
c ~  DISCRETE MATHEMATICS 
ELSEVIER Discrete Mathematics 184 (1998) 137-164 

Counting structures in the M6bius ladder 

J o h n  P. M c S o r l e y *  

Department of Mathematical Sciences, Michigan Technological University, 1400 Townsend Dr., 
Houghton, MI 49931-1295, USA 

Received 16 October 1996; received in revised form 31 March 1997; accepted 7 April 1997 

Abstract 

The M6bius ladder, Mn, is a simple cubic graph on 2n vertices. We present a technique which 
enables us to count exactly many different structures of Mn, and somewhat unifies counting 
in M,. We also provide new combinatorial interpretations of some sequences, and ask some 
questions concerning extremal properties of cubic graphs. (~) 1998 Elsevier Science B.V. All 
rights reserved 
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Introduction 

The M6bius ladder, Mn, is a simple cubic graph on 2n vertices. It is shown in 

Fig. l(a), and the representation of  it used in this paper appears in Fig. l(b). 

This class o f  graphs is interesting both for mathematicians, see Biggs [1], where 

M~ is often used as an example; and chemists, see Hosoya and Harary [7], and the 
references therein. 

A spannin9 edge-subgraph of  a simple graph is a subset o f  the edges of  the 

graph, together with all of  its vertices. All structures considered here, except those in 

Sections 19 and 20, are spanning, labelled edge-subgraphs; henceforth referred to sim- 
ply as edge-subgraphs. 

We present a counting technique which enables us to count exactly many different 
structures of  M,. 

O. Preliminaries 

Consider Fig. l(b). The edges ii ~ for i =  1 , . . . , n  are diagonals, all other edges are 
outside edges. The graph Mn contains n diagonals and 2n outside edges. Unless oth- 
erwise stated, we will always assume that n >~ 2 and 1 ~<k ~< n. 
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Fig. 1. 

Now consider the 2n vertices labelled 1,2, 3 . . . . .  n, 1', 2', 3' . . . .  , n' arranged clockwise 
around a circle, see Fig. 2(a). A (n,k)-graph, G, is a subgraph of Mn with vertex set 
these 2n vertices, and edge set any k diagonals and any number o f  outside edges. 

Call vertices which lie on a diagonal diagonal vertices. Moving clockwise, call the 
edge-subgraph of  G between two consecutive diagonal vertices, u and v, a join. Denote 
it by [u, v), see Fig. 2(b); clearly G has 2k joins. The join [u, v) does not contain vertex 
v, hence every vertex and every outside edge o f  G lie in exactly one join. Call the join 
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Fig .  2.  

[u,v) complete if  all possible outside edges are present in it, incomplete otherwise. 

Thus, a complete join is a path with its last vertex removed. 
Call the join [u, v) empty if  it contains no edges, and G empty if  all o f  its joins 

are empty. We will often use K to denote an empty (n,k)-graph. The joins [u,v) 
and [u',v') (see Fig. 2(b)) are opposite and comprise a join-pair. Such a join-pair is 

incomplete if at least one of  [u,v) or [W,v') is incomplete. The graph G is join-pair 
incomplete if each of  its k join-pairs is incomplete. 

Let the non-diagonal vertices between u and v be labelled u2 . . . .  , Ur. We define the 
size of  the join [u, v) = [u, u2 . . . . .  ur, v) to be r, which is the maximum possible number 

o f  edges in the join. A join of  size 1 is an edge or a non-edge; a join is even/odd if 

its size is even/odd. It is straightforward to prove the following theorem. 

Theorem A. Let  G be a (n,k )-graph: 
(i) G is acyclic i f  and only i f  G is join-pair &complete and has <~k - 1 complete 

joins; 
(ii) i f  G is connected then G has >~k - 1 complete joins; 

(iii) i f  G is acyclic and connected then G is join-pair incomplete and has exactly 
k - 1 complete joins. 

The following is a key definition and theorem. 

A k-composition of  n, Xl + .. • + xk, is an expression of  n as an ordered sum of  k 

positive integers, each xj ~> 1. Throughout this paper we let x_ = xl ". • xk = xl + • .. + xk 
n - - I  be an arbitrary k-composition of  n, there are (k-i)  such compositions. 

Let O(n,k) be the number o f  empty (n,k)-graphs. 
Consider the vertices [n] = {1,2, . . .  ,n} of  a (n,k)-graph. Now the diagonal vertices 

without the ' form a k-set o f  [n]. Conversely, a k-set o f  [n] determines k diagonals by 
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choosing each vertex in the k-set to be a diagonal vertex. Thus O(n,k)= (~). However, 
we need the following theorem, central to the main idea of this paper. 

Theorem B. Let O(n, k) denote the number o f  empty (n, k )-graphs, then 

k 
n n 

O(n,k)=-k Z I = ~  Z H  12" 
x x j = l  

Proof. Let K be an empty (n,k)-graph which contains the diagonal IV, see Fig. 3. 
Let us start at vertex 1 and move clockwise, as we move we record the size of the 
joins which we pass through. Let the j th join be Xj, and let [Xj]=xj for l<~j<<.k. 
After k joins we obtain x~ • • • xk, a k-composition of n. Conversely, any k-composition 
of n, y l " " Y k ,  uniquely determines a (n,k)-graph which contains IV, by starting at 1 
and (moving clockwise) letting the size of the j th join be yj for 1 <~j<<.k. Hence, the 
number of (n,k)-graphs containing 11 t is ~-]~x 1. 

Similarly, for any fixed i, 2<~i<<.n, the number of (n,k)-graphs containing ii ~ 

is ~ x  1 . 
Hence 

~ l { ( n ' k ) - g r a p h s ~  = n Z 1 .  
i= 1 containing ii ~ J l x 

But each (n,k)-graph is counted k times in the left-hand side of this equation. Hence 

kO(n, k) = n ~x_ l, i.e., O(n, k) = (n/k) ~ x  1. 
Now, an empty join can be made into an empty join in 1 way, and an empty join- 

pair into an empty join-pair in 12 way(s). So the product l-/~= 1 12 gives the number 
of ways the k join-pairs of K can be extended to an empty (n, k )-graph. Hence the 
result. [] 

Let [xn]H(x) be the coefficient of x n in H(x).  We have the following result, 

where ~ denotes differentiation. 

Theorem C. 
(i) ~ x H ~ = ,  a(xj) = [xn]{a(1)x + a(2)x 2 + - - . f t .  

