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Abstract:  The Generalized Constraint Language (GCL) , introduced by Zadeh, serves as a basis

for  computing  with  words  (CW).  It  provides  an  agenda  to  express  the  imprecise  and  fuzzy

information embedded in natural language and allows reasoning with perceptions.  Despite its

fundamental role, the definition of  GCL has remained informal since its introduction by Zadeh

(Zadeh 2004, 2005), and  to our knowledge, no attempt has been made by CW community to

formulate  a rigorous  theoretical  framework for GCL .    Such formalization is  necessary  for

further theoretical and practical advancement of CW for two important reasons: first, it provides

the underlying infrastructure for the development of new inference rules based on sound theories.

Second, it determines the scope of the language as well as its set of well-formed formula and

hence  facilitates  the  translation  of  natural  language expressions  into  GCL.  This  paper  is  an

attempt  to  step  in  this  direction  by  providing  formal  recursive  syntax  together  with  a

compositional  semantics  for  GCL.  Furthermore,  the  soundness  of  Zadeh’s  inference  rules  is

proved in the proposed formal language.
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1. Introduction

After Zadeh’s seminal paper 1  which introduced the machinery of computing with 

words, there have been many researchers that tried to develop the CW framework in 

theoretical or  practical directions. The articles published reflect very different points 

of view and research directions regarding CW. A recent discussion on what CW 

means to the different pioneer researchers in the area has been published in 2.  

Generally, the current literature of CW can be classified as follows: 
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 The articles that focus on practical aspects of CW: These include the works by

Kacprzyk and  Zadrozny 3 which studied the application of CW in fuzzy 

database querying and  linguistic data summarization, or the study of CW in 

decision making which was promoted by Herrera and his collaborators 6 .

 The articles that deal with the linguistic aspects of CW: These articles 7 

studied the relation of CW to cognitive sciences, computational linguistics, and

ontology. 

 The articles that focus on developing reasoning methods for CW: these articles

have tried to implement an inference engine for CW for systematic application 

of deduction rules to a linguistic knowledge base 11

 The articles that capture underlying uncertainty of the words: These articles

14  mostly used interval type II fuzzy sets to model the uncertainty embedded 

in the membership function of words.

 The articles that propose alternative approaches to computing with words. 

The output of the inference engine in CW is in terms of a fuzzy subset over the

universe of discourse of the output variable. For some applications, where the 

output is in natural language, the fuzzy subset needs to be retranslated back to 

words and approximated within the domain of granule values of the original 

variable 18. The main challenge faced here is the loss of information caused by

this approximation. There have been many articles in the literature that focused

on minimizing such loss (19). But there have also been a few articles that have 

focused on developing alternative representation and/or reasoning approaches 

for CW to eliminate such loss 25 .

 The articles that develop a formal model of computation for CW: These 

articles 30 interpreted the word “computing” in CW as a formal computational 

model rather than a “reasoning” framework. They extended the classical 

methods of computation, such as: finite state and push-down automata, Turing 

machines, and formal grammars, to accept “words” as fuzzy subsets over the 

input alphabet hence implementing the computation with words.

Despite the intensive research in the area, the ultimate goal of building a CW 

computational engine has thus far proven to be elusive.  It is the view of the present 

authors that one important reason for this difficulty is that CW lacks a rigorous 

theoretical foundation, and that without such a foundation, further advancements in 
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the field will necessarily be weak and lack cohesion.   This paper presents a roadmap 

to achieve such a foundation for CW. The first step in this direction is to develop a 

formal language for generalized constraints-- that is, to establish a formal syntax that 

determines a set of well-formed formula, together with a compositional semantics, 

which will determine the meaning of a complex sentence from its constituents. 

The advantage of such formalization is twofold: First, it facilitates automated or semi-

automated translation of natural language expressions into GCL. Without a firm 

definition of the latter it is not possible to assess the representational capability of  

GCL --- that is, to determine what can or cannot be represented in GCL and whether a 

translated proposition is equivalent in meaning to the original one. It must be 

emphasized, however, that an inclusive translation from natural language to GCL is 

not feasible. The laws of the syntax and semantics of natural language are much more 

complicated to be grasped by GCL. Natural language statements are context-

dependent and contain non-truth functional connectives (Francis 2006) which cannot 

be transformed into GCL. As a result, the proper goal in this area is to translate a 

controlled form of natural language 33 with a restricted grammar and semantics.  

Second, formalization of GCL leads to the development of new sound deduction rules.

In 34 Zadeh stresses that the current set of deduction rules are not complete and lists 

instances of the rules that need to be added to the system. Once a formal 

compositional semantics is defined for GCL such extensions are possible. One 

example is given in the penultimate section of the present paper. 

The rest of the article is organized as follows. The next section provides some 

introductory remarks on GCL, Zadeh’s test score semantics and the structure of 

graded values. The following section presents our formal GCL language. In the fourth 

section, we show that Zadeh’s inference rules are sound in the proposed language, and

point out the potential that a formal GCL creates for further development of sound 

inference rules.

2. Preliminaries

Our point of departure for defining a formal GCL is to take Zadeh’s informal 

description of the generalized constraints and the test score semantics and try to 

formalize them.  Before proceeding, we also need to describe the structure of the truth 
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values that we will use. This section reviews GCL and test score semantics and 

describes the structures of the truth values used in many-valued logics. 

