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Abstract

Consider the hit polynomial of the path P2n embedded in the com-
plete graph K2n. We give a combinatorial interpretation of the n-th
Bessel polynomial in terms of a modification of this hit polynomial,
called the ordered hit polynomial. Also, the first derivative of the n-th
Bessel polynomial is shown to be the ordered hit polynomial of P2n−1

embedded in K2n.
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1 Introduction: Bessel polynomials, and ordered

perfect matchings

The aim of this paper is to give a combinatorial interpretation of Bessel
polynomials and their first derivatives in terms of ordered hit polyno-
mials.

The Bessel polynomials, θn(x), see Grosswald [5] and Carlitz [1], are
given by the generating function

1√
1 − 2v

ex(1−
√

1−2v) =
∞∑

n=o

vn

n!
θn(x), (1)

and the explicit form

θn(x) =

n∑

k=0

θ(n, k)xk =

n∑

k=0

(2n − k)!

k! (n − k)! 2n−k
xk, (2)

where θ(n, k) is the coefficient of xk in θn(x), the n-th Bessel polyno-
mial.

For n ≥ 1 consider K2n, the complete graph on 2n vertices, with
its vertices labelled by the integers {1, . . . , 2n}. Now let G be a simple
graph on m ≤ 2n vertices labelled from {1, . . . ,m}, and with its edges
colored red. Embed G into this labelled K2n in the natural way, and call
the graph so formed K2n|G. Thus every edge in K2n|G is represented
by a pair of integers (r, s), where 1 ≤ r < s ≤ 2n; such an edge is called
an increasing edge. For a red edge only we consider an interchange of
its vertex labels to (s, r); a decreasing edge. Edges are increasing unless
stated otherwise.

A perfect matching of K2n|G is a set of any n disjoint edges which
cover every vertex exactly once. Suppose that such a perfect matching
has exactly i edges in G, i.e., exactly i increasing red edges. Then,
from this perfect matching, we can form 2i ordered perfect matchings
by choosing any of its 2i subsets of increasing red edges, and making
each edge in the complement of this subset into a decreasing edge by
interchanging its vertex labels.

For example see the graph K4|P4 in §6; here P4 denotes the path
with 4 vertices, {r, s} denotes a red edge, and [r, s] a non-red edge. The
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perfect matching {2, 3}, [1, 4] has 1 increasing red edge and gives rise to
the 21 = 2 ordered perfect matchings: {2, 3}, [1, 4] (with 1 increasing
red edge), and {3, 2}, [1, 4] (with 0 increasing red edges).

For k ≥ 0 let o(G, k) be the number of ordered perfect matchings in
K2n|G with exactly k increasing red edges. Now define O(K2n|G,x) =∑

k o(G, k)xk, the ordered hit polynomial of K2n|G.

Our main result is Theorem 3.4: if G = P2n, the path on 2n vertices,
then θn(x) = O(K2n|P2n, x), the ordered hit polynomial of K2n|P2n.
Equivalently, θn(x−1) = H(K2n|P2n, x), the hit polynomial of K2n|P2n.
Also, θ′n(x) = O(K2n|P2n−1, x) and θ′n(x − 1) = H(K2n|P2n−1, x). Fi-
nally we define homogeneous Bessel polynomials, and give a combina-
torial interpretation of these, and give some examples.

Note that the matchings polynomial of the path P2n is known to
be associated with the Chebyshev polynomials of the second kind, see
Heilman and Lieb [6]. For a different combinatorial interpretation of
the Bessel polynomials see Dulucq and Favreau [3], and for a combina-
torial interpretation of general orthogonal polynomials see Viennot [7].
See also Bergeron, Leroux, and Labelle [2].

2 Matchings polynomials, hit polynomials, ordered

hit polynomials

As in §1 let G be a simple graph on m ≤ 2n with its vertices labelled
from {1, . . . ,m} and with its edges colored red. For k ≥ 0 a k-matching
of G is a set of k edges, no two of which have a vertex in common. Let
p(G, k) denote the number of k-matchings of G, with p(G, 0) = 1 for
the empty matching (which contains no edges).

A perfect matching in a graph with an even number of vertices is a
matching which covers every vertex exactly once. We work with K2n,
the complete graph on 2n vertices, labelled by {1, . . . , 2n}, where n ≥ 1.
In K2n a perfect matching is an n-matching, and it is well-known that
the number of perfect matchings, Πn, is given by

Πn =
(2n)!