(ii) Let H ( x ) = x J ( x ) ,  where J(O) and J'(O) are defined. Then [x n] ~ = 1  ~H(x) k 
= r x n l X ~ -  

t J 1--H(x)" 

Now let the elements of [n] be arranged in a circle. A non-consecutive, cyclic (ncc) 
set of [n] is a subset of elements of [n] which are non-consecutive when chosen from 
this circular arrangement. Let ~k(n, t) denote the number of  ncc t-sets of [n], where 
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0 ~< t ~< [n/2J. So 

~O(n,t)=--n_tn ( n - t ) t  and 

[~J 
LP(n) = Z qJ(n,t) = ((1 + v~)/2)" + ((1 - ~ ) / 2 ) " ,  

t = O  

where ~ ( n )  is the nth Lueas number; see pp. 24 and 46 of Comtet [3], and pp. 73 
and 246 of Stanley [ 10]. 
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In the following sections, when counting Generic Structures (gs) of Mn, we let 
gs(n,k) denote the number of generic structures of  Mn with k diagonals, and gs(n) the 
total number of generic structures of Mn. 

The idea of this paper is to count generic structures in Mn by extending an empty 
(n, k)-graph, K, to a generic structure by adding edges to its empty joins, whilst keeping 
k fixed. For example in Section 2, if K is extended to a forest of M,, then a join of 
the extended K can be any arbitrary edge-subgraph of the complete join; for a tree 
(Section 8), a join must be either complete or complete less one edge. So, we first 
find gs(n,k) by summing over x, and then sum over k to determine g(n). 

Even though some of these structures have been counted before, and thus some 
counts appear in the literature, it seems that this technique is new, and somewhat 
unifies the approach to counting structures in M~; it also works for the cubic prism. 
For a unified approach to counting structures in Kn, the complete graph on n vertices, 
see Harary and Palmer [6]. 

We are now ready to start counting. 

1. Edge-subgraphs (e) 

Clearly M, has 3n edges, so e ( n ) : 2  3n = 8  n. 

We now illustrate our technique by redetermining e(n). 
First consider k = 0. Let C2n denote the cycle with 2n vertices and 2n edges; any 

edge-subgraph of C2~ is an edge-subgraph of M, with no diagonals, hence e(n, O) = 4 ~. 
For k ~> 1, let K be the empty (n,k)-graph that contains diagonal 1 l '  and determines 

the composition x_=xl -..xk, see Fig. 3, and let [k]--{1,2 . . . . .  k}. Now, i f K  is to be 
extended to an edge-subgraph, then a join of size r of  the extended K can be any of 
the 2 r edge-subgraphs of the complete join. From Theorem B, the number of  empty 
(n, k )-graphs is (n/k) ~ x  II~= l 12, so, using the multiplication principle, we have 

k 
n 

e(n,k) = ~ ~ ]--[ (2xJ) 2 . (1) 
x j = l  

So 

e(n) = e(n,0) + e (n ,k )=4  n + 4 xj = 8 n. 
k = l  = 

2. Forests ( f )  

A forest is an acyclic edge-subgraph. If a (n, k)-graph, F,  is a forest of M~ then an 
incomplete join of F is an arbitrary edge-subgraph of the complete join, (except the 
complete join). 

Using Theorem A(i), we have: 
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Lemma 2.1. Let F be a (n,k)-graph. Then F is a forest of  Mn if  and only if  
(i) F is join-pair incomplete; 

(ii) F has <<.k- 1 complete joins; and 
(iii) each incomplete join of  F is an arbitrary incomplete join, 

If an incomplete join has size r then it can be any of 2 r - 1 edge-subgraphs. 

Any edge-subgraph of C2n, except C2n itself, is a forest of M,; hence, f (n ,  O)= 4 ~ -  1. 
Now for k >/1. Let t be an arbitrary variable; for x = x l ' "Xk ,  with n and k fixed, 

define 

k 

7t(x_,t)=Tz(xx .. "xk, t )= I I ( t  xj - 1), 
j = l  

and 

~(n,k,t)= ~_~(x_,t). 
x 

Then, using Theorem C(i) 

g(n,k,t) = [xnl{(t - 1)x + (t 2 - 1)x 2 + . . .}k  

(t - 1)x }k 
=Ix"]  (1 ---x~l--- tx)  =[x"]A[t](x) k, say. (2) 

Again, let K be as in Fig. 3. Consider the (n, k)-graph ffs that has s complete joins 
on the right-hand side of 11' for some s, where O<~s<<.k - 1, and no complete joins 
on the left-hand side. 

By the above lemma F~ is a forest and the number of such forests is 

s c[k] 1 - I j e s (2  J - 1)  ' 

where S is a s-set of [k], and I - I jc0(2xJ - 1 )=  1. 
The first factor in the expression above gives the number of possible edge-subgraphs 

on the left-hand side of 11' in F~, and the second factor the number on the right-hand 
side. 

Now F~ is join-pair incomplete and so the s complete joins on the right-hand side 
of 11' can be arranged in 2 s ways: for each complete join [u,v), switch it with its 
incomplete opposite join [u',v'), (if a(a + 1) is an edge in [u,v) then, after switching, 
a'(a + 1)' is an edge in [u',v'), and vice versa). Conversely, if a forest contains s 
complete joins then O<s<<.k- 1 and it is join-pair incomplete, so we may form such a 
graph F~ by switching all complete joins from the left-hand side of 11 t to the right-hand 

side. 
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Hence, incorporating the factor of  2 s into the above expression and simplifying, the 
total number o f  forests which can be formed from K is 

rffx'2)2 Z 1"I ~ (3) 
S c[k] jES  

= 7t(x__, 2) (2 xj + 1 ) - 2 k (4) 

= re(x, 4) - 2kn(x, 2). 

Now, using Theorem B, the number of  empty (n,k)-graphs is (n/k)~-~x_l. 
Hence, 

n X - ' s  t "~ ~n {~(n, k, 4) - 2k~(n, k, 2)}. (5) f(n,k) = ~ Z_.~trctx,4, - 2k~(x,2)} = 
x 

Using (2) and (5), we have: 

Lemma 2.2. 
[ 4  n - 1, k = O ,  

f(n,k) = [ [xn]~{A[4](x)k  __ (2A[2](x))k} ' k ~  1. 