2.1 Generalized Constrained Language

Computing with Words (CW) introduces an emerging paradigm shift in information 

representation and processing and aims at utilizing the tolerance of uncertainty in 

words to facilitate complex reasoning and human-like decisions [35] . The roots of 

CW were formed in 1965, when Zadeh proposed the notion of fuzzy sets to model the 

meaning of inexact words in natural language. The idea then was further extended 

throughout the years by development in various fuzzy domains such as: fuzzy logic, 

linguistic variables, fuzzy relations, fuzzy arithmetic, fuzzy quantifiers, and fuzzy 

probability. 

The phrase “computing with words” was first coined by Zadeh [1]:

“A computational system in which the objects of computations are words and 

propositions drawn from natural language. It is inspired by the human remarkable 

capability to perform a wide variety of physical and mental tasks without any 

measurements and any computations.”

The main feature distinguishing CW from other logical systems such as propositional 

or predicate logic is its ability to model and perform computation on the imprecise 

words used in natural language. Instead of representing the proposition: “gas is 

expensive” as “expensive(gas)” in predicate logic and giving it a truth value of either 

0 or 1, CW models the meaning of expensive and represents it as a fuzzy set over the 

universe of discourse of the values associated with the price of gas. Furthermore, the 

fuzzy-based modeling of CW allows expressing a rich set of quantifiers such as 

“most”, “few”, “many”, “several”, and so forth, while predicate logic fails to do so, 

hence it makes advancement towards reasoning with natural language expressions. 

The core of CW is to represent the meaning of a proposition in the form of a 

generalized constraint. The idea is that a majority of the propositions and phrases used

in natural language can be viewed as imposing a constraint on the values of some 

linguistic variables such as: time, price, taste, age, relation, size, and appearance. For 

example the sentence: “most Indian foods are spicy” constrains the two variables: (1) 
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the taste of Indian food, and (2) the portion of the Indian foods that are spicy.  In 

general a GC is in form of:

X isr R

Where X is a linguistic (or constrained) variable whose values are constrained by the 

linguistic (granule) value R. A linguistic variable can take various forms: it can be a 

relation (such as: (X,Y) ), a crisp function of another variable ( such as: f(Y) ), or it 

can be another GC.  

The small r shows the semantic modality of the constraint, that is: how X is related to 

R. various modalities are characterized by Zadeh, among them are: 

 possibility (r : blank):  where R denotes the possibility distribution of X 

(Dubois and Prade 1988), e.g., “X is large.”.

 verity (r: “v”): where R denotes the truth distribution of  X (Yager 2000), e.g.,

“X is large isv very true”.

 identity (r: “=”): X and R are identical variables.

 fuzzy graph (r:  “isfg”):  R is a fuzzy estimation of a function. This modality 

corresponds to a collection of fuzzy if then rules that share the same variables 

in their premises and consequences.

 probability (r: “p”), Where R is the fuzzy probability distribution of X 

(Bugajski 1996), e.g., “(x is large) isp likely”.

Table 1 shows some examples of natural language propositions and their meaning 

representation in GC.  Notice that a proposition in natural language may constrain one

or more variables. 

Table 1. Examples of Natural Language Propositions and their representations in GCs

Natural Language Proposition Generalized Constraints
The price of oil has inverse relation with the oil 

production.

Relation(price(oil), production(oil)) is inverse

Most Indian foods are spicy countx ( taste (x) is spicy  |  x is indian-Food) is most

It is Likely to rain today (weather(today) is rainy) isp  likely
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A collection of GCs together with a set of logical connectives (such as: and, or, 

implication, and negation) and a set of inference rules form the generalized constraint 

language (GCL). The inference rules regulates the propagation of GCs. Table 2 lists 

instances of inference rules introduced for GCL. As shown in this table, each rule has 

a syntactic part and a semantic part. The syntactic part shows the general abstract form

(also called the protoform ) of the GCs of the premises and the conclusion of the rule, 

while the semantic part is a semantic condition which makes the rule valid. The 

inference rules of CW are adopted and formalized from various fuzzy domains such 

as: fuzzy probability, fuzzy logic, fuzzy relation, fuzzy quantifiers, and fuzzy 

arithmetic. 

Table 2. Instances of CW inference Rules. u and v are the universes of discourse of x and y.

Inference rule Syntactic part Semantic part

Conjunction Rule

Cis)y,x(

Bisy

Aisx

)v(*)u()v,u( BAC  =

Projection Rule
isx

Ais)y,x(
))v,u((sup)u( AvB  =

Extension Principle

Bis)X(f

AisX
)u(fz:tosubject

))u((sup)z( AUB

=

= 

Compositional Rule

of Inference
CisY

BisXY

AisX

),(  ))u,v(*)u((sup)v( BiAuC  =

Fuzzy graph 

Interpolation 
BisY

AisX

BisYthenAisXif
i

ii )B*m(sup)v( iiiB =

n...1i

)),u(*)u((supm
iAAui

=

= 
, 

Fuzzy Syllogism sCBaresAQ

sCaresBAQ

sBaresAQ

)'&('

')'&(

''

