Constructing t-designs from t-wise balanced designs

John P. McSorley and Leonard H. Soicher

Abstract

We give a construction to obtain a t-design from a t-wise balanced design. More precisely, given a positive integer k and a t-$(v, \{k_1, k_2, \ldots, k_s\}, \lambda)$ design \mathcal{D}, with with all block-sizes k_i occurring in \mathcal{D} and $1 \leq t \leq k \leq k_1 < k_2 < \cdots < k_s$, the construction produces a t-$(v, k, n\lambda)$ design \mathcal{D}^*, with $n = \text{lcm}(\binom{k_1-1}{k-t}, \ldots, \binom{k_s-1}{k-t})$. We prove that $\text{Aut}(\mathcal{D})$ is a subgroup of $\text{Aut}(\mathcal{D}^*)$, with equality when both $\lambda = 1$ and $t < k$. We employ our construction in another construction, which, given a t-(v, k, λ) design with $1 \leq t < k < v$, and a point of this design, yields a t-$(v-1, k-1, (k-t)\lambda)$ design. Many of the t-designs coming from our constructions appear to be new.

1 Introduction

For t a positive integer, a t-wise balanced design \mathcal{D} is an ordered pair (X, \mathcal{B}), where X is a finite non-empty set (of points) and \mathcal{B} is a finite non-empty multiset of subsets of X (called blocks), such that every t-subset of X is contained in a constant number $\lambda > 0$ of blocks. If $v = |X|$ and K is the set of sizes of the blocks, then we call \mathcal{D} a t-(v, K, λ) design. If all blocks of \mathcal{D} have the same size k (i.e. $K = \{k\}$), then \mathcal{D} is called a t-design or a t-(v, k, λ) design.

In this note we give a construction (the \ast-construction) to obtain a t-design from a t-wise balanced design. More precisely, given a positive integer k and a t-$(v, \{k_1, k_2, \ldots, k_s\}, \lambda)$ design \mathcal{D}, with with all block-sizes k_i occurring in \mathcal{D} and $1 \leq t \leq k \leq k_1 < k_2 < \cdots < k_s$, the \ast-construction produces a t-$(v, k, n\lambda)$ design \mathcal{D}^*, with $n = \text{lcm}(\binom{k_1-1}{k-t}, \ldots, \binom{k_s-1}{k-t})$. We prove that $\text{Aut}(\mathcal{D})$ is a subgroup of $\text{Aut}(\mathcal{D}^*)$, with equality when both $\lambda = 1$ and $t < k.$
We employ the \ast-construction in another construction (the $\#$-construction), which, given a t-(v, k, λ) design with $1 \leq t < k < v$, and a point of this design, yields a t-$(v - 1, k - 1, (k - t)\lambda)$ design. Many of the t-designs coming from our constructions appear to be new, and although they usually have repeated blocks, they often, via their constructions, have quite large automorphism groups.

2 The \ast-construction

The input to the \ast-construction consists of positive integers t and k, and a t-$(v, \{k_1, k_2, \ldots, k_s\}, \lambda)$ design D, with all block-sizes k_i occurring in D and $1 \leq t \leq k \leq k_1 < k_2 < \cdots < k_s$. Now for $i = 1, 2, \ldots, s$ define

\[n_i = \binom{k_i - t}{k - t}, \quad n = \text{lcm}(n_1, n_2, \ldots, n_s), \quad m_i = \frac{n}{n_i}. \quad (1) \]

The output of the \ast-construction is a block design D^\ast, which we prove below to be a t-$(v, k, n\lambda)$ design.

The point-set of D^\ast is that of D, and to construct the block-multiset B^\ast of D^\ast we proceed as follows:

- start by setting B^\ast to be the empty multiset;
- for each $i = 1, 2, \ldots, s$ and for each block $B \in \mathcal{B}$ of size k_i (including repeats) do:
 - insert m_i copies of every k-subset of B into B^\ast.

Clearly, D^\ast depends on the choice of k as well as on D. Less obviously, since the t-wise balanced design D may be t'-wise balanced for some $t' \neq t$, D^\ast may depend on the choice of t. When we wish to make these dependencies explicit, we shall use the notation $D^\ast(t, k)$ instead of D^\ast.

