with |n0| = 1 is the outward unit normal to the
half-space H = H(x0,n0) given by (3.2). Consider the problem: Find w : H → Rn

that satisfies

div C0[∇w] = 0 in H,

C0[∇w]n0 = 0 on ∂H.
(4.1)

We seek solutions of (4.1) that are bounded exponentials, i.e.,

w(x) = z (− (x − x0) · n0) exp (i (x − x0) · t) (4.2)

for some nontrivial t ∈ Rn that is tangent to ∂H (i.e., t · n0 = 0 and t 6= 0) and
some z ∈ C2([0,∞); Cn) that satisfies sup{|z(s)| : s ∈ [0,∞)} < ∞. We say the pair
(C0,n0) satisfies the complementing condition if (4.1) has no nontrivial bounded expo-
nential solution.9 We note the existence of exponential solutions of (4.1) is determined
solely by the components of C0 and n0 and as such the complementing condition is
an algebraic condition.

In this paper we will need to make the algebraic nature of this condition more
precise by recalling the minor constant, ∆0 := ∆(C0,n0), of Agmon, Douglis, and
Nirenberg [4, pp. 42–43] that measures how well the boundary condition actually
complements the differential equation in the half-space H.

Given C0 : Linn → Linn, x0 ∈ Rn, a unit vector n0 ∈ Rn, and the half-space H
given by (3.2) let t ∈ Rn with |t| = 1 satisfy t · n0 = 0, so t is a unit vector lying in
∂H, and define (cf. [22]) M,Nt,Pt ∈ Linn by

Ma := C0 [a ⊗ n0]n0, Nta := C0 [a ⊗ t]n0, Pta := C0 [a⊗ t] t

9For a physical interpretation of these conditions in terms of Rayleigh waves in a half-space and
dynamic stability see [21, 24].
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for a ∈ Rn. Then (4.1) and (4.2) reduce to the system of ordinary differential equations
and boundary condition:

−Mz̈ + i(Nt + NT
t )ż + Ptz = 0 on (0,∞),

Mż(0) − iNtz(0) = 0,
(4.3)

where z : [0,∞) → Cn.
If C0 satisfies the strong ellipticity condition then M is strictly positive defi-

nite and hence, by the standard theory (see, e.g., [7]) for such systems of ordinary
differential equations, (4.3)1 has exactly n bounded, linearly independent solutions
zk ∈ C∞([0,∞); Cn), k = 1, 2, . . . , n, each of which is contained in L2((0,∞); Cn).
Assume the solutions are normalized so that (see [4, pp. 43–44]), e.g., zk(0) = ek for
k = 1, 2, . . . , n, where {ek} is the standard basis for R

n.
The complementing condition is then the requirement that no (nontrivial) lin-

ear combination of these solutions satisfy the boundary condition (4.3)2. To mea-
sure how well this condition is satisfied, for each unit tangent vector t define Lt ∈
C∞([0,∞); Lin(Rn; Cn)) by10

Lt(s)ek = Mżk(s) − iNtz
k(s) for k = 1, 2, . . . , n.

The complementing condition is then equivalent to the requirement that Lt(0) be
nonsingular for each unit11 vector t ⊥ n0 or, equivalently,

∆0 = ∆(C0,n0) := min
t⊥n0
|t|=1

| detLt(0)| > 0. (4.4)

The following result is due to Agmon, Douglis, and Nirenberg [3, 4].
Proposition 4.1 (ADN Estimate for Constant Coefficients [4, Theorem 10.2]).

Let 1 < p < ∞, m ∈ Z+ and n0 ∈ Rn with |n0| = 1. Then there exists a constant
A = A(n, p,m, k0,∆0, |C0|) such that

‖u‖m+1,p,HB1
≤ A

[∥∥div(C0[∇u])
∥∥

m−1,p,HB1
+
∥∥C0[∇ue]n0

∥∥
m− 1

p
,p,∂H

]

for all u ∈ Wm+1,p
0,C (HB1; R

n). Here B1 = B1(x0), HB1 = HB1(x0,n0), H =
H(x0,n0), and ue is given by (4.6) with R = 1.

We note the proof of Corollary 3.3 immediately yields the following corollary to
the above result.

Corollary 4.2. Let p, m, n0, and A = A(n, p,m, k0,∆0, |C0|) be as in Propo-
sition 4.1. Then for all R ∈ (0, 1]

‖u‖m+1,p,HBR
≤ A

[∥∥div(C0[∇u])
∥∥

m−1,p,HBR
+
∥∥C0[∇ue]n0

∥∥
m− 1

p
,p,∂H

]
(4.5)

for all u ∈ Wm+1,p
0,C (HBR; Rn). Here BR = BR(x0), HBR = HBR(x0,n0), H =

H(x0,n0), and

ue(x) :=

{
u(x), if x ∈ HBR,

0, if x ∈ H \ HBR.
(4.6)

10For each tangent vector t and s ≥ 0 the operator Lt(s) is a linear map from Rn to Cn. In
particular, the k-th column of the matrix Lt(0) will consist of the boundary condition evaluated at
zk.