3

2

1
))w(Q*)w(Q(sup)z(Q 2211u3 =

21 wwz:tosubject ×=

w1,w2, and z are the universes of discourse 

of Q1, Q2,and Q3 , respectively

2.2 Meaning Representation via Test Score Semantics

Zadeh defined test score semantics 36 as an informal semantics for representing the 

meaning of natural language statements. Like other meaning representation systems, 

test score semantics relates a linguistic entity to its denotation in some assigned 
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universe of discourse. This approach assumes that each predicate induces a constraint 

on a group of object variables in the universe of discourse and is denoted by (in 

general) a fuzzy relation. A collection of fuzzy (or crisp) relations models the state of 

the world and constitutes what is referred to as an explanatory database. The meaning

of a proposition or a predicate is then determined by the degree to which it is 

compatible with the explanatory database. In other words, the test score of a 

proposition p with respect to an explanatory database , ED,  is a point in the interval 

[0,1], and indicates the degree to which p is compatible with  ED. Representing the 

meaning of a proposition, p, in  the test score semantics includes: (1) identifying the 

object variables whose values are constrained by p, (2) identifying the constraints 

imposed by p on the constraint variables, (3) finding the degree of compatibility (or 

test score) of p with respect to its denotation in the explanatory database, and (4) 

aggregating the partial test scores obtained for each constraint. As an illustration, 

suppose we would like to assess the test score of the simple proposition: “Ellie and 

Mary are friends.”  This proposition induces the constraint “friend” on the relation of 

two object variables denoting two individuals “Ellie” and “Mary”.  If the explanatory 

database in this case contains a fuzzy relation “Friends” as follows, then test score of 

the proposition “Ellie and Mary are friends” with respect to this database is 0.9.

Table 3. Example of fuzzy relation denoting the predicate “Friend” in explanatory database

Friend Individual 1 Individual 2 Degree of

Membership

Alice John .4
Mona Ellie .7
Jessica Sarah .2
Ellie Mary .9

In some cases, it is possible that more than one relation must be tested to determine 

the test score of a proposition. Consider the proposition “gas is expensive,” with an 

explanatory database containing two relations: (1) the crisp relation “Price” with the 

attributes: “item” and “unit price”, which shows the unit price of a number of items in 

the universe of discourse, and (2) the fuzzy relation “Expensive” with the attributes 

“price” and “membership degree” which shows the degree of costliness for each value

of the price. In order to find the test score of the proposition “gas is expensive” with 

respect to this explanatory database, one needs to first find the value of the price of 
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gas from the “Price” relation and then find the corresponding membership degree 

from the  fuzzy relation “Expensive”.

When a proposition induces two or more constraints then the combined test score is 

computed according to the following rules (where 1ts  and  2ts  are the test scores 

induced by two different constraints 1C  and 2C in proposition p):

 Modification rules, including: (1) negation: the test score of “not 1C ” is  11 ts

, (2) concentration:  the test score of “ very 1C ” is  2
1ts , and  (3) diffusion: the 

test score of “more or less 1C ” is 5.0
1ts .

 Compositional rules, including: (1) conjunction:  the test score of  “ 1C  and 2C

” is:  ),min( 21 tsts (2) disjunction: the test score of  “ 1C  or 2C ” is: ),max( 21 tsts

, (3) implication: the test score of  “if 1C  then 2C ” is: (1- 1ts + 2ts ).

2.3 Algebraic structure of truth Values

To define a cohesive formal semantics for a logical language we first fix an algebraic 

structure of truth values. In classical logic a proposition is unambiguously true or 

false. Hence the set of truth values is simply the set {0,1} and the algebra of the truth 

values is a Boolean algebra 37. In contrast, in fuzzy logic, a proposition can be only 

partially true, and the set of truth values form a partially ordered set. The most general

accepted structure of truth values in fuzzy logic which fits the intuitive notion of 

implication and conjunction is that of residuated lattice 38. A residuated lattice is an 

algebra: )1,0,*,,,(  LL  , such that:

 )1,0,,,( L  is  a  lattice  with  0  and  1  being  the  least  and  the  greatest
elements respectively. 

 )1,*,(L  is a commutative monoid. That is, * is  a commutative, associative,
and monotone in both arguments, and it has the identity aa 1*  for each

La . 

 The  pair  *  and    satisfy  the  adjunction  property,  that  is:
cbaiffcba ≤≤* . For Lcba ,,  . 

The operation * is known as t-norm and   is called its residuation. Table 4 shows 

some further properties proved for L (Novák et al. 1999) . 
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Table 4. Properties of t-norm and its residuation, Lcba ,,

(1) aba ≤* (2) b≤* aba
(3) bab ≤ (4) bba ≤)(*a 
(5) b)*(aa≤ b (6) 0)0(*a a

(7) cb≤cathenb≤if a   and
bc≤ac 

(8) 1≤  baiffba

(9) )*()*(*)( cbcacba 

Each residuation defines its corresponding negation operation as follows:

Laaa  ,0

The dual operation of t-norm is called t-conorm and is denoted by . Given a t-
norm a complementary t-conorm is defiend as:

))1(*)1((1)( baba 

A residuated lattice with a continuous t-norm is called a BL-Algebra if it satisfies the 

following properties (Hájek 1998):

 baaba →*

 aabbbaba  )()(

 1→  abba

Some important examples of BL-algebras are the Gödel, Łukasiewicz, and product  

algebras. Table 5 displays the t-norms defined for these algebra along with their 

corresponding residuation, negation, and t-conorm operations.