Theorem 2.1 Let k be a positive integer and let $D = (X, \mathcal{B})$ be a t-$(v, \{k_1, k_2, \ldots, k_s\}, \lambda)$ design, with all block-sizes k_i occurring in D and $1 \leq t \leq k \leq k_1 < k_2 < \cdots < k_s$. Then $D^\ast = D^\ast(t, k) = (X, \mathcal{B}^\ast)$ is a t-$(v, k, n\lambda)$ design, where $n = \text{lcm}(n_1, n_2, \ldots, n_s)$ and $n_i = \binom{k_i - t}{k - t}$.
Proof. Let T be any t-subset of X. Suppose that B is a block of B of size k_i containing T. Then the number of k-subsets of B which contain T is $n_i = \binom{k_i - t}{k_i}$. Each of these k-subsets is added to B^* exactly $m_i = n/n_i$ times. Hence B contributes exactly $n_i m_i = n$ blocks containing T to B^*. Now T is contained in exactly λ blocks in B, and so in exactly $n \lambda$ blocks in B^*.

We have defined n to be $\text{lcm}(n_1, n_2, \ldots, n_s)$. We could have chosen n to be any common multiple of $\{n_1, n_2, \ldots, n_s\}$, but, in order to keep $n \lambda$ as small as possible, we choose the least common multiple. We also remark that the $*$-construction works perfectly well when $s = 1$, that is, when D is a t-design.

Example 1 Let D be the 2-(11, $\{3, 5\}$, 1) design with point-set $X = \{1, 2, \ldots, 9, T, E\}$ (here $T = 10$ and $E = 11$), and block-multiset $B =$

\[[167, 18E, 19T, 268, 279, 2TE, 369, 37E, 38T, 46T, 478, 49E, 56E, 57T, 589, 12345] \]

(see [1, p.187]).

(a) Suppose $t = k = 2$. Here $k_1 = 3$, $k_2 = 5$, and each $n_i = n = m_i = 1$. So $D^*(2, 2)$ is the 2-(11, 2, 1) design consisting of all the 2-subsets of X.

(b) The case $t = 2$, $k = 3$ is more interesting. Here $k = k_1 = 3$, $k_2 = 5$, $n_1 = 1$, $n_2 = 3$, $n = 3$, $m_1 = 3$, and $m_2 = 1$. So $D^* = D^*(2, 3)$ is a 2-(11, 3, 3) design, an $(11, 55, 15, 3, 3)$-BIBD. The block-multiset of D^* consists of three copies of each block of D of size 3, together with all the 3-subsets of $\{1, 2, 3, 4, 5\}$.

The $*$-construction was found as a result of looking for 2-designs with repeated blocks to help fill up Preece’s catalogue [4]. Many new examples coming from this construction have since gone into the catalogue.

3 The $\#$-construction

Let $T = (X, B)$ be a t-(v, k, λ) design with $1 \leq t < k < v$, and let $x \in X$. We employ the $*$-construction in a new construction (the $\#$-construction) which produces a t-$(v - 1, k - 1, (k - t)\lambda)$ design when given input T and x. The $\#$-construction proceeds as follows:

Let $X' = X \setminus \{x\}$, and let B' be the multiset consisting of all $B \setminus \{x\}$ with $B \in B$ (counting repeats). Denote the resulting block design (X', B')
by \(T \setminus x \), which is a \(t-(v-1, \{k-1,k\}, \lambda) \) design (whose isomorphism class may depend on the choice of \(x \)). Next, apply the \(*)\)-construction with input \(t, k-1 \) and \(T \setminus x \) to obtain \((T \setminus x)^*(t,k-1) \), a \(t-(v-1,k-1,(k-t)\lambda) \) design. We denote this output of the \#-construction by \(T^#(t,x) \).

Example 2 Start with the large Witt design \(W \), the unique (up to isomorphism) \(5-(24,8,1) \) design; see [3, Chapter 8], where \(W \) is called the Mathieu design \(M_{24} \). Now \(W \) is also a \(4-(24,8,5) \) design, a \(3-(24,8,21) \) design, and a \(2-(24,8,77) \) design. Let \(x \) be a point of \(W \) (it matters not which one, since the automorphism group \(M_{24} \) of \(W \) acts transitively (in fact 5-transitively) on the point-set of \(W \)). Then \(W^#(5,x) \) is a \(5-(23,7,3) \) design, \(W^#(4,x) \) is a \(4-(23,7,20) \) design, \(W^#(3,x) \) is a \(3-(23,7,105) \) design, and \(W^#(2,x) \) is a \(2-(23,7,462) \) design.

