Bounds for Overfull Sets of One-Factors

J. P. McSorley and W. D. Wallis Southern Illinois University Carbondale, Illinois, USA 62901-4408

Abstract

An overfull set of one-factors of K_{2n} is a set of one-factors that between them cover all the edges of K_{2n} , but contain no one-factorization of K_{2n} . We ask how many members such a set can contain, and obtain upper and lower bounds.

1 Introduction

If G is any graph, then a *one-factor* of G is a subgraph with vertex-set V(G) that is a regular graph of degree 1. In other words, a one-factor is a set of pairwise disjoint edges of G that between them contain every vertex. A *one-factorization* of G is a decomposition of the edge-set of G into edge-disjoint one-factors. Clearly any graph must have an even number of vertices to possess a one-factor or one-factorization.

In particular, we consider one-factors and one-factorizations of complete graphs. We denote the complete graph on 2n vertices by K_{2n} . We label the vertices of K_{2n} as $\infty, 0, 1, \dots, 2n-2$; the labels are treated as integers modulo 2n-1 with the proviso that $\infty + 1 = \infty$.

We shall denote the set of all one-factors of K_{2n} by $\mathcal{A}(K_{2n})$. It is clear that $\mathcal{A}(K_{2n})$ has (2n-1)!! elements, where (2n-1)!! denotes the semifactorial

$$(2n-1)!! = (2n-1) \times (2n-3) \times \ldots \times 3 \times 1 = \frac{(2n)!}{n!2^n}.$$

If (x, y) is any edge of K_{2n} , then there are (2n-3)!! factors containing the edge (x, y). (Essentially, count the one-factors of the K_{2n} produced by deleting x and y.)

We write b(2n) for the number of one-factorizations of K_{2n} . No closed formula for b(2n) is known.

Lemma 1 If F is any one-factor of K_{2n} , let r(F) denote the number of one-factorizations of K_{2n} of which F is a member. Then

$$r(F) = \frac{b(2n)}{(2n-3)!!}.$$
(1)

Proof. We first observe that r(F) equals the number of one-factorizations of the graph $K_{2n} - F$. But this graph (the cocktail-party graph on 2n vertices) is unique, independent of the choice of F. So r(F) depends only on 2n.

Now we count all the ordered pairs (F, \mathcal{F}) , where F is a factor in the factorization \mathcal{F} , in two ways, and obtain

$$(2n-1)!!r(F) = (2n-1)b(2n),$$

which gives the result.

For convenience we denote this common value by r_{2n} .

2 Overfull sets

Bonisoli [1] introduced the concept of an *excessive set* of one-factors of K_{2n} . This is a set S of 2n one-factors that covers all edges of K_{2n} , in which no 2n - 1 factors form a one-factorization. Such a set exists for all even orders 2n greater than 4 (see [2, 1]), while orders 2 and 4 are easily seen to be impossible.

We address the more general question: for what values t = |S| does there exist a set S of one-factors of K_{2n} with the following properties:

- (1) the members of \mathcal{S} cover all edges of K_{2n} ;
- (2) no 2n-1 members of S form a one-factorization of K_{2n} ?

Such a set is called an *overfull set* of one-factors of K_{2n} of order t.

In particular we ask, what is the greatest order M_{2n} of an overfull set of one-factors of K_{2n} ?

3 A lower bound

In [3] there was constructed a set \mathcal{T}_n of one-factors that covers K_{2n} and contains no one-factorization, when $2n \geq 8$. If \mathcal{F}_i is the set of all one-factors of K_{2n} containing edge (∞, i) . Then

$$\mathcal{T}_n = \{P_0\} \cup \mathcal{D} \cup \bigcup_{i=2}^{2n-2} \mathcal{F}_i$$

where

$$P_0 = \{(\infty, 0), (1, 2n - 2), \dots, (k, 2n - k - 1), \dots, (n - 1, n)\},\$$

and \mathcal{D} is the set of all one-factors that contain both $(\infty, 1)$ and one or more edges from P_0 .

This set has order

$$1 + (2n-3)(2n-3)!! + \sum_{k=1}^{n-2} (-1)^{k+1} \binom{n-2}{k} (2n-2k-3)!!.$$

Now $M_6 = 11$, and an overfull set of 11 one-factors of K_6 was presented in [3], so we have

Theorem 1 For all $n \geq 3$,

$$M_{2n} \ge 1 + (2n-3)(2n-3)!! + \sum_{k=1}^{n-2} (-1)^{k+1} \binom{n-2}{k} (2n-2k-3)!!.$$

4 An upper bound

Suppose \mathcal{R} is a set of one-factors of K_{2n} whose *complement* $\mathcal{A}(K_{2n}) \setminus \mathcal{R}$ is overfull. Then \mathcal{R} must contain at least one member of every one-factorization of K_{2n} . Each factor in \mathcal{R} belongs to exactly r_{2n} one-factorizations, so \mathcal{R} can have non-empty intersection with at most $r_{2n}|\mathcal{R}|$ one-factorizations. So

$$r_{2n}|\mathcal{R}| \ge b(2n). \tag{2}$$

Combining (1) and (2) we have

Lemma 2 If \mathcal{R} is the complement of an overfull set of one-factors of K_{2n} then

 $|\mathcal{R}| \ge (2n-3)!!$

Theorem 2 $M_{2n} \le 2(n-1)((2n-3)!!)$

Proof. Suppose S is an overfull set with complement \mathcal{R} . Then

$$\begin{aligned} |\mathcal{S}| &= |\mathcal{A}(K_{2n})| - |\mathcal{R}| \\ &= (2n-1)!! - |\mathcal{R}| \\ &\leq (2n-1)!! - (2n-3)!! \\ &= 2(n-1)((2n-3)!!) \end{aligned} \qquad \square$$

Combining Theorems 1 and 2, we obtain, for example, $11 \le M_6 \le 12$ and $81 \le M_8 \le 90$.

One case that achieves the order $|\mathcal{R}| = (2n-3)!!$ is when \mathcal{R} consists of all the one-factors containing a given edge (x, y). In this case the complement of \mathcal{R} does not cover (x, y), so it is not overfull. In particular, when 2n = 6, these sets are the only possible sets \mathcal{R} with (2n-3)!! elements, so $M_6 < 2(3-1)((6-3)!!) = 12$. Combined with Theorem 1, this shows that $M_6 = 11$. Is it true that $|\mathcal{R}| = (2n-3)!!$ can only be achieved when \mathcal{R} consists of all the one-factors containing a given edge?

References

- [1] A. Bonisoli, Excessive factorizations of complete graphs, *preprint*.
- [2] D. R. Stinson and W. D. Wallis, An even-side analogue of Room squares. Aeq. Math. 27 (1984), 201–213.
- [3] W. D. Wallis, Overfull sets of one-factors. *Congressus Num.* (to appear).