Then 

now use Theorem C(ii) twice, 

( X AI4](X) 2X Ai2](x) 
=4n  - 1 + [x"] _ 1 - A[4I(X) 1 - 2A[2](x) J 

x( 1 + 4x - 40x 2 + 16x 3 + 16x 4) 
= 4 n - - l + [ x  "] 

(1 - 2x)(1 - 4x)(1 - 5x + 2x2)(1 - 8x + 4x2)" 

Thus, the above rational function is the ordinary generating function for the total 

number of  forests o f  Mn with k/> 1. 
Finally, partial fractions give: 

Theorem 2.3. 

f(n) = (4 + ~']-~)n + (4 - v ~ )  n + 2n - ( (5  + V/~)/2)n--((5--V/-~)/2)n--1. 
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The numbers {f(n): n >~ 2} yield the sequence {38,328, 2686, 21224,...} which does 
not appear in Sloane and Plouffe [9]. The numbers {f(n,n)} ={3" - 2  n} appear as 
sequence M3887, so we have a new combinatorial interpretation of this sequence. 

Note that from p. 103 of [1], and [2], the Mrbius ladders form a recursive family of 
graphs, i.e., their Tutte polynomials satisfy a homogeneous linear recurrence relation, 
and so can be computed. Hence, see [1, p. 104], we may count the number of forests 

to give the same as above. 
So, for large n, f(n) is approximately (7.4641)n. For an arbitrary cubic graph on 2n 

vertices the number of forests is less than 8". A natural question is then: Does there 
exist a family of cubic graphs, G,, on 2n vertices, such that, for some no and all n > no, 
the number of forests of Gn is greater than (7.4641)"? 

3. Strong edge-subgraphs (se) 

A stron9 edye-subgraph, E, of M, is an edge-subgraph with no isolated vertices. If 
an edge-subgraph of C2, is strong then its non-edges must be non-consecutive, cyclic. 
Thus, se(n,0) = Ae(2n). 

Similarly, the join [u, u2,.. . ,  ur, v) of E is strong if it contains no isolated vertices. 
For this join to be strong we only require that the vertices u2 . . . . .  ur, are not isolated 
because u is incident to a diagonal. 

Let fl(r) be the number of strong joins for a join of size r. For k ~> 1, the number 
of strong edge-subgraphs which come from K of Fig. 3 is [-[~=1 fl(XJ )2" 

Thus, (cf. (1)), 

k 
n 

se(n,k) = ~ ~ I-I fl(xj)Z. 
x j= l  

Now f l (1)=2,  f l (2)=3,  and fl(r)=fl(r- 1 ) +  f l(r-  2) for r>~3, see [3, p. 45]. 
The recurrence for fl(r)  2 is fl(r)  2 = 2 f l ( r -  1 )z+  2fl(r- 2) 2 - f l ( r -  3) 2. 

Let 

x(4 + x - x 2) 
B(x )=  Z[3(r)Zxr = (1 +x) (1  - 3x +x2)" 

r>~l 

Lemma 3.1. 

{ ~(2n) ,  k = 0, 

se(n ,k)= [x"]~B(x) k, k~l .  

By similar reasoning to that used in Section 2, we have 

se(n) = ~LP(2n) + [x n] x(4+2x+3x2 -4x3 +x4)  
(1 +x)(1  - 3x + x2)(1 - 6x - 3x 2 + 2x3)" 
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Theorem 3.2. 

se(n) ~ (6.4188)" + (-0.8056) n + (0.3867)" - ( -  1)". 

The first few terms in the sequence {se(n): n>~2} are {41,265, 1697, 10897,...}. 
Let H,  be an arbitrary cubic bipartite graph on 2n vertices, then, necessarily, the 

number of vertices in each part is n. Let one part contain the vertices vl . . . .  , vn. Now 
each vi is incident to 3 edges. A strong edge-subgraph of H,  must contain at least one 
of  these edges i.e., it must contain one of the 23 - 1 = 7 non-empty subsets of edges 
incident to vi. Hence, the number of strong edge-subgraphs of H, is at most 7". 

Now, for n odd, the graph M, is bipartite, and, for large n, contains approximately 
(6.4188)" strong edge-subgraphs. Hence, we may ask the following question: For 
odd n, does there exist a family of cubic bipartite graphs, Gn, on 2n vertices, such 
that, for some no and all odd n>no, the number of strong edge-subgraphs of  G, is 

greater than (6.4188)"? 

4. Strong forests (sf) 

A strong forest, F, of Mn is a forest with no isolated vertices. By comparison with 
Lemma 2.1, we have: 

Lemma 4.1. Let F be a (n,k)-graph. Then F is a strong forest of M, if and only if 
(i) F is join-pair incomplete; 

(ii) F has <~k- 1 complete joins; and 
(iii) each incomplete join o f F  is a strong incomplete join. 

For k = 0, the number of  strong forests of Mn equals the number of  strong edge- 

subgraphs of C2n less 1, (C2n itself). Thus, sf(n, 0) = £a(2n) - 1. 
Let ?(r) be the number of strong incomplete joins for a join of size r. 
By similar reasoning to that used in Section 2, the number of strong forests which 

come from K of Fig. 3 is given by 

k { } 
1-I y(xj) ~I (y(xj) + 2) - 2 k . 

j = l  j = l  

Thus, (cf. (5)), 

s f ( n , k )  = ~ I-[(?(xj) 2 + 2 ? ( X j ) )  --  ( 2 y ( X j ) )  . 

j = l  _ '= 

Now ? (1 )=  1, ? (2 )=2 ,  and ? ( r ) = v ( r -  1) + ? ( r -  2 ) +  1 for r~>3. 

(6) 
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Let 

cl(x)=~M~~2 +Q+-)1x’= (1 _x::jl-_x:x+x’) 

i->l 

Again, using Theorem C(i) and (6), we have: 

Lemma 4.2. 

.Y(2n) - 1, k=O, 
sf(n,k)= 

[~“];{Ci(x)~ - Cab}, k> 1. 

sf(n) 
= Y(2n) - 1 

Theorem 4.3. 

sf(n) M (5.7400)” + (-0.7340)” + (0.5953)” + (0.3986)” + ((1 + &)/2)” 

+((l - &)/2)” - (-0.4728)” - (3.9354)” - (0.5374)” - (-1)” - 1. 

The first few terms in the sequence {sf(n): n>2} are {19,132,851,5298,. . .}. 

5. Single-component edge-subgraphs (see) 

A single-component edge-s&graph, E, of M, is an edge-subgraph with exactly 

one non-trivial connected component, i.e., exactly one connected component with 

one or more edges, all other components being isolated vertices. Clearly sce(n, 0) = 
2n(2n - 1) + 1. 

If [u, u) has size r then the number of possible incomplete joins is r(r + 1)/2. 