Example 3 Start with a projective plane \(P = (X,B) \) of order \(m \geq 2 \), a \(2-(m^2 + m + 1, m + 1, 1) \) design. Now, given any \(x \in X \), construct \(P^#(2,x) \), which is a \(2-(m^2 + m, m, m - 1) \) design.

4 Automorphism groups

The automorphism group of a \(t\)-wise balanced design \(D = (X,B) \), denoted \(\text{Aut}(D) \), is the group consisting of all the permutations of \(X \) which leave the block-multiset \(B \) invariant. We now investigate the relationship of the automorphism groups of \(D \) and \(D^*(t,k) \). For a block \(B \in B \), we let \(\text{mult}(B) \) denote its multiplicity in \(B \).

Theorem 4.1 Let \(k \) be a positive integer, let \(D = (X,B) \) be a \(t-(v,\{k_1,k_2,\ldots,k_s\},\lambda) \) design, with all block-sizes \(k_i \) occurring in \(D \) and \(1 \leq t \leq k \leq k_1 < k_2 < \cdots < k_s \), and let \(D^* = D^*(t,k) = (X,B^*) \) be the \(t\)-design obtained from the \(*\)-construction. Then

(i) \(\text{Aut}(D) \subseteq \text{Aut}(D^*) \);

(ii) if \(\lambda = 1 \) and \(t < k \), then \(\text{Aut}(D) = \text{Aut}(D^*) \).

Proof. (i) Let \(\alpha \in \text{Aut}(D) \). Let \(B^* \) be an arbitrary block in \(B^* \), hence there is a block \(B \in B \) which contains \(B^* \) as a \(k\)-subset. Suppose that \(\alpha(B) = C \) for some block \(C \in B \), and that \(\alpha(B^*) = C^* \). Then clearly \(C^* \) is a \(k\)-subset of \(C \), a block of \(B \), hence \(C^* \in B^* \). Now we must show that \(\text{mult}(C^*) = \text{mult}(B^*) \) (in \(B^* \)) to conclude that \(\alpha \in \text{Aut}(D^*) \).
Fix i. Let B_1, B_2, \ldots, B_d be the distinct blocks of B of size k_i which contain B^*, and let C_1, C_2, \ldots, C_e be the distinct blocks of B of size k_i which contain C^*. Now, because $\alpha \in \text{Aut}(D)$, we must have $d = e$ and for every j with $1 \leq j \leq d$ there must exist a unique j' with $1 \leq j' \leq d$ for which $\alpha(B_j) = C_{j'}$. Hence $\text{mult}(B_j) = \text{mult}(C_{j'})$ since α preserves block multiplicities.

Now let f_i be the number of blocks (counting multiplicities) of B of size k_i which contain B^*, and let g_i be the number of blocks (counting multiplicities) of B of size k_i which contain C^*. Then $g_i = \sum_{j'=1}^d \text{mult}(C_{j'}) = \sum_{j=1}^d \text{mult}(B_j) = f_i$, and so, in B^*, we have $\text{mult}(C^*) = \sum_{i=1}^s g_i m_i = \sum_{i=1}^s f_i m_i = \text{mult}(B^*)$ (m_i defined in (1)), as required. Hence $\alpha \in \text{Aut}(D^*)$.

(ii) We first note that, because $\lambda = 1$, then $\text{mult}(B) = 1$ for every block $B \in B$. Secondly, if R^* is an arbitrary block in B^* then, again because $\lambda = 1$, there is a unique block $R \in B$, with $R^* \subseteq R$.

Now let $\gamma \in \text{Aut}(D^*)$. We must show that, for every block $B \in B$, we have $\gamma(B) \in B$. Then, from above, $\text{mult}(\gamma(B)) = 1 = \text{mult}(B)$, so $\gamma \in \text{Aut}(D)$. This will show that $\text{Aut}(D^*) \subseteq \text{Aut}(D)$; part (i) then gives the result.

Fix i. Let B be an arbitrary block of B of size k_i, and let B^* be an arbitrary k-subset of B, and let $\gamma(B^*) = C^*$. Now, because $\gamma \in \text{Aut}(D^*)$, then $C^* \in B^*$. So, from above, there is a unique block $C \in B$, with $C^* \subseteq C$. We will show that $\gamma(B) = C$.