Table 5. Three important BL-Algebras 

Algebra T-Norm T-Conorm Residuation Negation

Łukasiewicz )1(0*  baba L )(1 baba L  )1(1 baba L  aaL  1

Gödel
b*  aba G b*  aba G








ba

baif
ba G 0

≤1
→









00

01

a

aif
aG

Product

b*  aba P ab-b*  aba P










ba
a

b

baif
ba P

≤1
→ 








00

01

a

aif
aP

3. Formalization of GCL

This section presents our formal syntax and semantics for GCL.  We have used 

Zadeh’s original symbols and notations, with a slight modification, to define terms, 

9



atomic formula, coordinators, and formation rules.  The proposed language is used in 

the next section to formulate and extend Zadeh’s inference rules for CW.

3.1 GCL Syntax

The formalization of syntax includes identifying a set of valid well-formed formula.  

The well-formed formulas are defined by induction, using a set of symbols and a set 

of formation rules which describes how the symbols may be combined to form a valid 

formula. 

3.1.1 Symbols

 A non-empty finite set of sorts, denoted by },..,,{ 21 nsssS  . The sorts 

determine different types of variables. While we could use a single sort and 

define many sorts by means of crisp unary predicates, it is conventional to use 

many-sorted structures, to facilitate type-checking. Each non-empty sequence 

of sorts: ),...,,( 21 nsss  is called a rank 39.

 For each sort is , a countable set of variables, denoted by the lowercase letters 

at the end of the alphabet: ,...,, zyx  The subscripts are used to distinguish the 

variables: ...,, 210 xxx  .Variables are interpreted as individual objects in the 

universe of discourse of each sort, for example: “Mary” and “John” of sort 

PEOPLE, “New York” and “Chicago” of sort CITIES, 35.5 of sort REAL-

NUMBERS, and so forth.  

 A  countable  number  of  crisp  function  symbols  with  arity  greater  than  0,

denoted by lowercase letters: f, g, h,... . Each function of arity n has a rank:

),..,,( 10 nsss , which is the sequence of sorts of variables in its domain, and it

has a sort: 1ns ,  which is the sort of its range. Function symbols of valence 0

are  constant  symbols,  and  are  often  denoted  by  lowercase  letters  at  the

beginning of the alphabet a, b, c. Each constant symbol has a sort.

 A countable set of possibilistic granule values, each having a rank ),..,,( 10 nsss

. The granule values are denoted by the uppercase letters at the beginning of

the alphabet: ...C,B,A  . The granule value may be interpreted as a fuzzy value

( such as: “tall” , “slim”, “tasty”, “about 6”…) or a crisp value such as: (“6”,

(3,6),  etc. ).  
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 A countable set  of veristic granule values,  such as:  “true”,  “certainly true”,

“positive”, and so forth.  

 A countable  set  of  quantifiers denoted  by  ...Q,Q,Q 210  (such as:   “many”,

“most”,  “almost  all”,  “all”,  “some”,…).  Two  classes  of  quantifiers  are

distinguished:  1)  absolute,  which  are  expressed  with  a  number,  e.g.,

“approximately 10”,  “much more than three”, “almost 5” etc, and 2) relative

quantifiers  which  are  expressed  with  proportion:  “most”,  “all”,  “many”,

“some”, “few”, “several”, “numerous”, etc.

 The possibility constraint symbol, denoted by “is”.

 The equality constraint symbol denoted by “=”.

 The verity constraint symbol, denoted by “isv”.

 The fuzzy graph constraint: “isfg”. 

 The parentheses, brackets, and other punctuation symbols.

 Connectives and operations: “and” for conjunction, “or” for disjunction, “not”

for negation, and “If …Then” for implication.

 Fuzzy modifiers,  denoted  by ...,, 210 mmm ,  such  as:  “very”,  “more  or  less”,

“much”, “somewhat” “to some extend”, and so forth.

3.1.2 Formation Rules

The  formation  rules  define  terms  and  valid  formula  of  GCL.  These  rules  can  be

mapped in to a context free grammar.

Terms:

Terms are defined inductively as follows (note that each term is associated with a 

sort): 

 If x is a variable, then x is a term with sort is .

 If nttt ,..., 21  are terms and f  is a crisp function with rank ( nss ,..,1 ) and sort  fs ,

then ),...,( 21 ntttf  is a term with sort fs  .

Formulas:

 If nttt ,..., 21  are terms and A is a possibilistic granule value of the same rank, 

then “ ),...,( 21 nttt  is A” is a formula.

 If  1t and 2t  are terms then “ 21 tt  ” is a formula, where  1t  and 2t  are of the 

same rank.
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 If ),...,( 21 nttt  are terms and A is a possibilistic granule value of the same rank, 

then    “t is mA” is a formula, where m is a fuzzy modifier.

 If 1t and 2t  are terms then “ )},(),...,,(),,{(),( 221121 nn BABABAisfgtt ” is a 

formula. Where each iA  and iB are possibilistic granule values with the same 

rank as 1t and 2t , respectively.

 If Q is an absolute or relative quantifier and  is a formula then “ sxQ : ” is a 

formula. Where x is a variable in , and s is its sort. 

 If Q is a relative quantifier and 21,  are formula then “ ),( 21: sxQ ” is a 

formula and formulates a binary quantifier. 

 If   is a formula then “ not ” is a formula.

 If  1  and 2 are formulas then “ 21 and ” is a formula.

 If  1  and 2 are formulas then “ 21  or ” is a formula.