Let E be a single-component edge-subgraph which comes from K of Fig. 3, and let 

i? denote the graph obtained from E by switching all complete joins from the left-hand 

side of 11’ to the right-hand side. From Theorem A(ii) we see that i? has 3 k - 1 

complete joins to the right-hand side of 11’. 

Let E have (k - 1) + s complete joins in total, where 0 <s <k + 1. Then two cases 

can occur: 

(a) E has exactly k - 1 complete joins to the right-hand side of 11’. Let the ith 

join on the right-hand side of 11’ in E be incomplete, for some i, where 1 <i Qk, 
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then its opposite join is also incomplete, (or otherwise case (b) occurs). So E has s 
complete joins to the left-hand side of 11', and E has exactly s complete join-pairs; 
here O<~s<~k- 1. 

Let Z be a (k - 1 - s)-subset of [k]\{i} and let 

1-1 xj(xs + 1) 
11 2 j6o 

Then, the number of such E is given by 

E I X  Xj(Xj -~ 1 ) .  21zl xi(x 1 

Ei=I 1, s=O Z C[k]\{i} jGZ 2 2 -+ ) 

: l ~ - ~ { I ' I ( x 2 + x j + l ) ( x 2 + x i ) 2 } ' 4  1 5~ 1 

(b) E" has exactly k complete joins to the right-hand side of 11', so E has s - 1 
complete joins to the left-hand side of 11', and E has exactly s -  1 complete join-pairs; 
here l~<s~<k+l .  

Let Z be a (k - (s - 1))-subset of [k]. Hence, the number of such E is given by 

E xj( 1).  21zJ = I-I (x2 +xj + 1). 
s=l \zc_[~] j~z j=l 

Lenuna  5.1.  

sce(n,k) = ~-~ (x } + xj + 1)(x~ -[- Xi) 2 
_ i=1 j=l 

j#i 

k 
1l 

+~ Z I-I (x} + xj + I). 
x j=l 

Let 

- 2x + x  2) 
DI(X)  = E ( r  2 + r + 1)X r ----- x(3(1 _ x) 3 

r~>l 

D2(x) = Z ( r  2 + r)2x r = 4x(1 + 4x + x  2) 
(1 - x )  5 

r>~l 

and 

(7) 
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Lemma 5.2. 

2 n ( 2 n -  1) + 1, k=0 ,  
sce(n,k)  

[x"]{~Dl(x)X-lD2(x) + ~Dl(x)k}, k~> 1. 

This gives us 

sce(n) = 2n(2n - 1) ÷ 1 

x(4 - 13x + x  2 - 44x 3 + 5 4 X  4 - -  25x 5 ÷ X  6 - -  2X 7 )  

+ [xn] ( 1  - x ) 3 ( 1  - 6x ÷ 5x 2 - -  2 X 3 )  2 

Partial fractions and De Moivre 's  theorem give: 

Theorem 5.3. 

sce(n) ~ (0.6612n + 1)(5.0958) n + (2.1430)(0.6264)nn sin(0.7646n) + n 2 

- (0 .6612n - 2)(0.6264) n cos(0.7646n) - 2n - 2. 

The first few terms in the sequence {sce(n): n~>2} are {60,397,2464, 14809 . . . .  }. 

6. Single-component forests (scf) 

A single-component forest, F, of  Mn is a forest which contains exactly one non- 
trivial connected component, all other components being isolated vertices. 

An incomplete join [u, v) o f  F must have at most two non-trivial components, each 
component must contain an edge incident to either u or v. 

Thus, using Theorem A(iii), we have: 

Lemma 6.1. Let F be a (n,k)-graph. Then F is a single-component forest o f  M, i f  
and only i f  

(i) F is join-pair incomplete; 
(ii) F has exactly k -  1 complete joins; and 

(iii) each incomplete join [u, v) o f  F has at most two non-trivial components, each 
component containing an edge incident to either u or v. 

For k = 0, we have scf(n, 0 ) =  2 n ( 2 n -  1). 
Again, if  [u, v) has size r, then the number of  possible incomplete joins is r(r + 1 )/2. 
For k>~l let K be the (n,k)-graph of  Fig. 3. Following Section 2 with s = k -  1, 

the number of  single-component forests which can be formed from K is given by 

H Xj(Xj 71- 1) Xi(X i ÷ 1) 1 
2 2 - -4  - t l " J + x j " x ' + x i ' 2  " (8) 

j=l  i=l i=1 j=l  
j~i 
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So 

Let 
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2x 
E ( x )  = Z ( r  2 + r ) x  r -  (1 x ~ - :  and D2(x) be as in Section 5. 

r~>l 

Lemma 6.2. 

2n(2n - 1), k = 0, 
scf(n ,k)  = x n , k-a 

[ ]~E(x) D2(x) ,  k>~ 1. 

T h u s ,  

[x,]X(1 + 9x - 30x 2 - 20x 3 + 27x 4 - 9x 5 - -  2 x  6)  
scf(n) =2n(2n  1) + 

(1  - x ) 3 ( 1  - 5 x  + 3 x  2 - x3) 2 

Theorem 6.3. 

s c f ( n ) ~ O . 8 7 5 7 n ( 4 . 3 6 5 2 )  n - 1.5432n(0.4786) n c o s ( 0 . 8 4 5 8 n + 0 . 9 6 7 4 ) + n  2 - 2n. 

The first few terms in the sequence {scf(n): n~>2} are {34,222, 1280,6955 . . . .  }. The 
sequence {scf(n,n)} = {n2 n-1 } appears as M3444 in [9]. 

7. Strong single-component edge-subgraphs (ssce) 

A stron9 s inole-component  edoe-subgraph is a strong edge-subgraph which contains 
exactly one non-trivial connected component. Clearly, ssce(n, 0 ) =  2n + 1. 

If  E, an (n,k)-graph, is a strong single-component edge-subgraph of  Mn then every 
incomplete join of  E is the complete join less one edge; hence an incomplete join of  
size r has r possibilities. 

Following (7) from Section 5 we have: 

Lemma 7.1. 

xZ n n (2xj + 1)x~ + ~ E H ( 2 x j  + 1). ssce(n, k) = 
i = l  i=1 x j = l  

- j • i  
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Let 

Fl(X)= E ( 2 r  + 1)xr -~(13-x~ and F2(x)= E r 2 x  r - x ( l  + x )  
(1 - x )  3' r>~l r>~l 

Lemma 7.2. 

ssce(n,k)= 
2n + 1, k = O, 

n F tx~kl  [xn]{nFl(x)k-lF2(x)+ ~ it ) ;,  k>~l. 