2n n!
, with Π0 = 1.

Now embed G into this labelled K2n, producing the graph K2n|G.
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Let o(G, k) be the number of ordered perfect matchings of K2n|G with
exactly k increasing red edges.

Lemma 2.1 For 0 ≤ k ≤ n, the number of ordered perfect matchings
of K2n|G with k increasing red edges is

o(G, k) = p(G, k) · Πn−k.

Proof. Pick a k-matching from the red G embedded in K2n. The ver-
tices not covered by this k-matching form a copy of K2n−2k, which has
Πn−k perfect matchings. Thus each k-matching of G can be extended
to Πn−k ordered perfect matchings of K2n|G with exactly k increasing
red edges, by ensuring that whenever an edge of the perfect matching
is red, we make it decreasing by interchanging its vertex labels. By
definition there are p(G, k) k-matchings of G; hence the result by the
multiplication principle.

For 0 ≤ i ≤ n let h(G, i) denote the number of perfect matchings
of K2n|G with exactly i edges in G, i.e., with exactly i increasing red
edges. In order to form an ordered perfect matching with k increas-
ing red edges from a perfect matching with i increasing red edges, we
must have k ≤ i, and each such perfect matching gives rise to

(
i
k

)
such

ordered perfect matchings. Moreover, each ordered perfect matching
with k increasing red edges (and, perhaps, some decreasing red edges)
comes from only one perfect matching, that can be obtained by chang-
ing these decreasing red edges into increasing ones. We combine these
observations, the inverse relation for binomial sums, and the above
lemma in the following proposition.

Proposition 2.2 We have the inverse relations

o(G, k) =
n∑

i=k

(
i

k

)
h(G, i), h(G, k) =

n∑

i=0

(
i

k

)
(−1)k+ip(G, i)Πn−i.

Next, define the generating polynomials

P(G,x) =
n∑

k=0

p(G, k)xk, H(K2n|G,x) =
n∑

i=0

h(G, i)xi,
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and O(K2n|G,x) =
n∑

k=0

o(G, k)xk.

P(G,x) is the matchings polynomial of G and H(K2n|G,x) is the hit
polynomial of K2n|G. Lastly, O(K2n|G,x) is the ordered hit polynomial
of K2n|G, here the coefficient of xk is the number of ordered perfect
matchings of K2n|G with exactly k increasing red edges.

Using Lemma 2.1 we have

O(K2n|G,x) =
n∑

k=0

p(G, k)Πn−k xk, (3)

then Proposition 2.2 gives

Lemma 2.3 The hit polynomial satisfies

H(K2n|G,x) =
n∑

i=0

(x− 1)ip(G, i)Πn−i = O(K2n|G,x − 1).

See Godsil [4], p. 10, Lemma 4.1, for a similar derivation of the hit
polynomial of Kn,n, the complete bipartite graph on 2n vertices.

Remark. The previous results and comments tell us that: for k = 0,
and any G with ≤ 2n vertices, we have

p(G, 0) = 1, o(G, 0) = Πn, and h(G, 0) =
n∑

i=0

(−1)i o(G, i), (4)

and, for k = n, we have

p(G,n) = o(G,n) = h(G,n), (5)

the number of n-matchings in G; if G has < 2n vertices, then p(G,n) =
0.

Remark. Lemma 2.1 may be recast as an integral transform in terms
of the moments of the χ2 distribution. Recall that a χ2 random variable
with one degree of freedom, the square of a standard Gaussian, has the
density

x− 1
2 e−x/2/

√
2π
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for 0 < x < ∞. If Y is distributed as χ2 with one degree of freedom,
then the moments are given by

〈Y n〉 = 2n

(
1

2

)

n

= Πn

where 〈 · 〉 denotes expected value (integration with respect to Y ).
Thus, Lemma 2.1 yields

Proposition 2.4 In terms of P(G,x), we have

O(K2n|G,x) = 〈Y nP(G,x/Y )〉,

where Y has a χ2 distribution with one degree of freedom.

Cf. Problem [10], p. 16, of [4].

3 The graph K2n|P2n, Chebyshev and Bessel poly-

nomials

From now on our graph G will be a path. For m ≥ 2 let Pm denote
the path on m vertices with m − 1 edges. Our focus will be on the
graphs K2n|P2n and, in the following section, K2n|P2n−1. In this sec-
tion we count o(P2n, k) and so determine the generating polynomials
O(K2n|P2n, x) and H(K2n|P2n, x) in terms of the Bessel polynomials.