11Condition (4.4) for unit vectors t ⊥ n0 implies (4.4) for all vectors αt ⊥ n0 since Lαt(0) =
αLt(0).
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5. The ADN Estimate with Sobolev Coefficients on Balls and Half-

Balls. Recall LinLinn = Lin(Linn; Linn), Linn = Lin(Rn; Rn), and for any x0 ∈ Rn

and n0 ∈ Rn with |n0| = 1 the half-space H := H(x0,n0) is given by (3.2) and the
ball BR := BR(x0) and half-ball HBR := HBR(x0,n0) are given by (3.1) and (3.3),
respectively, for any R > 0.

Lemma 5.1. Let p ∈ (1,∞) and suppose m ∈ Z+ satisfies mp > n. Let
k0 > 0, δ0 > 0, µ > 0, and Rl ∈ (0, 1] be given. Then there exist constants
Rσ = Rσ(n, p,m, k0, δ0, µ, Rl), 0 < Rσ < Rl, and D = D(n, p,m, k0, δ0, µ, Rl) > 0
such that any elasticity tensor C ∈ Wm,p(HBRl

; LinLinn) that satisfies

‖C‖m,p,HBRl
≤ µ, (5.1)

a ⊗ b : C(x0)[a ⊗ b] ≥ k0|a|
2|b|2 for all a,b ∈ R

n, and (5.2)

∆(C(x0),n0) ≥ δ0, (5.3)

for some x0 ∈ Rn and n0 ∈ Rn with |n0| = 1, will also satisfy

‖u‖m+1,p,HBR
≤ D

[∥∥div C[∇u]
∥∥

m−1,p,HBR
+
∥∥C[∇ue]n0

∥∥
m− 1

p
,p,∂H

+ ‖u‖p,HBR

]

(5.4)
for all R ∈ (0, Rσ] and u ∈ Wm+1,p

0,C (HBR; Rn), where ue is given by (4.6).

Proof. First, fix 1 < p < ∞ and m ∈ Z
+ that satisfy mp > n. Let Rl ∈ (0, 1],

x0 ∈ Rn, n0 ∈ Rn with |n0| = 1. Then, by Corollary 3.2 (corollary to the trace

theorem) there is a T̂ = T̂ (n, p,m) such that for all R ∈ (0, Rl]

‖ve‖m− 1
p

,p,∂H ≤ T̂ ‖v‖m,p,HBR
for all v ∈ Wm,p

0,C (HBR; Rn). (5.5)

Next, fix k0 > 0, δ0 > 0, and µ > 0. We will construct D and Rσ, which
only depend on n, p, m, k0, δ0, µ, and Rl, such that (5.4) is satisfied. Suppose
C ∈ Wm,p(HBRl

; LinLinn) satisfies (5.1)–(5.3). Then by the corollary to the ADN
estimate with constant coefficients, (4.5),

‖u‖m+1,p,HBR
≤ A

[∥∥div C0[∇u]
∥∥

m−1,p,HBR
+
∥∥C0[∇ue]n0

∥∥
m− 1

p
,p,∂H

]
(5.6)

for all R ∈ (0, Rl] and u ∈ W0(HBR) := Wm+1,p
0,C (HBR; Rn), where C0 := C(x0) and

A = A(n, p,m, k0, δ0, |C0|).
Define J ∈ Wm,p(HBRl

; LinLinn) by J(x) := C0 − C(x) so that C0 = C + J. Then
by the triangle inequality and (5.5) with v = J[∇ue]n0

∥∥C0[∇ue]n0

∥∥
m− 1

p
,p,∂H

≤
∥∥C[∇ue]n0

∥∥
m− 1

p
,p,∂H

+
∥∥J[∇ue]n0

∥∥
m− 1

p
,p,∂H

≤
∥∥C[∇ue]n0

∥∥
m− 1

p
,p,∂H

+ T̂
∥∥J[∇u]

∥∥
m,p,HBR

(5.7)

for all R ∈ (0, Rl] and u ∈ W0(HBR), where we have also used the fact that n0 is a
constant unit vector. Similarly, the triangle inequality yields for each R ∈ (0, Rl]

∥∥div C0[∇u]
∥∥

m−1,p,HBR
≤
∥∥div C[∇u]

∥∥
m−1,p,HBR

+
∥∥div J[∇u]

