There Are No Non-Trivially Uniformly
(t, r)-Regular Graphs for t > 2.

Dean Hoffman¹, Peter Johnson¹, Kevin Lin², John McSorley³, Caleb
Petrie⁴, and Luc Teirlinck¹
¹Department of Mathematics and Statistics, Auburn University, AL 36849
johnspd@auburn.edu
²University of California, Berkeley
³Department of Mathematics
Southern Illinois University
Carbondale, Illinois 62901-4408
⁴Biola University

Abstract

A finite simple graph is uniformly (t, r)-regular if it has at least t
vertices and the open neighbor set of each set of t of its vertices is of
cardinality r. If t > 1, such a graph is trivially uniformly (t, r)-regular
if either it is a matching (t = r) or r is the number of non-isolated
vertices in the graph. We prove the result stated in the title.

1 Uniform (t, r)-regularity

All graphs will be finite and simple, in this paper, and notation will largely
be as in [10]. If G and H are graphs, V(G) is the vertex set of G, G + H is the
disjoint union of G and H, and for a positive integer m, mG = G + ··· + G (m
summands). If u ∈ V(G), N_G(u) = {v ∈ V(G) | u and v are adjacent in G},
and if S ⊆ V(G), N_G(S) = \bigcup_{u \in S} N_G(u), the open neighbor set of S in G.
The order of G will be denoted by n(G)(= |V(G)|), or just n, if G is the only
graph in the discussion.

G is uniformly (t, r)-regular if 1 ≤ t ≤ n and for each S ⊆ V(G) with
|S| = t, |N_G(S)| = r. This property of graphs was introduced in [4] as
“(t, r)-regularity”; the problem with that terminology is that it is also used
for a seemingly similar but rather less exigent property, introduced in [3] and
written on in [2], [5], and [7]. In [6] the word “strong” plays the role we assign
to “uniform” here; we abandon that terminology because it misleadingly
suggests an analogy with strong regularity of graphs. There is a powerful
connection between the two when t = 2 (see [9]), but the analogy at the
definitional level is distant.
Uniform \((1, r)\)-regularity is just plain \(r\)-regularity. When \(t > 1\) there are two easily found classes of uniformly \((t, r)\)-regular graphs:

(i) \(G = mK_2\) for some \(m \geq t/2\), a matching. In this case, \(t = r\).

(ii) \(r = n(G_1)\), where \(G_1\) is the subgraph of \(G\) induced by the non-isolated vertices of \(G\), and \(t\) is “sufficiently large”. Indeed, as noted in [6], if \(r = n(G_1) > 0\) and \(n(G) - \delta(G_1) + 1 \leq t \leq n(G)\) then \(G\) is uniformly \((t, r)\)-regular, but \(G\) is not uniformly \((n(G) - \delta(G_1), r)\)-regular. And if \(r = n(G_1) = 0\) then \(G = nK_1\) and is uniformly \((t, 0)\)-regular for all \(t = 1, \ldots, n\).

For \(t > 1\), uniform \((t, r)\)-regularity due to either condition (i) or (ii) will be called \textit{trivial}, and the big question (raised in [6]) is: are there non-trivially uniformly \((t, r)\)-regular graphs, and, if so, what are they?

This question has been satisfactorily answered for \(t = 2\). Any “strongly regular graph with \(\lambda = \mu > 0\)”, that is, a regular graph \(G\), say with degree \(d > 0\), not complete, for which there exists \(\mu\) such that for any two distinct \(u, v \in V(G)\), \(|N_G(u) \cap N_G(v)| = \mu\), is non-trivially uniformly \((2, 2d - \mu)\)-regular. There are infinitely many such graphs (see, e.g., [8]), and it has recently been shown [9] that there are no other non-trivially uniformly \((2, r)\)-regular graphs besides these. Here we settle the question for \(t > 2\). The proof of the following theorem is postponed until section 3.

\textbf{Theorem 1} If \(t > 2\) then for no \(r\) does there exist a non-trivially uniformly \((t, r)\)-regular graph.

\section*{2 An excursion into designs}

If \(n \geq t > 0\), an \((n, t, \lambda)\)-design is a pair \((V, B)\) where \(V\) is a set with \(n\) elements (“points”) and \(B = [B(i) | i \in I]\) is an indexed collection of subsets of \(V\) (“blocks”) such that for each \(T \subseteq V\) with \(|T| = t\), \(|\{i \in I | T \subseteq B(i)\}| = \lambda\). (That is, any \(t\) points of \(V\) lie together in exactly \(\lambda\) blocks.) We require \(B\) to be an indexed collection because we want to allow “repeated blocks”; that is, it may be that \(B(i) = B(j)\) even though \(i \neq j\). Also note that there is no requirement that the blocks be of the same size. Given such a design, let \(b = |I|\), the number of blocks.