First we show that $\gamma(B) \subseteq C$. Suppose that $\gamma(B) \not\subseteq C$, then there is an element $x \in B \setminus B^*$ with $\gamma(x) \not\in C$. Let D be a $(k - 1)$-subset of $B^* \subseteq B$, then $D^* = \{x\} \cup D$ is a k-subset of $B \in B$, so $D^* \in B^*$. Hence $E^* = \gamma(D^*) \in B^*$, and there is a block $E \in B$ with $E^* \subseteq E$. Now $E \neq C$ because $\gamma(x) \in E$ but $\gamma(x) \not\in C$. Hence E and C are distinct blocks of B. However, $\gamma(D) \subseteq E$, and $D \subseteq B^*$ so $\gamma(D) \subseteq \gamma(B^*) = C^* \subseteq C$. Now $t < k$ so $t \leq k - 1 = |\gamma(D)|$. Now let T be any t-subset of $\gamma(D)$, then the distinct blocks E and C both contain T, a contradiction since $\lambda = 1$. Hence $\gamma(B) \subseteq C$.

To show that $C \subseteq \gamma(B)$ we show that $\gamma^{-1}(C) \subseteq B$ by noting that $\gamma^{-1}(C^*) = B^*$, and so the proof follows as above. Hence $\gamma(B) = C$ and, since i was arbitrary, the result is proved.

Example 4 We take D to be the 2-(11, $\{3, 5\}$, 1) design of Example 1. Then $|\text{Aut}(D)| = 120$; indeed $\text{Aut}(D)$ is isomorphic to $\text{Sym}(5)$, and acts naturally as this group on the subset $\{1, 2, 3, 4, 5\}$ of the point-set (checked using GAP [2] and its DESIGN package [5]).
(a) \(\mathcal{D}^*(2, 2) \) is the complete 2-(11, 2, 1) design. Hence Aut(\(\mathcal{D} \)) \(\subseteq \) Aut(\(\mathcal{D}^*(2, 2) \)) = Sym(11), illustrating Theorem 4.1(i), and also showing that if \(\lambda = 1 \) and \(t = k \) then Aut(\(\mathcal{D} \)) \(\neq \) Aut(\(\mathcal{D}^*(t, k) \)) is possible (see Theorem 4.1(ii)).

(b) \(\mathcal{D}^* = \mathcal{D}^*(2, 3) \) is a 2-(11, 3, 3) design with \(|\text{Aut}(\mathcal{D}^*)| = 120 \) (double checked with the DESIGN package). This illustrates Theorem 4.1(ii).

Example 5 This example shows that if \(\lambda > 1 \) then Aut(\(\mathcal{D} \)) \(\neq \) Aut(\(\mathcal{D}^*(t, k) \)) is possible, even when \(t < k \). We apply the \#-construction to the projective plane \(\mathcal{P} \) of order 4, to obtain a 2-(20, 4, 3) design \(\mathcal{P}^\# = \mathcal{P}^\#(2, x) = (X, \mathcal{B}) \), which has a point-transitive automorphism group of order 5760. Then, we take \(x \in X \) and obtain a 2-(19, \{3, 4\}, 3) design \(\mathcal{D} = \mathcal{P}^\# \setminus x \) (using the notation of Section 3). (The choice of \(x \) does not affect the isomorphism class of \(\mathcal{D} \) since \(\mathcal{P}^\# \) is point-transitive). Finally, construct a 2-(19, 3, 6) design \(\mathcal{D}^* = \mathcal{D}^*(2, 3) \). It turns out that \(|\text{Aut}(\mathcal{D})| = 288 \), but \(|\text{Aut}(\mathcal{D}^*)| = 576 \). The construction of these designs and the determination of their automorphism groups was done using the DESIGN package.

Example 6 The DESIGN package shows that, up to isomorphism, there are exactly four 2-(11, \{4, 5\}, 2) designs (not counting the unique 2-(11, 5, 2) design). These designs \(\mathcal{D} \) have automorphism groups of orders 6, 8, 12, and 120, as do the corresponding \(\mathcal{D}^*(2, 4) \), which are (believed to be new) 2-(11, 4, 6) designs. Note that these examples show that the converse of Theorem 4.1(ii) does not hold.

References

[4] D. A. Preece, A selection of BIBDs with repeated blocks, $r \leq 20$, \(\gcd(b, r, \lambda) = 1 \), preprint, 2003.