- 1. Let R be a PID, and S a subset closed under multiplication. Show that $S^{-1}R$ is a PID.
- 2. Prove the Chinese Remainder Theorem: Let A_1, \ldots, A_n be ideals in a ring R such that $R^2 + A_i = R$ for all i and $A_i + A_j = R$ for all $i \neq j$. If $b_1, \ldots, b_n \in R$, then there is $b \in R$ such that $b \equiv b_i \pmod{A_i}$, and b is unique up to congruence modulo $\bigcap A_i$.
- 3. Let R be the subring $\{a + b\sqrt{10} | a, b \in \mathbb{Z}\}$ of the field of real numbers.
 - (a) Show that the map $N: R \to \mathbb{Z}$ given by $a + b\sqrt{10} \mapsto (a + \sqrt{10})(a \sqrt{10})$ is a multiplicative homomorphism with N(u) = 0 if and only if u = 0.
 - (b) Show that u is a unit in R if and only if N(U) is a unit in \mathbb{Z} .
 - (c) Show that $2, 3, 4 + \sqrt{10}$, and $4 \sqrt{10}$ are irreducible but not prime in R.