 If  1  and 2 are formulas then “if 1  then 2 ” is a formula.

 If    is a formula, and V a veristic granule value such as: “certainly true”, 

“positive”, “not true”, and so forth, then “  isv V” is a formula.

The above formation rules construct the syntax of GCL recursively.  The notion of 

free and bound variables is defined similar to the classical logics. A variable y is 

substitutable for variable x in a formula   if it has the same sort as x, and it does not 

change any free occurrence of x in   into a bound occurrence of y.  Some examples 

of formula of GCL are listed in table 6.

Table 6. Examples of  GCL formula

Joe is handsome Joe is handsome
Mary and Ann are friends (Mary, Anna) is friend
Most Students are healthy Most x:STUDENT (x is healthy)
Most Young students are healthy Most x:STUDENT (x is healthy , age(x) is young)
Three students got a low grade in

math

Threex: STUDENT ( grade(x, math) is low)

A lot of IT employees get a high 

salary

A lot ofx:IT EMPLOYEE (salary(x)  is high )

The gas pressure has an inverse 

relation with its temperature

Allx:GAS  (pressure, temperature) isfg {(high, 

low), (medium, medium), (low, high)}
Most of the people, spend more, 

when they earn more money. 

Many x:PEOPLE ( (salary(x),spend(x)) isfg 

{ (low, low), (medium, medium), (high, 

high)}
It is true that most Americans  (Mostx:PEOPLE ( 
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have a higher standard of living 

than most people from the 

Middle East.

   Most y:PEOPLE  (  

      (livingStan(x), livingStan(y)) is higher , 

        (x is American and y is Middle-Eastern) 

) ) )   isv true                                        

Remark 1.  As in the case of predicate logic, the use of sorts (or typed variables) can 

be avoided by introducing unary crisp predicates signifying different types. For 

example instead of the GCL expression:  “lot ofx:EMPLOYEE (salary(x)  is high )” one 

could say: “lot ofx ( salary(x)  is high  and  x is employee )”. However, many-sorted 

logics are used widely in computer science and linguistics, e.g. in definitions of 

programming languages, semantics verification, databases, and abstract data types 39. 

Defining different categories of object variables in GCL allows excluding malformed 

expressions such as: “lot ofx:Dog (salary(x)  is high )”,  by elucidating the fact that the 

function “salary” is defined on objects of sort  “EMPLOYEE“. 

3.2 GCL Semantics

In this section we adapt Zadeh’s informal description of test score semantics to define 

a formal semantics for GCL.  We assume that the structure of truth values, denoted by 

L, is in form of a BL-Algebra. A closer look at Zadeh’s description of test score 

semantics shows that it is closely related to model-theoretic semantics. Thus it is 

reasonable to start with explanatory database and express it in terms of structures in 

the model theory. Consequently, test score can be assessed by evaluating the truth 

value of each formula recursively from its constituents.  

3.2.1 The Explanatory database as a structure

The explanatory database consists of a set of relations and functions that model the 

state of the world and provides interpretation for the formulas in GCL. 

Let L be a BL-Algebra, an explanatory database, D, may be defined as the following 

structure:

mvQPfs rrrrfDD ,,,,, , where:

 sD  is a nonempty  set that forms the domain of variables (objects) of sort s. 

This could be the universe of discourse of CITIES, PEOPLE, PROVINCES, and 

COUNTRIES in geography, or the universe of discourse of STUDENT, 

FACULTY, and STAFF in the school context.
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 Each function symbol if  of arity n, rank ),...,( 1 nss , and sort sf  is interpreted 

as fa Ssi DDf →D...:
ns   which returns the value of if  for each n-tuple of 

variables of sorts ns sss ,...,,1 . Note that Zadeh’s linguistic variables 40 may be 

modeled as functions. For example the linguistic variable “distance(x,y)” is a 

function of rank ),( CITYCITY  and sort REAL,  and  is interpreted as:

REALtan D→: CITYCITYcedis DDf   where CITYD  is the domain of variables of sort 

CITY , and  REALD  is the domain of real numbers. Or the linguistic variable 

“age(x)” may be modeled as a function of rank PEOPLE and sort INT, and is 

interpreted as: INTPEOPLEAge DDf →:  that maps the individuals in the domain to an

integer representing their age.

  Each possibilistic granule (or crisp) value of rank ),...,,( 21 nsss  is interpreted 

as a fuzzy (or crisp) relation, LDDDr
nsssP  ...:

21
.  For example the granule

value “far” of rank (REAL),  may be interpreted as LDr REALFar :  that assigns 

to each real number denoting a distance between two cities, the degree that it is 

considered “far”. 

 Each veristic granule value is interpreted as a function: LLrv : , which 

assigns to each test score its membership degree in v.

 Each absolute quantifier is interpreted as a function: LZrQ : , where  Z  

is the set of non-negative integers denoting the cardinality of a set. In other words, 

each absolute fuzzy quantifier is interpreted as a fuzzy set that assigns to a number

(cardinality of a set) the degree to which it satisfies the quantifier. Note that if the 

quantifier is crisp then L is reduced to Boolean algebra.

 Each relative fuzzy quantifier is interpreted as a function: LrQ ]1,0[:  which 

assigns to a proportion, the degree to which is satisfies the relative quantifier. 

When the relative quantifier is crisp then L is reduced to Boolean algebra.

