Announcements

- The second hour-exam will be held on Friday, July 12.
- I have extended the due dates on the Practice Quizzes in MyLabsPlus.
- Homework from Chapter 8 needs to be finished right away.

Compound Interest (Exponential Growth)

A = accumulated amount (future value)

P = principal amount (present value)

r =nominal annual interest rate

t = number of years

n = number of compounding periods per year

i = r/n = interest rate per compounding period

$$A = P(1+i)^{nt} = P\left(1+\frac{r}{n}\right)^{nt}$$

Example

If you deposit \$2000 at 4% compounded quarterly, what is the balance after 2 years?

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

$$\$2000 \left(1 + \frac{0.04}{4} \right)^{4 \times 2} = \$2000 \times 1.01^{8} = \$2000 \times 1.082857$$

$$= \$2165.71$$

Note: the amount accrued using 4% simple interest is A = P(1 + rt): $$2000(1 + 2 \times 0.04) = 2160 .

Example: frequency of compounding

Suppose that you have a principal of P = \$1000 invested at 10% nominal interest per year. Determine the amount in the account after 10 years with the compounding period:

- a) Annual compounding.
- b) Quarterly compounding.

$$A = P(1+i)^{nt}$$

- c) Monthly compounding.
- a) The annual rate of 10% gives i = 0.10. After 10 years, the account has $$1000(1 + 0.10)^{10} = $1000(1.10)^{10} = 2593.74 .
- b) The quarterly rate is i = 0.10/4 = 0.025. After 10 years (40 quarters), the account has $$1000(1.025)^{40} = 2685.06 .
- c) The monthly rate is i = 0.10/12 = 0.00833333. After 10 years (120 months) the account has $$1000(1.00833333)^{120} = 2707.04 .

No matter how often we compound, the maximum is \$2718.28!

Continuous Compounding

Payment of interest at the upper limit of what can be obtained by compounding more and more frequently is called continuous compounding. For a principal P deposited in an account at a nominal annual rate r, compounded continuously, the balance after t years is $A = Pe^{rt}$

where e is a special number, $e \approx 2.71828$.

Example: Suppose P=\$1000 is invested at 10% nominal interest per year. Determine the amount in the account after 10 years compounding continuously. Here r = 0.10 and t = 10 so

$$A = 1000 \times e^{0.1 \times 10} = 1000 \times e^{1} \approx 2718.28$$

Example: Certificate of Deposit

Suppose that you will need \$15,000 to pay for a year of college for your child 18 years in the future, and you can buy a certificate of deposit whose interest rate of 10% compounded quarterly is guaranteed for the period. How much do you need to deposit?

$$A = P(1+i)^{nt}$$

In this case, A = \$15,000, i = 0.10/4 = 0.025, and nt = 72.

$$$15000 = P(1+0.025)^{72} \implies $15000 = P \times 5.91723$$

$$P = \$15000/5.91723 = \$2534.94$$

Answer: you need to make an initial deposit \$2534.94.

Effective Rate

The **effective rate** is the actual percentage rate of increase for a length of time, taking into account compounding.

When interest is compounded n times at a rate of i per period, effective rate = $(1 + i)^n - 1$.

When the time period is one year the effective rate is called:

The annual percentage yield (APY) or effective annual rate (EAR) is the actual percentage rate of increase over a year, taking into account compounding.

$$APY = \left(1 + \frac{r}{n}\right)^n - 1$$

Example

What is the APY for 5.3% compounded quarterly?