Thus, 

n x ( 4 -  15X+2X 2 + 5 x  3) 
ssce(n) = 2n + 1 + [x ] ~ x ) - ~  -- 5x ~7.x-~" 

Theorem 7.3. 

+ n - 1 .  

ssce(n) = 

The first few terms in the sequence {ssce(n): n>~2} are {38,205, 1092,5719 . . . .  }. 

8. Spanning trees (st) 

If a (n, k )-graph is a spanning tree of M, then, as in Section 7 above, an incomplete 
join must be the complete join less one edge. 

Lemma 8.1. Let F be a (n,k)-graph. Then F is a spannino tree of  M, i f  and only i f  
(i) F is join-pair incomplete; 

(ii) F has exactly k - 1 complete joins; and 
(iii) each incomplete join o f f  is the complete join less one edge. 

For k = 0 we have st(n, 0 ) =  2n. The number of possible incomplete joins for a join 
of size r is r. So, for k>~l, cf., (8) from Section 6, the number of spanning trees 
which can be formed from K of Fig. 3 is 

k / k k 
1-I • I I  

\ j=l i=1 j=l 
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Then 

st(n,k) = 
n 2 2 k _  1 k 

ZHx  
x j = l  

Letting 

G(x) = ~ , -x ' -  x 
r~>l (1 X) 2' 

we have: 

Lemma 8.2. 

2n, k -- O, 

st(n, k) = n22k-~ 
[ x " ] ~ G ( x )  k, k>~l. 

So 

st(n) = 2n + [xn] x(1 + 2x - 10x 2 q- 2X 3 -~-X 4) 
(1 -- X)2(1 -- 4X q- X2) 2 

Theorem 8.3. 

st(n) -- 2[(2 + x/3)" + (2 - v~)"] + n. 

The first few terms in the sequence {st(n): n~>2} are {16,81,392, 1815,...}. 

According to p. 42 of Biggs [1] there are two known methods to compute the number 
of spanning trees of Mn. The first is the Matrix Tree Theorem, see [1, pp. 39--40]; and 

the second is a reeursive method mentioned at the end of Section 2; [2,8]. This, then, 
provides a third method. 

9. Restricted edge-subgraphs (re) 

A restricted edge-subgraph of Mn is an edge-subgraph with maximum degree 2, i.e., 
every component is an isolated vertex, a path, or a cycle. 

It is straightforward to show that an edge-subgraph, E, of M, is restricted if and 
only if it is the complement in Mn of a strong edge-subgraph, (Section 3). Clearly, 
the number of complements of strong edge-subgraphs is equal to the number of strong 
edge-subgraphs, hence re(n)--se(n) .  Thus: 

Theorem 9.1. 

re(n) ~ (6.4188)" + (-0.8056)" + (0.3867)" - ( - 1 ) L  
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10. Restricted forests (rf) 

In a restricted forest every component is an isolated vertex or a path. Unfommately, 
we are unable to use this counting technique to compute the exact value of rf(n). 

However, we can use it to obtain the following theorem, the details are omitted. 

Theorem 10.1. For large n, 

(4.8820)" < rf(n)  < (6.4188)". 

The first few terms in the sequence {rf(n): n>~2} are {34,241,1582 . . . .  }, which 
suggests that the value of r f (n)  is about (6.3)". In some of the following sections we 

will need knowledge of cycles and unions of cycles in M,. 
Clearly, each union of cycle(s) in M, has either k = 0 or k ~> 1 diagonals, so 

(i) k = 0: we have one cycle of M,, i.e., C2,; 
(ii) k~> 1: to transform the empty (n,k)-graph K of Fig. 3 into a union of cycle(s) and 

isolated vertices without increasing the number of diagonals, we must complete 
every second join beginning at X1 or at X2. Either way will result in a single 
cycle if k is odd; or a union of (k/2) cycles, each containing 2 diagonals, if k is 
even. 

These constructions determine all cycles and union of cycles of M,. 

11. Union of cycles (uc) 

An edge-subgraph of Mn is a union of cycles if each component is a cycle or an 
isolated vertex. 

Clearly uc(n ,0)=2 .  For k>~ 1, by the comments above, each K of Fig. 3 determines 
2 such edge-subgraphs, so uc(n,k) -- (n/k) ~ x  2 --- (~)2. 

Theorem 11.1. 

uc(n) = 2 "+~ . 

12. Cycles (c) 

A cycle of M, is an edge-subgraph with exactly one cycle, all other components 
being isolated vertices. We have: c (n ,0 )=  1, c (n ,2 )=2 ,  and c(n,k)=O for k even 
and ~>4; and c(n ,k)=2 for k odd. Hence, 

=,+ + Z 2  



154 J.P. McSorley / Discrete Mathematics 184 (1998) 137-164 

Theorem 12.1. 

c ( n ) =  2 n + n 2 - n + 1. 

This formula appears in Entringer and Slater [4]. The first few terms in the sequence 
{e(n): n>~2} are {7, 15,29,53,...}. 

13. Hamiitonian cycles (hc) 

Clearly hc(n ,0)=  1. If K of Fig. 3 determines the 2-composition 1 , n -  1 of n then 
K gives rise to two Hamiltonian cycles for n = 2  and one if n~>3. Hence, hc (2 ,2 )=2  
and hc(n ,2)=  1 • n - - n  if  n~>3; this deals with even k. For odd k, the graph K must 
determine the k-composition 1 . . .  1 of  n, which gives two more Hamiltonian cycles, 

hence k = n. k 

Theorem 13.1. 

J ' n + l ,  n even, 
hc(n) / n + 3 ,  n odd. 

14. Paths (p) 

Let F be a (n,k)-graph which is a path of Mn, with first vertex vf and last vertex v¢, 
vf # v¢; as usual all other components of F are isolated vertices. We will abuse notation 
and denote by F the non-trivial connected component of F. 

Now F is acyclic and connected, and so, from Theorem A(iii), it is join-pair incom- 
plete and has exactly k -  1 complete joins. Hence F has exactly one join-pair, X1X(, 

in which both joins are incomplete. All other join-pairs have exactly one join complete 
and the other incomplete. 