 Each fuzzy modifier is interpreted as a function: LLrm : . For example the 

fuzzy modifier “very” is interpreted as a function: Laaarvery  ,)( 2
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3.2.2 Test Score as Truth Evaluation 

Now that we have defined the explanatory database, the test score of a natural 

language statement can be determined by evaluating the truth value of its equivalent 

formula in GCL.  

Let D be an explanatory database, a valuation (v) is a function that assigns to each 

term in GCL its corresponding interpretation in D. The valuation function gives a 

meaning to the formula with free variables, such as “Age(x) is young”, or the formula 

“(size(y),size(z)) is bigger”. The truth value of these formulas depend on the value of 

x, or y and z. The valuation of GCL terms is defined as follows:

 si Ddxv )( , where v maps a variable of sort s to an element in its domain.

 ))(),...,(),(()),...,,(( 2121 nini tvtvtvftttfv  , where f  is a crisp function.

The test-score of a formula   with respect to an explanatory database D and a 

valuation function v   is denoted by )(D
vts  and shows the degree of compatibility of

  with respect to D. The quantity )(D
vts   is defined as follows:

 The test score ))(),...,(),(()),...,,(( 2121 nAn
D
v tvtvtvrAistttts  , where  Ar  is the 

interpretation of the possibilistic granule value A.

 The test score ))),...,,((()),...,,(( 2121 AisttttsrmAistttts n
D
vmn

D
v  , where mr  is 

the interpretation of the fuzzy modifier m.

 The test score  )( 21 ttts D
1 iff )()( 21 tvtv  , for all valuations v, otherwise it is 

zero. Notice that, for simplicity, the equality symbol is interpreted as a crisp 

identity rather than similarity or fuzzy equality.

 The test score

))(*)(())},(),..,,(),,{(),(( 2`1221121 i
D
vi

D
v

i
nn

D
v BisttsAisttsBABABAisfgttts  , 

where   and * are operations of L. This test score is defined based on the 

mathematical properties of fuzzy approximation of a function and Mamdani style 

fuzzy control [41,42].

 The test score )()( ∑
'

':

v

D

vQsx
D
v tsrQts   , where  Q  is an absolute quantifier and

'v  is an evaluation that differs with v only in the assignment of x. In other words, 

the test score of  xQ  relates to the sum of the test scores of all formula obtained 

15



by instantiating x in  . This corresponds with the concept of sigma-count defined 

by Zadeh for measuring the cardinality of a fuzzy set. Note that there are other 

interpretations that relate the truth value of a quantifier to the subsets of the 

universe of discourse as in the case of classical generalized quantifiers 43. For 

simplicity, this paper follows Zadeh’s approach that evaluates a quantified 

statement based on the cardinality of a fuzzy set and this should suffice for most 

applications. If the quantifier is relative (e.g. “several” , “many”), then

)
||

)((

()(

∑
'

' 1

1:
s

v

D

v

Qsx M

ts

rQts


  , where || sM  is the cardinality of the domain of 

variables of sort s.

 The test score )
)(

))(*)((

()),((
∑

∑

'

'

'

'

'

2

21

21:

v

D

v

D

v
v

D

v

Qsx
ts

stts

rQts



  , which relates the 

truth value of a binary quantifier to the cardinality of crisp or fuzzy set, where the 

formula ),( 21: sxQ means: “Q  objects of type s satisfying 2 also satisfy 1 . 

Note that the truth values of the crisp quantifiers: (  and  ) may also be derived 

from the above definition, provided that r  and r  are the following singletons:








 11

10
)(

a

a
Lar   ,  and 








 01

00
)(

a

a
Lar   .

 The test score ))(()(  V
D
v

D
v rtsVisvts  , where Vr  is the interpretation of the 

veristic granule value V.

 The test score )(*)()( 2121  D
v

D
v

D
v tstsandts  , where * is the t-norm 

operation of L.

 The test score )()()  ( 2121  D
v

D
v

D
v tstsorts  , where   is the t-conorm.

 The test score )(→)()( 2121  D
v

D
v

D
v tststhenifts   where →  is the 

residuation operation of L
 The test score 0)()()(   D

v
D
v

D
v tstsnotts

As an example, suppose that we want to assess the test score of the formula

 Several x: STUDENT ( grade(x, math) is low), given the following explanatory 

database.

}r,r,f,M,M{D
L)STUDENT(SeveralL)GRADE(LowGRADE→STUDENTgrade_mathGradeStudent →→= , where
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 StudentM ={“Ellie”, ”Alex”, “Steve”, “Tony”, “Sarah”, “Chet”, “Christ”} is the 

domain of the objects of sort STUDENT,  

 =GradeM {A+, A, A- , B+, B, B- ,C+, C, C-, D+, D, D-, F}  is the domain of objects of 

sort Grade.

 =GRADE→STUDENTgrade_mathf {(Ellie, A), (Alex, A+), (Steve, B+), (Tony, C+), (Sarah, B),

(Chet,  C-), (Christ, D)} is a function of rank STUDENT and sort GRADE, which 

assigns to each student his/her grade in math

  =
L→)GRADE(Lowr {(A+,0),(A,0), (A-,0), (B+, .1), (B,.2), (B-, .3), (C+, .5), (C,.6), (C-, .