∥∥
m−1,p,HBR

≤
∥∥div C[∇u]

∥∥
m−1,p,HBR

+
∥∥J[∇u]

∥∥
m,p,HBR

(5.8)

for all u ∈ W0(HBR). If we combine (5.6)–(5.8) we find, for all such R and u,

‖u‖m+1,p,HBR
≤ A

[∥∥div C[∇u]
∥∥

m−1,p,HBR
+
∥∥C[∇ue]n0

∥∥
m− 1

p
,p,∂H

]

+A(T̂ + 1)
∥∥J[∇u]

∥∥
m,p,HBR

.
(5.9)
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We will show that, for all R sufficiently small, the last term in (5.9) can be
bounded above by an arbitrarily small constant times the Wm+1,p-norm of u plus a
(large) constant times its Lp-norm, which will establish the desired result, (5.4). With
this in mind let Rσ, to be determined later, satisfy Rσ ∈ (0, Rl/2) and suppose that
φσ ∈ C∞(Rn; [0, 1]) satisfies

φσ(x) =

{
1, if x ∈ HBRσ

,

0, if x ∈ Rn \ HB2Rσ
.

Then φσJ ∈ Wm,p
0,C (HBRl

; LinLinn) and, for any R ∈ (0, Rσ],

‖J[∇u]‖m,p,HBR
= ‖(φσJ)[∇u]‖m,p,HBR

= ‖(φσJ)[∇ue]‖m,p,HBRl

(5.10)

for all u ∈ W0(HBR).
We note that, since m > n/p, the Sobolev imbedding theorem yields J,∇u ∈ L∞.

Thus we may apply Proposition 3.1 (with R0 = Rl) to deduce the existence of a
constant C = C(n, p,m) such that, for every R ∈ (0, Rσ] and u ∈ W0(HBR),

C−1‖(φσJ)[∇ue]‖m,p,HBRl

≤

(
sup
HBRl

|φσJ|

)
‖∇ue‖m,p,HBRl

+

(
sup
HBRl

|∇ue|

)
‖φσJ‖m,p,HBRl

=

(
sup

HB2Rσ

|φσJ|

)
‖∇u‖m,p,HBR

+

(
sup
HBR

|∇u|

)
‖φσJ‖m,p,HBRl

≤

(
sup

HB2Rσ

|J|

)
‖∇u‖m,p,HBR

+Qσ ‖J‖m,p,HBRl

(
sup
HBR

|∇u|

)
, (5.11)

where, by the Banach algebra property of Wm,p, Qσ = Qσ(φσ) > 0 is proportional
to the Wm,p-norm of φσ on the half-ball HBRl

. We further note that by the Sobolev
imbedding theorem and (5.1)

‖C0‖
p

m,p,HBRl

=
ωn

2
Rn

l |C(x0)|
p ≤

ωn

2

(
sup
HBRl

|C|

)p

≤
ωn

2
K̂pµp (5.12)

(since Rl ≤ 1), where ωn denotes the volume of the unit ball in Rn and K̂ =

K̂(n, p,m,Rl). Thus, J = C0 − C satisfies

‖J‖m,p,HBRl

≤ ‖C0‖m,p,HBRl

+ ‖C‖m,p,HBRl

≤ µN, (5.13)

where N = N(n, p,m,Rl) := 1 + K̂[ωn/2]
1
p .

Now m > n/p and hence the integer m̂ := [[n
p
]] + 1 satisfies m ≥ m̂ > n

p
≥

m̂ − 1. Thus, if we let α > 0 and ε > 0 be (small) parameters to be determined
later, (5.13), Corollary 3.3 (with j = 1), and Corollary 3.4, imply that there exist
Λε = Λε(n, p,m) > 0 and Rσ = Rσ(α, n, p,m,Rl, µ) ∈ (0, Rl/2) such that, for any
R ∈ (0, Rσ],

sup
HB2Rσ

|J| < α, sup
HBR

|∇u| ≤ ε‖u‖m+1,p,HBR
+ Λε‖u‖p,HBR

(5.14)
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for every u ∈ W0(HBR). Therefore, (5.10)–(5.14) together with the fact ‖∇u‖m,p ≤
‖u‖m+1,p yield, for all R ∈ (0, Rσ] and u ∈W0(HBR),

‖J[∇u]‖m,p,HBR
≤ C

[(
α+ µNQσε

)
‖u‖m+1,p,HBR

+ µNQσΛε‖u‖p,HBR

]
(5.15)

and hence, in view of (5.9),

F ‖u‖m+1,p,HBR
≤ A

[∥∥div C[∇u]
∥∥

m−1,p,HBR
+
∥∥C[∇ue]n0

∥∥
m− 1

p
,p,∂H

]

+ µCNQσΛεA(T̂ + 1) ‖u‖p,HBR
,

where

F := 1 −A(T̂ + 1)C
(
α+ µNQσε

)
.