Let k~>4. Consider the join-pairs XzX~ and XkX~ to the right and left of X1X(,  

as indicated in Fig. 4; exactly one join in each is complete. There are two cases to 

consider: 
(a) Suppose that both )(2 and Xk are complete, see Fig. 4(a). Without loss of gen- 

erality, vf CX[  UX1, (i.e., vf is connected to 1); for, suppose not, then at least one of 
X~ or )(1 is complete, a contradiction. Similarly v¢ C X l' t_J X~. 

Hence any join between X2 and Xk, and between X~ and X[, is either complete or 
empty because it cannot contain vf or v¢. Thus, any join-pair XjXj' for 3<~j<~k-  1 

has one join complete and the other empty, this forces k to be even. 
Since vf is connected to 1 there are (xk + xl - 1) vertices where vf can be placed 

(the edges between vf and 1 are then included as part of F),  and v~ can be placed 
with a choice of (Xl + x2 - 1) places. Each placement can then be extended uniquely 
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xl \ ~ - -  x ,  

(a) XI (b) Xl 

Fig. 4. 

to form a path. Similarly if both X~ and X~ are complete. Also, the unique join-pair 
with both joins incomplete can be any of the k join-pairs XjXj for 1 <<.j<<.k. 

Hence, the total number of paths for this case is 

n E ( n ) ( ; - - i )  k.-£ 2(Xl+X2-1)(Xl+Xk-1)=lOn k + l  + 2 n  . 
X 

(b) Suppose that both )(2 and X~ are complete, see Fig. 4(b); then k is odd and >~ 3. 
Without loss of generality, vf E X[ U X~ and ve E Xk U X[. 

If vf EX~ (with x2 places) then the number of places for vt is (xl + x ~ -  1 ), yielding 
XE(Xl + x k -  1) paths. 

If vf EX(, the number of places for vc is z_~t=l (xl + Xk -- 1 -- t), where t is the 
1 number of edges between vf and v 2. 

From the previous two paragraphs and the comments in (a) above, the number of 
paths for this case is 

n (_~_ 3 ) 
k .~  E 2  +XlX2+XlXk+XEXk--~Xl--XE--Xk+l 

X 

= S n ( k : l )  + 2 n ( ; - i ) "  
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The formula for p (n ,2 )  may be incorporated into the formula for p ( n , k )  derived in 
(a) above. 

Lemma 14.1. 

p ( n , k )  : 

2n(2n - 1), k = 0, 

n(3n 2 - 3n + 1), k -- 1, 

( n ) ( n - i )  k e v e n a n d  >~2, lOn k + l  + 2 n  k ' 

( n ) ( k - l l )  8n k + l + 2n , k odd  and  >>.3. 

Theorem 14.2. 

p ( n )  = 10n2 n - n 3 - 5n 2 - l ln .  

The first few terms in the sequence {p(n):  n>~2} are {30, 135,452, 1295 . . . .  }. The 
sequence {p (n ,  1)} = {n(3n 2 - 3n ÷ 1)} is M4933 in [9]. 

15. Hamiltonian paths (hp) 

In this section let_x = x l  • • . xk = Xh .  . . ,Xk. 

Again, let F be a (n, k)-graph which is a Hamiltonian path for Mn, then using the 

same reasoning as in Section 14, there are two cases to consider: 

(a) Both X2 and Xk are complete. Since F is a Hamiltonian path then K of  Fig. 4(a) 

determines the composition 

~=Xl ,X2,1  . . . . .  1 , n - - x 1  - x 2 - k + 3 ,  

k--3 

or otherwise F will contain isolated vertices. Furthermore, k is even and >/4, and at 

least one ofx~ --- 1 or xk = 1, and at least one o f x l  = 1 or x2 = 1, or, again, there will 
be isolated vertices in F .  

(i) I f  Xl = 1 then 

___y= 1,x2, 1 . . . . .  1,n - x 2  - k + 2, 

k--3 

where 1 ~x2 ~< n - k + 1. 

Hence, cf. Section 14, the total number o f  Hamiltonian paths for this case is 
k .  ( n / k )  ~-'~y 2 = 2n(n - k + 1 ). 
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(ii) If X 1 > 1 then xk =x2 = 1, and 

y = n - k + l , 1 , . . . , 1 ,  

k--1 

and the total number of Hamiltonian paths is 2n. 
(b) Both X2 and X/, are complete. Then k is odd and ~> 3, and the relevant compo- 

sition determined by Fig. 4(b) is again 

y =  1,x2,1 . . . . .  1 , n - x 2  - k + 2 ,  

k - 3  

which yields 2n(n - k + 1) Hamiltonian paths. 
Again, the formula for hp(n,2) may be incorporated into the formula for hp(n,k) 

derived in (a) above. 

Lemma 15.1. 

2n, 

hp(n,k)= 2n(n - k + 2), 

2 n ( n -  k + l ) ,  

k=0 ,1 ,  and k = n ,  

k even and 2 <~ k <~ n - 1, 

k odd and 3<~k<~n- 1. 

Theorem 15.2. 

I n  -4- 2n, n even, 

hp(n)= n 3+3n,  n odd. 

The first few terms in the sequence {hp(n): n>~2} are {12,36,72, 140 . . . .  }. 

16. No-leaf edge-subgraphs (nle) 

Call a vertex in a graph a leaf if it has degree 1. A no-leaf edoe-subgraph of Mn 
is an edge-subgraph with no leaves, i.e., each of its vertices has degree 0, 2, or 3. 
Clearly, nle(n,0)=2.  If  E, an (n,k)-graph, is a no-leaf edge-subgraph then its joins 
must be empty or complete; moreover, its empty joins must be non-consecutive, cyclic. 
So the number of such E which come from an arbitrary K of Fig. 3 is ZP(2k). 

Hence, 

nle(n,k)= ~ Z P ( 2 k ) =  ~(2k).  
x 

Theorem 16.1. 

n 
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The first few numbers in the sequence {nle(n): n>~2} are {15,50, 175,625 . . . .  }. 

17. Matchings (m) 

A matchin9, E, of M, is a collection of disjoint edges and isolated vertices. So 
m(n, 0) = ~a(2n). 

Let 6(r) be the number possibilities for a join of E of size r. Then 6 (1 )=  6 (2 )=  1, 
and 6(r)=t$(r - 1) + c$(r - 2) for r>i3. 

By exact analogy with Section 3, the number of matchings which come from K of 
Fig. 3 is I-I~=l 6(x:) 2. This gives us 

x(1 - 2x h-4x 2 - -  2 x  3 "-~-X 4)  
m(n) =LP(2n) + 

[xn] (1 +x) (1  - 3x -+- x2)(1 - 3x - x 2 -~- X3) " 

Theorem 17.1. 

m(n) .~ (3.2143) n + (-0.6751)" + (0.4608)" - ( -  1)". 