Recall that p(Pm, k) is the number of k-matchings in Pm; we prove
the following formula for p(Pm, k), cf. Godsil [4], p. 1.

Lemma 3.1 For m ≥ 2 we have

p(Pm, k) =

(
m − k

k

)
.

Proof. View Pm as running from left to right. Given a k-matching,
contract each of its edges to their left-hand vertex. We obtain a path
on m − k vertices, with k distinguished vertices. Conversely, given a
path on m − k vertices with k distinguished vertices, we may expand
each of these to an edge, producing a k-matching of the Pm so formed.
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Let P(Pm, x) be the matchings polynomial of Pm, then

P(Pm, x) =

bm/2c∑

k=0

p(Pm, k)xk =

bm/2c∑

k=0

(
m− k

k

)
xk. (6)

The Chebyshev polynomials of the second kind are defined by

Un(x) =

bn/2c∑

k=0

(
n − k

k

)
(−1)k (2x)n−2k.

Thus we note (see Heilman and Lieb [6])

Corollary 3.2 The matchings polynomial of the path P2n is given by,

P(P2n, x) = (−1)nxn U2n

(
i

2
√

x

)
,

in terms of the Chebyshev polynomials of the second kind (here i =√
−1).

Now for the Bessel polynomials,

Lemma 3.3 The coefficient of xk in θn(x) is given by

θ(n, k) = o(P2n, k).

Proof. From (2) and Lemma 2.1, we have

θ(n, k) =
(2n − k)!

k!(2n − 2k)!
· (2n − 2k)!

2n−k(n − k)!
= p(P2n, k) · Πn−k = o(P2n, k).

This gives our main result:
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Theorem 3.4 For n ≥ 1 the n-th Bessel polynomial equals the ordered
hit polynomial of K2n|P2n, i.e.,

θn(x) = O(K2n|P2n, x).

Proof. From Lemma 3.3 we see that θ(n, k) = o(P2n, k), the coeffi-
cient of xk in O(K2n|P2n, x). This is true for all k with 0 ≤ k ≤ n,
hence the result.

Furthermore, Lemma 2.3 implies

Theorem 3.5 For n ≥ 1 the n-th Bessel polynomial is related to the
hit polynomial of K2n|P2n by

θn(x − 1) = H(K2n|P2n, x).

Remark. Another connection with the χ2 distribution is evident here,

as the moment generating function for the χ2 distribution is 1√
1 − 2v

.

I.e., with x = 0 in equation (1), we recover the values θn(0) = Πn =
o(P2n, 0), the number of ordered perfect matchings in K2n|P2n with no
increasing red edges (put G = P2n in (4)).

4 The graph K2n|P2n−1 and the first derivatives of
the Bessel polynomials

Now we consider K2n|P2n−1, and so determine the generating polynomi-
als O(K2n|P2n−1, x) and H(K2n|P2n−1, x) in terms of the first derivative
of the n-th Bessel polynomial.

Let θ′(n, k) be the coefficient of xk in θ′n(x).

Lemma 4.1 The coefficient of xk in θ′n(x) is given by

θ′(n, k) = o(P2n−1, k).
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Proof. Using derivatives, for 0 ≤ k < n, we have

θ′(n, k) = (k + 1) θ(n, k + 1)

=
(2n − 1 − k)!

k! (n − k − 1)! 2n−k−1
· 2

2
· n − k

n − k
· (2n − 2k − 1)!

(2n − 1 − 2k)!

=
(2n − 1 − k)!

k! (2n − 1 − 2k)!
· (2n − 2k)!

(n − k)! 2n−k

= p(P2n−1, k) · Πn−k = o(P2n−1, k).

Now o(P2n−1, k) is the coefficient of xk in O(K2n|P2n−1, x), so the above
lemma yields (cf. Theorem 3.4)

Theorem 4.2 For n ≥ 1 the derivative of the n-th Bessel polynomial
equals the ordered hit polynomial of K2n|P2n−1, i.e.,

θ′n(x) = O(K2n|P2n−1, x) = O′(K2n|P2n, x).

For the hit polynomial H(K2n|P2n−1, x) we have

Theorem 4.3 For n ≥ 1 the derivative of the n-th Bessel polynomial
is related to the hit polynomial of K2n|P2n−1 by

θ′n(x − 1) = H(K2n|P2n−1, x) = H′(K2n|P2n, x).