7), (D+, .9), (D,1), (D-, 1),(F,1)} is a fuzzy relation “Low” with rank GRADE that 

assigns to each grade its membership degree in “Low”,
















6.1

6..2.5.-5.2

2.0

)()(

x

xx

x

xr STUDENTseveral  is a function  that assigns to ]1,0[x  its

degree of membership in fuzzy set “several”.

Having the above explanatory database at hand, the test score of the formula:  =

Several x: STUDENT ( grade(x, math) is low) may be calculated as follows.

)
|M|

)lowis)Math,x(grade(ts

(r)(ts
Student

v

D
v

Several
D

∑
=

Notice that this formula does not contain any free variable, thus its test score is 

independent of the valuation of variables.

7|| STUDENTM  is the cardinality of the universe of discourse of students.

4.216.2.5.1.

)()()()()()()(

)),(()),((∑











DrCrBrCrBrArAr

lowisMATHugradetslowisMathxgradets

LowLowLowLowLowLowLow

Mu

D

v

D
v

STUDENT

 

 Hence;  )7/4.2()( Several
D rts  .35

Remark2. We shall point out here that although we made extensive use of the results 

and ideas of mathematical fuzzy logics 41, 44), our formalization of GCL is different 

from that of fuzzy predicate logics and their counterparts. Those logics achieved a 

remarkable success in providing a mathematical foundation for fuzzy logic in the 
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spirit of classical logics, but they are not suitable for the machinery of computing with

words, since fuzzy predicate logics do not account for Zadeh’s different constrained 

modalities and fuzzy quantifiers. Moreover, the rules of inference in mathematical 

fuzzy logics, namely the modus ponens and generalization rules, are purely syntactical

while Zadeh’s rules of inference for CW are both syntactical and semantical. Figure 1 

illustrates the general architecture of a CW inference engine. Given a knowledgebase, 

which is expressed in form of GCL, the CW inference engine is typically intended to 

answer questions of the form: “What is the value of a term t?”. The answer to this 

question is in general a fuzzy set that interprets the constrained values of t. To arrive 

at such answer, the inference engine must apply a chain of CW inference rules, stored 

in the deduction database, to the related information in knowledgebase. Moreover, in 

order to apply the deduction rules, the inference engine would need to know the fuzzy 

subsets which interpret the granule values of the variables in knowledgebase, as 

shown in the figure.  

Figure 1. Schematic view of CW inference engine

Hence, reasoning in CW is clearly semantical and computes the answer to a query 

based on the interpretation of the words in an explanatory database. Formulating such 

deductions in a purely syntactical way relying solely on the rules of modus ponens and

generalization is rather difficult and may not be practical. For example consider 

Zadeh’s inference rules in table 2. In 41 it is stated that the semantic part of the 

compositional rule of inference can be expressed as the following formula in the basic 

many-valued predicate logic:

))Y,X(B&)x(A)(x()y(C)(y( ∃≡∀

If we call the preceding formula comp_sem, then the compositional rule may be 

expressed as the following axiom:

))(→),(&)(((→_ YCYXBxAsemcomp .
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Where A,B,C are fuzzy predicates, and the universal and existential quantifiers in the 

basic predicate logic are defined as follows . (Hájek 1998 ):

))(()(
)(

uxx
xofdomainu

 


    , ))(()(
)(∈

uxx
xofdomainu

 

 

While the semantic part of some of CW rules (such as conjunction rule, and 

interpolation rule) may be expressed in form of universal and existential quantifiers, 

this approach fails to express the semantic part of the rules that include fuzzy 

quantifiers and probabilistic and veristic modalities. For example consider the 

semantic part of the fuzzy syllogism rule in table 2. This rule computes the 

interpretation of the fuzzy quantifier, )(3 zQ , in the conclusion based on the ones in 

the premises, )( 11 wQ  and )( 22 wQ . Unlike the preceding rule, the semantic condition 

of the fuzzy syllogism cannot be expressed syntactically by means of the universal 

and existential quantifiers, because such quantifiers range over the domain of objects 

while 21 ,, wwz are elements of a lattice.

In summary, as was pointed out by Zadeh 46 , CW has aspects, such as fuzzy 

syllogistic reasoning and constraint modalities, which cannot be modeled in the spirit 

of classical logics.  Our aim in this work is to put forward a formal language that 

offers a logical syntax and semantics for GCL to support CW applications while 

relaxing the obligation to make purely syntactic inferences. 

4. On Zadeh’s Deduction Rules and Their 

Extensions

When Zadeh formulated CW, he listed a set of basic deduction rules from fuzzy 

control, fuzzy arithmetic, and syllogism.  He also suggested that it would be necessary

to extend the deduction database and develop new inference rules to cover more 

constraint modalities. The formal GCL language, proposed in the previous section, 

enables us to make such extensions.  To this end, we first show that Zadeh’s basic 

rules are consistent with the proposed GCL Language. Then we show, by an example, 

how new inference rules may be defined using the compositional semantics of GCL. 
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4.1 Soundness of CW Rules in GCL

In this subsection we describe some of the inference rules characterized by Zadeh for 

CW and prove that they are valid in GCL.  Recall that, unlike the case of classical 

logic, the CW inference rules are semantical. Given an explanatory database that 

interprets a set of premises, a CW inference rule typically obtains a fuzzy relation that 

interprets the consequent of the rule (figure 1). Before proceeding, some definitions 

are needed.

Definition 1. (Tautology) : a formula    in GCL is a tautology  iff 1)( D
vts  for all  

D and v , where D is an explanatory database and v is a valuation of D.