The first few numbers in the sequence {m(n): n~>2} are {10,34, 106,344 . . . .  }, see 
Table 1 in Hosoya and Harary [7]. 

Let Hn be an arbitrary cubic bipartite graph on 2n vertices, then, by a similar argu- 
ment to that used at the end of Section 3, the graph H,  contains at most 4" matchings. 
Hence: For odd n, does there exist a family of cubic bipartite graphs, G,, on 2n ver- 
tices, such that, for some no and all odd n>no, the number of matchings of G, is 
greater than (3.2143)"? 

18. One-factors (of) two-factors (tf) 

A one-factor, E, of M, is a collection of n disjoint edges, i.e., E is regular of  degree 
one. For example, see Fig. l(b), let B, be the one-factor containing outside edge 12 
and every second outside edge, and C, the one-factor containing the outside edges not 

in Bn. 
An edge-pair is a pair of opposite outside edges, i.e., the pair ej = { j ( j  + 1 ) , f ( j  + 

1)'} for some j with 1 <~j<<.n- 1, or the pair e, = {nl ' ,n ' l} .  Let us identify [n] with 
the set of edge-pairs, ~fn={ei . . . . .  e,}, in the obvious way. Recall the definition of 
an ncc set of In], so of ~,, and the number of ncc t-sets of In], ~b(n, t), from the 
Preliminaries. 

An edge-pair one-factor is a one-factor in which all outside edges occur in edge- 
pairs. A t-edge-pair one-factor is an edge-pair one-factor which contains t edge-pairs. 

Let F be a t-edge-pair one-factor of M,, then its t edge-pairs form a ncc t-set 
of o#n. Conversely, the edge-pairs corresponding to a ncc t-set of 8,  can be uniquely 
extended to a t-edge-pair one-factor by adding on the diagonals ii' for each 
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vertex i not already covered. Hence, the number of t-edge-pair one-factors of M, 
is ~9(n,t)=n/(n - t)(nTt), where O<<.t <<. Ln/2J. 

Here we have not used our composition technique, however, consider the following: 
Call a k-composition of n ,x=x lx2 . . . xk ,  odd if each xj is odd. By adding 1 to each 
such xj, we can set up a bijection between odd k-compositions of n and k-compositions 
of (n + k)/2; hence, the number of odd k-compositions of n is ((n+kk_)/2-1). NOW, an 
(n, k )-graph, E, can be extended to a unique one-factor if and only if each of its joins 
is odd. Let e(r) denote the number of possibilities for a join of E of size r, then 
e ( r ) = 0  if r is even and e(r)= 1 if r is odd. Also, note that an edge-pair one-factor 
with k diagonals has (n - k)/2 edge-pairs. Hence, 

n k k (  n+k 1) 2n (v_~'~ ( n ~ _ k )  
o f (n ,k )=  Z E H ~(xj)2 : W - : k - 1  n, 

_.x j = l  

as required. It is straightforward to prove that most one-factors of Mn are edge-pair 
one-factors: 

Lemma 18.1. All one-factors of Mn are edge-pair one-factors, except for Bn and C, 
when n is odd. 

Hence, for odd n, o f (n )=  ~n/02/~(n, t ) +  2, where the +2 corresponds to the non- 
edge-pair one-factors Bn and Cn; we do not need the +2 for even n. 

The numbers of(n) are closely related to the Lucas numbers, see the comments in 
the Preliminaries. 

Now, a two-factor of Mn is the complement in M, of a one-factor, and vice versa, 
SO: 

Theorem 18.2. 

of(n) = t f (n )=  ~" 
~9°(n), n even, 

k LP(n) + 2, n odd. 

This formula appears in [7]. The first few terms in the sequence {of(n): n >t2} are 
{3,6,7,13 . . . .  }. 

19. One-factorizations (oF) 

In this section we do not use our composition technique. Our results give us a 
combinatorial interpretation of a sequence which occurs on p. 603 of Guy [5], it appears 
to be the first combinatorial interpretation of this sequence. 

A one-factorization of Mn is a triple of one-factors which partition the edges of Mn. 
For example, see Fig. l(b), let An be the one-factor of Mn consisting of its n diagonals, 
and B~ and C~ be as in Section 18, then {An,Bn, Cn} is a one-factorization of M~. 
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An edge-pair cycle is a cycle in which all outside edges occur in edge-pairs, each 
edge-pair cycle is an even cycle. An edge-pair two-factor is a two-factor in which 
each component is an edge-pair cycle. 

As noted earlier, if we remove a one-factor from 34, we obtain a two-factor, more- 
over: 

Lemma 19.1. Let F be an edge-pair one-factor of  Mn. Then, for t >~ 1, F is a t-edge- 
pair one-factor if  and only if Mn - F  is an edge-pair two-factor with t components. 

Proof. Assume that F is a t-edge-pair one factor where t >~ 1. 
Without loss of generality, let two consecutive edge-pairs o f f  be {c(c+ 1), c/(c+1)/} 

and {d(d + 1),d~(d + 1)'}, see Fig. 5, with obvious notational changes if d - -n .  Then 
c +  1 , c+2  . . . . .  d - 1,d, d t , ( d -  1) 1 . . . . .  ( c+2) ' , ( c  + I f ,  c +  1, shown with an arrowed 
broken line in Fig. 5, is an even edge-pair cycle of length 2 ( d -  c) which lies in 
Mn - F .  Similarly, there is an even edge-pair cycle 'between' any pair of consecutive 
edge-pairs of F,  and there are t such pairs of edge-pairs, and so t such cycles, which 
cover all vertices of Mn. Hence, Mn - F  is a edge-pair two-factor with t components. 

Conversely, i f X  is an edge-pair two-factor with t components, then, clearly, M , - X  
is an edge-pair one-factor. Suppose M, - X  has s ~ t edge-pairs. Then, by above, 
X - - M , -  (Mn - X )  has s components, a contradiction. Hence, M n - X  is a t-edge-pair 
one-factor. [] 

An edge-pair one-factorization of Mn is a one-factorization in which all one-factors 
are edge-pair one-factors. It is straightforward to prove the following, (cf. Lemma 
18.1): 

Lemma 19.2. All one-factorizations of  M, are edge-pair one-factorizations, except 
for {An,Bn, Cn} when n is odd. 

