Addition Rule of Probability (for A or B)

If *A* and *B* are **mutually exclusive** events, then P(A or B) = P(A) + P(B).

If A and B are any two events, then

P(A or B) = P(A) + P(B) - P(A and B).

Example: Probability Involving "Or"

When a single card is drawn from a standard 52-card deck, what is the probability that it will be a king or a diamond?

Solution

P(king or diamond) = P(K) + P(D) - P(K and D)

$$=\frac{4}{52} + \frac{13}{52} - \frac{1}{52}$$
$$=\frac{16}{52} = \frac{4}{13}.$$

Conditional Probability

Sometimes the probability of an event must be computed using the knowledge that some other event has happened.

The probability of event B, computed on the assumption that event A has happened, is called the **conditional probability of B, given A, and is denoted P(B \mid A).**

Jeff draws two balls from the jar *without* replacement. Given that he draws a red ball first, find the probability that he draws a blue ball second.

5 red and 3 blue $R_1 = [\text{first ball is red}]$ $B_2 = [\text{second ball is blue}]$

If Jeff draws a red ball first, there are now 4 red and 3 blue balls. 3

$$P(B_2 \mid R_1) = \frac{3}{7}$$

Multiplication Rule of Probability

If A and B are any two events, then

 $P(A \text{ and } B) = P(A) \cdot P(B \mid A).$

Two events *A* and *B* are called **independent events** if the occurrence of one of them has no effect on the probability of the other one. If *A* and *B* are independent, then

 $P(A \text{ and } B) = P(A) \cdot P(B).$

Jeff draws two balls from the jar *without* replacement. Find the probability that he draws a red ball and then a blue ball, in that order.

5 red and 3 blue

Using the multiplication rule:

 $P(R_1 \text{ and } B_2) = P(R_1) \cdot P(B_2 \mid R_1) = \frac{5}{8} \cdot \frac{3}{7} = \frac{15}{56}$

Jeff draws two balls from the jar *without* replacement. We summarize all of the cases with a tree:

© 2012 Pearson Education, Inc.

Jeff draws two balls from the jar with replacement:

© 2012 Pearson Education, Inc.

Slide 11-3-8

Coin Tossing Model

Experiment: Toss a coin three times in succession.

 $S = \{\text{hhh, hht, hth, htt, thh, tht, tth}, \text{ttt} \}$

Let *x* be the number of heads. We say *x* is a **random variable**. The **distribution** of *x* is given by:

X	0	1	2	3
P(x)	1/8	3/8	3/8	1/8

$$\frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = \frac{8}{8} = 1$$

For example, the probability of getting fewer than two heads is P(0) + P(1) = 1/8 + 3/8 = 1/2.

Expected Value

If a random variable x can have any of the values $x_1, x_2, x_3, ..., x_n$, and the corresponding probabilities of these values occurring are $P(x_1), P(x_2), P(x_3), ..., P(x_n)$, then the **expected value of** x is given by

$$E(x) = x_1 \cdot P(x_1) + x_2 \cdot P(x_2) + \dots + x_n \cdot P(x_n).$$

Example: Finding Expected Value

Find the expected number of heads in three coin tosses.

 $S = \{\text{hhh, hht, hth, htt, thh, tht, tth}, \text{ttt} \}.$

The probability distribution is below.

X	0	1	2	3
P(x)	1/8	3/8	3/8	1/8
$x \cdot P(x)$	0	3/8	6/8	3/8

$$E(x) = 0 + \frac{3}{8} + \frac{6}{8} + \frac{3}{8} = \frac{12}{8} = 1.5$$

Example: Finding Expected Winnings

A player pays \$3 to play the following game: He rolls a die and receives \$7 if he tosses a 6 and \$1 for anything else. Find the player's expected net winnings for the game.

Example: Finding Expected Winnings

Solution

The information for the game is displayed below.

Die Outcome	Payoff	Net	P(x)	$x \cdot P(x)$
1, 2, 3, 4, or 5	\$1	-\$2	5/6	-\$10/6
6	\$7	\$4	1/6	\$4/6

Expected value: $E(x) = -\frac{6}{6} = -\frac{1.00}{2}$