\textbf{Fisher’s Inequality} [1, Theorem 2.6, p.66] If \((V, B)\) is an \((n, 2, \lambda)\)-design with \(\lambda > 0\) and \(V\) not appearing as a block, then \(b \geq n\).
Theorem 2 If \(t > 2, \lambda > 0, \) and \((V,B)\) is an \((n,t,\lambda)\)-design with \(V \) not appearing as a block, then \(b \geq n \) with equality if and only if \(B \) can be re-indexed to be \([V \setminus \{v\}]|v \in V\).

Proof. We go by induction on \(t \), starting with \(t = 3 \). For each \(v \in V \), let \(I(v) = \{i \in I|v \in B(i)\} \) and consider the derived design \((V \setminus \{v\}, B'(v))\), where \(B'(v) = [B(i) \setminus \{v\}|i \in I(v)] \). Each derived design is an \((n-1,2,\lambda)\)-design (because \(t = 3 \)) and \(V \setminus \{v\} \) does not appear in \(B'(v) \) because \(V \) does not appear in \(B \). By Fisher’s inequality, \(b'(v) = |I(v)| \geq n-1 \). On the other hand, \(b'(v) \leq b \).

If \(b = n - 1 \), then \(b'(v) = n - 1 = b \), for every \(v \in V \), so \(I(v) = I \) for every \(v \). But then \(v \in B(i) \) for every \(i \in I \), and every \(v \), so, not only does \(V \) appear in \(B \), it is equal to \(B(i) \) for each \(i \), wildly contrary to hypothesis. So \(b \geq n \), as asserted. Suppose that \(b = n \). Then \(b'(v) = |I(v)| = n \) or \(n - 1 \) for each \(v \in V \)–i.e., \(v \) is in every block of \(B \) or in every block but one.

On the other hand, each block of \(B \) is missing some element of \(V \). Think of a bipartite graph with bipartition \(V,I \), with \(v \in V \) adjacent to \(i \in I \) if and only if \(v \notin B(i) \). Then each \(v \in V \) has degree \(\leq 1 \) in this graph, and each \(i \in I \) has degree \(\geq 1 \), and \(|V| = n = b = |I| \). Thus the bipartite graph is a matching, and \(B \), possibly after renaming, is \([V \setminus \{v\}]|v \in V\).

Now suppose that \(t > 3 \). With \(I(v) \) and \(B'(v), v \in V \), defined as above, each derived design \((V \setminus \{v\}, B'(v))\) is an \((n-1,t-1,\lambda)\)-design, with \(V \setminus \{v\} \) not among the blocks in \(B'(v) \). By the induction hypothesis, \(b \geq b'(v) = |B'(v)| \geq n - 1 \) for each \(v \in V \). From here the proof proceeds as in the case \(t = 3 \).

3 Proof of Theorem 1

Lemma 1 If \(t > 1 \) and \(G \) is non-trivially uniformly \((t,r)\)-regular, then \(G \) has no isolated vertices.

Proof. Suppose that \(u \) is an isolated vertex of \(G \). Let \(G_1 \) be the subgraph of \(G \) induced by the non-isolated vertices of \(G \). Since \(G \) is non-trivial, \(0 < r < n(G_1) \), and, therefore, \(t < n(G_1) \). Let \(S \) be a \((t-1)\)-subset of \(V(G_1) \), and \(T = S \cup \{u\} \); then \(|N_G(T)| = |N_G(S)| = r \). Since \(r < n(G_1) \), there is some \(w \in V(G_1) \setminus N_G(S) \), and, by the definition of \(G_1 \), some \(v \in V(G_1) \) adjacent to \(w \). But then \(|S \cup \{v\}| = t \) while \(|N_G(S \cup \{v\})| \geq r+1 \), contradicting the assumption that \(G \) is uniformly \((t,r)\)-regular.
The main idea that starts the proof of Theorem 1 is due to Khodkar and Leach [8]. Suppose that G is non-trivially (t, r)-regular, $t \geq 3$. For $v \in V(G)$, let $B(v) = V(G) \setminus N_G(v)$, and $\mathcal{B} = \{B(v) | v \in V(G)\}$. By the Lemma, no $v \in V(G)$ is isolated, so $B(v) \neq V(G)$. Further, $r < n$ (non-triviality of G) and $(V(G), \mathcal{B})$ is an $(n, t, n-r)$-design, with $b = |V(G)| = n$. Since $t \geq 3$, by Theorem 2, for each $v \in V(G)$ there is a $u \in V(G)$ such that $B(v) = V(G) \setminus \{u\}$. Thus G is a matching, and is thus trivially uniformly (t, r)-regular, after all.

References

[9] Abdollah Khodkar, David Leach, and David Robinson, Every $(2, r)$-regular graph is strongly regular, submitted.