Let the number of edge-pair one-factorizations of Mn be eoF(n). 
Again, let F be a t-edge-pair one-factor where t~> 1. Now, an even cycle has 

2 one-factors, thus Mn - F ,  which contains t even cycles, has 2 t one-factors. 
Let {F, F I, F"} be an edge-pair one-factorization of 34, which contains F. How many 

such one-factorizations are there? Such a one-factorization can be formed by choosing 
F first, then there are 2 t ways in which to choose F', and the remaining edges then 
form F". However, this one-factorization could have been formed by choosing F "  
second and leaving F I. Hence, the total number of edge-pair one-factorizations which 
contain F is ½ • 2 t - - - - -2 / -1 .  

Recall that the number of t-edge-pair one-factors of Mn is ~k(n, t). Hence, for even 
n, we have 3eoF(n)= ~n~2J ~(n,t)2t_l+ 1, where the +1 corresponds to the 0-edge- 
pair one-factor An; we do not need the +1 for odd n. This gives: eoF(2) ----eoF(3)= 1 
and eoF(n)= e o F ( n -  1 )+  2eoF(n-  2) for n~>4. So eoF(n)= ]{2 n-I + (-1)n}. 
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Now oF(n) = eoF(n) if n is even, and oF(n) = eoF(n) + 1 if n is odd via Lemma 
19.2. Hence: 

Theorem 19.3. 

1 n--1 3(2 + 1), n even, 

oF(n)=  l(2n-1 + 2), n odd. 

The first few terms in the sequence {oF(n): n ~>2} are {1,2, 3, 6 . . . .  }. This sequence 
is M0788 in [9], and appears at the bottom of p. 603 in [5]. 

20. Perfect one-factorizations (poF) 

A perfect one-factorization of M, is a one-factorization in which the union of any 
2 one-factors is a Hamiltonian cycle. 
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If n = 2  or i fn  is odd and ~>5 then, via Lemma 19.1, {An,B~,C~} is the only perfect 
one-factorization of M~. If n = 3 there is one more perfect one-factorization, there are 
none for n even and ~>4. 

Theorem 20.1. {1, 
poF(n) = 2, 

0, 

n = 2 or n is odd and >1 5, 

n=3,  

n even and >~4. 

21. Elementary edge-subgraphs (ee) 

An elementary edge-subgraph, E, of Mn is an edge-subgraph in which every com- 
ponent is regular of degree 0, 1, or 2; i.e., every component is an isolated vertex, 
a single edge, or a cycle. Clearly ee(n,0)= £a(2n)+ 1. 

See K of Fig. 3, and let k i> 2. In order to extend K to an elementary edge-subgraph 
we can first form cycles, then add on disjoint edges. Now, from Section 12, cycles 
of Mn can contain either two diagonals, or k diagonals for odd k. 

For any k, our extended K, call it E, may contain cycles with two diagonals. These 
cycles are formed by choosing both joins in an arbitrary join-pair to be complete. 
These join-pairs must be a ncc (sub)set of ~k = {X1X~ . . . .  ,XkX~}, denote this set 
by N. Those joins of E which are incomplete are either empty or a matching. Hence, 
such a join of size r has 6(r) possibilities where a(r) is defined as in Section 17. 
Conversely, any ncc set N C ~rk gives rise to INI cycles by completing the join-pairs 
corresponding to the elements of N; this graph can then be extended to elementary 
edge-subgraphs by adding disjoint, outside edges. Let us identify 5fk with [k] in the 
obvious manner. Hence, the number of elementary edge-subgraphs which come from 

X is }--]Nctkl I-Ij•Na(xJ) 2" 
If k is odd, we may have a cycle with k diagonals. Hem either join X1 or X2 of 

E is complete and then every second join is complete. Again, incomplete joins have 
a(r) possibilities, hence K gives rise to 2 I[~=l 6(xj) elementary edge-subgraphs. 

Theorem 21.1. 

{ ~ ( 2 n ) +  1, } k = 0 ,  

ee(n,k) = } E x  ( E  N C [ k ] _  t. Nnecset 1-[j¢Nf(Xj)2 +~ExI-Ikj=la(XJ)'- kodd,  

~Ex_ I.~E NNC[k]ncc set HJf[Nt~(Xj)2 } ' k even. 

It does not seem possible to compute a concise expression for ee(n). 
The first few terms in the sequence {ee(n): n>~2) are {17,58, 181,602 . . . .  }. 
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22. Strong elementary edge-subgraphs (see) 

A strong elementary edge-subgraph (sometimes called sesquivalent) of M, is an 
elementary edge-subgraph which is strong. An even join of K of Fig. 3 cannot be 
made strong using disjoint edges; an odd join can be made strong in one way. 

The formulas for see(n,k) are as in Section 21 except that see(n,0)=3,  and 6(r) 
must be replaced by e(r) where e ( r )=  0 if r is even, and e ( r )=  1 if r is odd, (e(r) 
as in Section 18). 

Again, there does not seem to be a more precise expression for see(n). 
The first few terms in the sequence {see(n): n~>2} are {6,21,26,81,...}. The se- 

quence {see (n ,n -  1)} = {(n/v/5){((1 + V~)/2) " - 2 -  ( ( 1 -  v/5)/2)"-2}}, appears as 
M2362 in [9], Generalized Lucas Numbers. Finally, the degree of a vertex in an edge- 
subgraph of Mn is 0, 1, 2, or 3. Hence, we may choose any subset of {0, 1,2, 3 } and 
count the subgraphs of Mn whose vertex degrees are equal to this subset. For example, 
in Section 17, we counted matchings which corresponds to the subset {0, 1}; also, by 
taking complements in Mn, we counted the edge-subgraphs corresponding to the subset 
{3 - 0 , 3  - 1} : {2 ,3} .  Barring trivial cases, we have considered all subsets except 
{1,2}, which is our final section. 

23. Strong restricted edge-subgraphs (sre) 

A strong restricted edge-subgraph of Mn is an edge-subgraph in which the degree 
of each vertex is 1 or 2, i.e., every component is a path with at least one edge, or 
a cycle. 

We are unable to use this counting technique to compute the value of sre(n) exactly. 
However, we have the following symmetric relationship, since the class of strong re- 
stricted edge-subgraphs is closed under complements in M,: sre(n,k)=sre(n,n- k). 
We also have: 

Theorem 23.1. For large n, 

(3.2143) n < sre(n) < (6.4188) n. 

The first few terms in the sequence {sre(n): n >~2} are {18, 102,418,2006 . . . .  }, which 
suggests that the value of sre(n) is about (4.6) n. 
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