Remark. Some comments on the first, and the last two, term(s) of
θn(x).

We see that the coefficient of xn in θn(x), o(P2n, n), is 1. From
equation (5) we have o(P2n, n) = p(P2n, n), the number of n-matchings
of P2n, which is 1. (Similarly, the coefficient of xn in θ′n(x) is 0 and
o(P2n−1, n) = p(P2n−1, n), the number of n-matchings of P2n−1, is 0.)

The coefficients of the last two terms of θn(x) are both equal to
Πn. We can explain this: from equation (4) we have o(P2n, 0) =
o(P2n−1, 0) = Πn. Also, as O(K2n|P2n−1, x) = O′(K2n|P2n, x), then
o(P2n−1, 0) = o(P2n, 1); and so o(P2n, 1) = o(P2n, 0) = Πn as required.
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5 Homogeneous Bessel polynomials and completely

ordered hit polynomials

For n ≥ 1 let hn(x) = θn(x−1) = H(K2n|P2n, x) be the hit polynomial
of K2n|P2n. Define a homogeneous version of hn(x), call it Hn(X,Z),

Hn(X,Z) =
n∑

i=0

h(P2n, i)X iZn−i = Znhn

(
X

Z

)
,

with H0(X,Z) = 1.

It is straightforward to show that, for n ≥ 0, Hn(X,Z) is given in
terms of the n-th Bessel polynomial by

Hn(X,Z) = Znθn

(
X − Z

Z

)
. (7)

The coefficient of X iZn−i in Hn(X,Z) is the number of perfect match-
ings in K2n|P2n with exactly i red edges and n − i non-red edges.

A completely ordered perfect matching of K2n|P2n is obtained from
a perfect matching of K2n|P2n by choosing a subset of its red edges,
and also a subset of its non-red edges, to be increasing. Each perfect
matching gives rise to 2n completely ordered perfect matchings.

Considering the red edges, a completely ordered perfect matching
with i red edges can have a increasing red edges and b = i−a decreasing
red edges, for some a, with 0 ≤ a ≤ i. The a increasing red edges can
be chosen from the i red edges in

(
i
a

)
ways, which is the coefficient

of xayb in (x + y)i. Hence, the number of completely ordered perfect
matchings with a increasing red edges, b decreasing red edges, and n−i
non-red edges is the coefficient of xaybZn−i in Hn(x + y, Z). Similarly
for the non-red edges.

Let S(K2n|P2n;x, y, z, w) be the generating function for completely
ordered perfect matchings of K2n|P2n, the completely ordered hit poly-
nomial of K2n|P2n. So the coefficient of xaybzcwd in S(K2n|P2n;x, y, z, w)
is the number of completely ordered perfect matchings of K2n|P2n with
a increasing red edges, b decreasing red edges, c increasing non-red
edges, and d decreasing non-red edges.

Then, by the previous comments and equation (7),

10



Theorem 5.1 For n ≥ 1 the completely ordered hit polynomial of
K2n|P2n is given by

S(K2n|P2n;x, y, z, w) = Hn(x + y, z + w)

= (z + w)nθn

(
(x + y) − (z + w)

z + w

)
.

Now, as before, consider the graph K2n|P2n−1, where the derivative
of the n-th Bessel polynomial comes into play.

Let S(K2n|P2n−1;x, y, z, w) be the generating function for completely
ordered perfect matchings of K2n|P2n−1. Then, by an argument similar
to the above, we have our final theorem.

Theorem 5.2 For n ≥ 1 the completely ordered hit polynomial of
K2n|P2n−1 is given by

S(K2n|P2n−1;x, y, z, w) = (z + w)nθ′n

(
(x + y)− (z + w)

z + w

)
.

In later work we investigate a combinatorial interpretation of the
higher derivatives of the Bessel polynomials, this requires different
graphs than K2n and different techniques than the counting of Lemma 2.1.

6 Examples

The first few Bessel polynomials are:
θ0 = 1, θ1 = x + 1, θ2 = x2 + 3x + 3,
θ3 = x3 + 6x2 + 15x + 15, θ4 = x4 + 10x3 + 45x2 + 105x + 105,

and the first few Chebyshev polynomials of the second kind are:
U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1,
U3(x) = 8x3 − 4x, U4(x) = 16x4 − 12x2 + 1.
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Consider the path P4

t t t t1 2 3 4

From Corollary 3.2 the matchings polynomial of P4 is given by

P(P4, x) = (−1)2x2 U4

(
i

2
√

x

)
= 1 + 3x + x2.