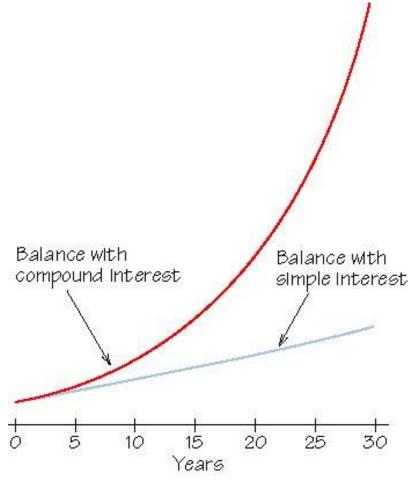
$$\mathbf{APY} = \left(1 + \frac{r}{n}\right)^n - 1$$

$$APY = \left(1 + \frac{0.053}{4}\right)^4 - 1 = 0.05406 \approx 5.4\%$$

Interest Models

```
A = accumulated (total) amount
P = \text{principal (beginning) amount}
r = annual rate of interest (as decimal)
t = number of years of investment
Simple Interest: A = P + Prt = P(1 + rt)
Compounding n times per year:
  i = r/n = interest rate per compounding period
  nt = number of compounding periods
Compound Interest: A = P(1 + i)^{nt}
Continuous Compounding: A = Pe^{rt}
```

Linear vs. Exponential Growth



exponential growth: increases by constant ratio each year

linear growth: increases by fixed amount each year

Exponential Growth

The growth of an investment through compound interest is an example of **exponential growth**. Quantities that show exponential growth increase by the same proportion over the same period of time.

Problem: How long does it take for an investment to double if the annual rate is r?

Rule of 72: If the annual interest rate is r, then the time it takes to double is about 72/(100r) years.

Question: How long does it take for your investment to double at 8% interest, compounded quarterly?

Answer: r = 0.08 so it takes about 72/8 = 9 years.

Savings Plan (annuity)

Example: An individual saves \$100 per month, deposited on the last day of the month. The account earns 6% per year, compounded monthly. How much is accumulated in one year?

Savings Plan (continued)

\$100 deposit at end of	Dollars accumulated at end of year:
1st month	$100(1+0.005)^{11} = 100 \times 1.005^{11}$
2 nd month	$100(1+0.005)^{10} = 100 \times 1.005^{10}$
3 rd month	$100(1+0.005)^9 = 100 \times 1.005^9$
• • •	
11 th month	$100(1+0.005)^1 = 100 \times 1.005^1$
12 th month	$100(1+0.005)^0 = 100 \times 1$

Total for year =
$$$100(1 + 1.005 + 1.005^2 + \cdots + 1.005^{11})$$

 $\approx $100 \times 12.335562 \approx 1233.56

Future value of an annuity

A = accumulated (future) value d = uniform deposit per compounding period i = r/n = interest rate per compounding period nt = number of compounding periods

$$A = d\left[1 + (1+i) + (1+i)^{2} + (1+i)^{3} + \dots + (1+i)^{nt-1}\right]$$

Use the formula for the sum of a geometric series to give:

$$A = d \left[\frac{(1+i)^{nt} - 1}{i} \right]$$

Annuity Example

An individual saves \$100 per month, deposited directly into her credit union account on payday, the last day of the month. The account earns 6% per year, compounded monthly. How much will she have at the end of 5 years, assuming that the credit union continuous to pay the same interest rate?

$$A = d \left[\frac{(1+i)^{nt} - 1}{i} \right]$$

$$d = $100$$

$$i = 0.06/12 = 0.005$$

$$nt = 12 \times 5 = 60$$

$$d = $100$$

 $i = 0.06/12 = 0.005$
 $nt = 12 \times 5 = 60$

Answer:
$$A = \$100 \left[\frac{(1+0.005)^{60}-1}{0.005} \right] = \$6977.00$$

Example

Suppose that a couple begins saving a regular amount of *d* per month after their child is born and want to have \$100,000 available for college when the child turns 18. *How much do they have to save each month*, if their account earns 6.5% interest per year, compounded monthly?

Solution: The monthly rate is $0.065/12 \approx 0.0054166667$. A = \$100,000, $i \approx 0.0054166667$, and $nt = 12 \times 18 = 216$.

$$$100,000 = d \left[\frac{(1+i)^{nt} - 1}{i} \right] = d \left[\frac{(1.0054166667)^{216} - 1}{0.0054166667} \right]$$

$$\$100,000 = d(408.3389)$$

$$d = \frac{\$100,000}{408.3389} = \$244.89$$