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Abstract

An overfull set of one-factors of Ky, is a set of one-factors that between
them cover all the edges of K5,, but contain no one-factorization of K,,. We
ask how many members such a set can contain, and obtain upper and lower
bounds.

1 Introduction

If G is any graph, then a one-factor of G is a subgraph with vertex-set V(G) that is
a regular graph of degree 1. In other words, a one-factor is a set of pairwise disjoint
edges of GG that between them contain every vertex. A one-factorization of G is a
decomposition of the edge-set of GG into edge-disjoint one-factors. Clearly any graph
must have an even number of vertices to possess a one-factor or one-factorization.

In particular, we consider one-factors and one-factorizations of complete graphs.
We denote the complete graph on 2n vertices by Ks,. We label the vertices of Ky, as
00,0,1,---,2n — 2; the labels are treated as integers modulo 2n — 1 with the proviso
that co +1 = oo.

We shall denote the set of all one-factors of Ky, by A(K2,). It is clear that A(K>y,)
has (2n — 1)!! elements, where (2n — 1)!! denotes the semifactorial
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If (z,y) is any edge of Ky,, then there are (2n— 3)!! factors containing the edge (x,y).
(Essentially, count the one-factors of the K, produced by deleting x and y.)

We write b(2n) for the number of one-factorizations of Ks,. No closed formula for
b(2n) is known.

Lemma 1 If F is any one-factor of Ka,, let r(F) denote the number of one-factor-
1zations of Ko, of which F' is a member. Then
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Proof. We first observe that r(F') equals the number of one-factorizations of the
graph Ky, — F'. But this graph (the cocktail-party graph on 2n vertices) is unique,
independent of the choice of F.. So r(F') depends only on 2n.

Now we count all the ordered pairs (F, F), where F' is a factor in the factorization
F, in two ways, and obtain

(2n — D!r(F) = (2n — 1)b(2n),
which gives the result. ([l

For convenience we denote this common value by rg,.

2 Overfull sets

Bonisoli [1] introduced the concept of an excessive set of one-factors of K,. This is
a set S of 2n one-factors that covers all edges of Ks,,, in which no 2n — 1 factors form
a one-factorization. Such a set exists for all even orders 2n greater than 4 (see [2, 1]),
while orders 2 and 4 are easily seen to be impossible.

We address the more general question: for what values ¢ = |S| does there exist a
set S of one-factors of Ky, with the following properties:

(1) the members of S cover all edges of Ky,;
(2) no 2n — 1 members of S form a one-factorization of Kj,?

Such a set is called an overfull set of one-factors of Ky, of order t.

In particular we ask, what is the greatest order Ms,, of an overfull set of one-factors
(ﬁ.ﬁén?

3 A lower bound

In [3] there was constructed a set 7,, of one-factors that covers Ks, and contains no
one-factorization, when 2n > 8. If F; is the set of all one-factors of Ky, containing
edge (00,7). Then

2n—2
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where
Py ={(00,0),(1,2n —2),...,(k,2n—k—1),...,(n—1,n)},

and D is the set of all one-factors that contain both (0o, 1) and one or more edges
from F.
This set has order
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Now Mg = 11, and an overfull set of 11 one-factors of K¢ was presented in [3], so we
have

Theorem 1 For alln > 3,
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4 An upper bound

Suppose R is a set of one-factors of Ks, whose complement A(K2,)\R is overfull.
Then R must contain at least one member of every one-factorization of Ks,. Each
factor in R belongs to exactly 79, one-factorizations, so R can have non-empty inter-
section with at most r9,|R| one-factorizations. So

Ton|R| > 0(2n). (2)
Combining (1) and (2) we have
Lemma 2 If R is the complement of an overfull set of one-factors of Ky, then

IR| > (2n — 3)!!
Theorem 2 M, < 2(n—1)((2n — 3)!!)

Proof. Suppose S is an overfull set with complement R. Then

S| = |A(K2)| — R
(2n — 1)1 — | R
< 2n—-1I—(2n —3)!
= 2(n—1)((2n —3)" O

Combining Theorems 1 and 2, we obtain, for example, 11 < Mg < 12 and 81 <
Mg < 90.

One case that achieves the order |R| = (2n — 3)!! is when R consists of all the
one-factors containing a given edge (x,y). In this case the complement of R does not
cover (z,y), so it is not overfull. In particular, when 2n = 6, these sets are the only
possible sets R with (2n — 3)!! elements, so Mg < 2(3 —1)((6 — 3)!!) = 12. Combined
with Theorem 1, this shows that Mg = 11. Is it true that |R| = (2n — 3)!! can only
be achieved when R consists of all the one-factors containing a given edge?
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