The 1 corresponds to the empty matching, the 3(x1) to the 3 1-matchings,
i.e., the 3 edges, and the 1(x2) to the 1 2-matching consisting of the
first and last edges. From (6), we also have

P(P4, x) =

2∑

k=0

(
4 − k

k

)
xk = 1 + 3x + x2,

so, from (3), we have

O(K4|P4, x) = Π2 + 3Π1x + Π0x
2 = 3 + 3x + x2 = θ2(x).

Similarly, the matchings polynomial of P3 is P(P3, x) = 1 + 2x, which
gives

O(K4|P3, x) = Π2 + 2Π1x = 3 + 2x = θ′2(x),

see below for examples.
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In the following examples {r, s} denotes a red edge (thick lines in
the figures), and [r, s] a non-red edge (indicated by thin lines).

v v

v v�
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@
@
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1

3

4

v v

v v�
�

�
�

�
�@

@
@

@
@
@

2

1

3

4

K4|P4 K4|P3

θ2(x− 1) = H(K4|P4, x) θ′2(x − 1) = H(K4|P3, x)
= x2 + x + 1. = 2x + 1.

{1, 2}, {3, 4} x2 {1, 2}, [3, 4] x
{2, 3}, [1, 4] x {2, 3}, [1, 4] x
[1, 3], [2, 4] 1 [1, 3], [2, 4] 1

perfect matchings perfect matchings

θ2(x) = O(K4|P4, x) θ′2(x) = O(K4|P3, x)
= x2 + 3x + 3. = 2x + 3.

{1, 2}, {3, 4} x2 {1, 2}, [3, 4] x
{1, 2}, {4, 3} x {2, 1}, [3, 4] 1
{2, 1}, {3, 4} x {2, 3}, [1, 4] x
{2, 1}, {4, 3} 1 {3, 2}, [1, 4] 1
{2, 3}, [1, 4] x [1, 3], [2, 4] 1
{3, 2}, [1, 4] 1
[1, 3], [2, 4] 1

ordered perfect matchings ordered perfect matchings
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S(K4|P4;x, y, z, w) S(K4|P3;x, y, z, w)
= x2 + 2xy + xz = 2xz + 2xw + 2yz
+xw + y2 + yz + yw +2yw + z2 + 2zw + w2.
+z2 + 2zw + w2.

{1, 2}, {3, 4} x2 {1, 2}, [3, 4] xz
{1, 2}, {4, 3} xy {1, 2}, [4, 3] xw
{2, 1}, {3, 4} xy {2, 1}, [3, 4] yz
{2, 1}, {4, 3} y2 {2, 1}, [4, 3] yw
{2, 3}, [1, 4] xz {2, 3}, [1, 4] xz
{2, 3}, [4, 1] xw {2, 3}, [4, 1] xw
{3, 2}, [1, 4] yz {3, 2}, [1, 4] yz
{3, 2}, [4, 1] yw {3, 2}, [4, 1] yw
[1, 3], [2, 4] z2 [1, 3], [2, 4] z2

[1, 3], [4, 2] zw [1, 3], [4, 2] zw
[3, 1], [2, 4] zw [3, 1], [2, 4] zw
[3, 1], [4, 2] w2 [3, 1], [4, 2] w2

completely ordered completely ordered
perfect matchings perfect matchings
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polynômes de Bessel, Collection: Seminaire Lotharingien de Combi-
natoire Salzburg, 1990 Publication de l’Institut de Recherche Math-
ematique Avancée, 462, 83–100. English translation: A Combina-
torial Model for Bessel Polynomials, in Orthogonal Polynomials and
their Applications, C. Brezinski, L. Gori, and R. Ronveaux (eds),
J. C. Baltzer AG, Scientific Publishing Co, 1991, 243–249.

[4] C.D. Godsil, Algebraic Combinatorics, New York, Chapman & Hall,
1993.

14



[5] E. Grosswald, Bessel polynomials, Springer Lecture Notes in Math-
ematics, 698, 1978.

[6] O.J. Heilman and E.H. Lieb, Theory of Monomer-Dimer Systems,
Commun. Math. Physics, 25, (1972), 190–232.

[7] G. Viennot, A combinatorial theory for general orthogonal polyno-
mials with extensions and applications, Proceedings of the Laguerre
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