Finally, define α := 1
3 [A(T̂+1)C]−1. This determines Rσ ∈ (0, Rl/2) that satisfies

(5.14)1. It also fixes φσ and hence Qσ. Then, define ε := 1
3 [µACNQσ(T̂+1)]−1, which

determines Λε. It follows that F = 1
3 > 0, which completes the proof.

To finish the section we note the following result, whose proof is essentially iden-
tical to the previous result.

Lemma 5.2. Let 1 < p < ∞ and suppose m ∈ Z+ satisfies mp > n. Let k0 > 0,
µ > 0, and Rl ∈ (0, 1] be given. Then there exist constants D = D(n, p,m, k0, µ, Rl) >
0 and Rσ = Rσ(n, p,m, k0, µ, Rl) ∈ (0, Rl) such that each of the following holds.

A. Any elasticity tensor C ∈Wm,p(BRl
; LinLinn) that satisfies (5.1) (with HBRl

replaced by BRl
) and (5.2) for some x0 ∈ Rn will also satisfy

‖u‖m+1,p,BR
≤ D

[∥∥div C[∇u]
∥∥

m−1,p,BR
+ ‖u‖p,BR

]

for all R ∈ (0, Rσ] and u ∈ Wm+1,p
0 (BR; Rn).

B. Any elasticity tensor C ∈ Wm,p(HBRl
; LinLinn) that satisfies (5.1) and (5.2),

for some x0 ∈ Rn and n0 ∈ Rn with |n0| = 1, will also satisfy

‖u‖m+1,p,HBR
≤ D

[∥∥div C[∇u]
∥∥

m−1,p,HBR
+ ‖u‖p,HBR

]

for all R ∈ (0, Rσ] and u ∈ Wm+1,p
0 (HBR; Rn).

6. The ADN Estimate with Wm,p-Coefficients for the Displacement,

Traction, and Mixed Problems. We now assume Ω ⊂ R
n, n ≥ 2, is a nonempty,

bounded open set with boundary

∂Ω = D ∪ S, D ∩ S = ∅,

where

D and S are both closed and relatively open.

Consequently, if both are nonempty the region must contain a hole. We note that a
standard covering argument together with a partition of unity and a local flattening
of the boundary allows one to make use of Lemmas 5.1 and 5.2 to arrive at the follow-
ing improvement to the well-known regularity results for the equations of linearized
elasticity. For a detailed proof see Agmon, Douglis, and Nirenberg [3, Theorem 15.2].
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See also, e.g., [9, Theorem 17.2], [11, §8.4], or [16, Theorem 6.3.9]. If p > n rather
than p > n/m this result has been previously proven12 by Valent [26].

Theorem 6.1. Let ∂Ω be Cm+1, 1 < p <∞, and suppose m ∈ Z+ satisfies mp >
n. Suppose further k > 0, δ > 0, and µ > 0 are given. Then there exists a constant
N = N(n, p,m, k, δ, µ,Ω,S) > 0 such that any elasticity tensor C ∈Wm,p(Ω; LinLinn)
that satisfies

‖C‖m,p,Ω ≤ µ, (6.1)

a ⊗ b : C(x)[a ⊗ b] ≥ k|a|2|b|2 for all a,b ∈ R
n, x ∈ Ω, and (6.2)

∆(C(x),n(x)) ≥ δ for every x ∈ S, (6.3)

will also satisfy

‖u‖m+1,p,Ω ≤ N
[∥∥div C[∇u]

∥∥
m−1,p,Ω

+
∥∥C[∇u]n

∥∥
m− 1

p
,p,S

+ ‖u‖p,Ω

]

for all u ∈Wm+1,p(Ω; Rn) such that u = 0 on D. Here n is the outward unit normal
to Ω and ∆(C(x),n(x)) is given by (4.4).

Thus, given n and p, in order insure the solution has (m+ 1)–weak derivatives in
the region, m > n/p, we require the elasticity tensor field be contained in the Sobolev
space Wm,p, (6.1), the elasticity tensor field be uniformly strongly elliptic, (6.2), the
complementing condition be satisfied uniformly on S, (6.3), and the boundary have
local parameterizations that are of class Cm+1. Regularity results with less boundary
smoothness have been given by Nečas [18] and Maz′ya and Shaposhnikova [15, Chap-
ter 7]. Note m > n/p together with the assumed boundary smoothness implies the
elasticity tensor field is assumed to be continuous on Ω. For interior regularity under
weaker smoothness hypotheses on the elasticity tensor field see, e.g., Ragusa [20] and
the references therein.
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