Definition 2. (Soundness): an inference rule of GCL is written in the form:

1

21 ,...

n

nandand




, where 1n21 ,...,, +  are formula of GCL. such inference rule is 

sound if and only if the formula:  →,...21 nandand  is a tautology. This means

1)→,...( 21  n
D
v andandts  and hence, based on table 4,

)(≤)...( 121 n
D
vn

D
v tsandandts  for all explanatory databases D and valuations v.

The following lemmas demonstrate the soundness of Zadeh’s deduction rules in GCL.

Lemma 1. (Soundness of Conjunction Rule) The conjunction rule is formulated as 

follows: 

Cisyx

Bisy

Aisx

),(
 , where A, B, C are possibilistic granule values and for all explanatory 

databases: )(*)(),( vrurvur BAC  , where xMu and yMv .   xM  and yM  are 

domains of  x and y, respectively. 

To prove the soundness of the conjunction rule, we need to show that for all 

explanatory database D and valuation v, we have:

))),(())()(( CisyxtsBisyandAisxts D
v

D
v  . Let v(x)=u and v(y)=v. Then

)(*)()(*)())()(( vrurBisvtsAisutsBisyandAisxts BA
DDD

v  . But
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)),((),()(*)( Cisvutsvurvrur D
CBA  . Consequently:

))),(())()(( CisyxtsBisyandAisxts D
v

D
v   for all D and v,  and the conjunction rule 

is sound.  Notice that  Cr  is also the smallest interpretation (in the sense of fuzzy set 

inclusion) which makes the conjunction rule sound.

Lemma 2. (Soundness of Projection Rule)

The projection rule is stated as follows:

Bisx

Aisyx ),(
 , where )),((sup)( vurur AvB  , for all yx MvMu  ,  .

We now prove the soundness of projection rule. Notice that

))())((sup),()),(((∈∀,∈∀ BisutsurvurAisvutsMvMu D
BvA

D
yx   

Consequently: )))((≤)),(( BisxtsAisyxts D
v

D
v  and the projection rule is sound.

The soundness of projection rule implies that

 
)),((sup≥)((∀

))),((∀≥)((∀)),(≥)((∀,∀
vururMu

vurMvurMuvururMvMu

AvBx

ByBxAByx





Hence )),((sup)( vurur AvB   is the smallest interpretation which makes the projection

rule sound.

Lemma 3. (Soundness of Extension Principle)

The extension principle is stated as follows:

Bis)x(f

Aisx
 , where ))((sup)( )(| urvr AvufMuB x 

To demonstrate the soundness of extension principle,  note that 

)()()((sup≤)()()(,∀ )(| BvistsvrururAisutsufvMu D
BAvufuA

D
x   .

Now ))((sup)( )(| urvr AvufuB   is the smallest interpretation which makes the 
extension principle sound.  Indeed, 

)(sup)(

))(≥)(()()))(()(()(

)(| urvr

urvrufvBisuftsAisutsufv

AvufuB

AB
DD




Lemma 4. (Soundness of Compositional Rule of Inference)
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The compositional rule of inference finds the image of a fuzzy set in a fuzzy relation.

The rule is stated as follows:

 

Cisy

Bisyx

Aisx

),(  , where )),(*)((sup)( vururvr BAuC   for all yx MvMu  , . 

We now prove the soundness of compositional rule of inference. Observe that 

)),(*)((sup≤),(*)())),(()((:,∀ vururvururBisyxandAisxtsMvMu BAuBA
D

yx 

.,)(),()),(*)((sup≤ DallforCisytsvurvurur D
CBAu 

Now )),(*)((sup)( vururvr BAuC   is the smallest interpretation (or fuzzy set) which 

makes the compositional rule sound.  Indeed, the soundness implies:

)))(*),(()(( urvurMuvrMv ABxcy  , hence

)))(*),((sup≤)((∀ urvurvrMv ABMucy x

Lemma 5. (soundness of Fuzzy graph Interpolation Rule)

The fuzzy interpolation rule is the most used rule in the fuzzy control and it 

corresponds to the Mamdani system of inference:

BisY

AisX

BisYthenAisXif
i

ii
 , where

 

))(*))(*)((((supsup)( vrururv
ii BAAuiB 

The rule is formulated in GCL as follows:

Bisy

BAisfgyx

Aisx

ii )},{(),( , where ))(*))(*)(((sup)( vrururvr
iiX BAAMu

i
B   , for all

yx MvMu  ,

To prove  the soundness of the fuzzy graph rule, we note that

DallforBisytsvrvrurur

vrururvrururvrurur

BAisfgvuandAisutsMvMu

D
BBAAMu

i

BAAMu
i

BAA
i

BA
i

A

ii
D

yx

iiX

iiXiiii

),()())(*))(*)(((sup

))(*))(*)((sup(≤))(*)(*)(())(*)((*)(

)}),{(),((∀,∀

'''















Again, we see that that ))(*))(*)(((sup)( vrururvr
iiX BAAMu

i
B   is the smallest 

fuzzy set for B which makes the fuzzy interpolation rule sound. Indeed,
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))(*)((*)((∀≥)(∀

))(*)((*)(()(∀,∀
)}),{(),(()(

vrururMuvrMv

vrururvrMvMu

BAisfgyxandAisxtsBisxts

ii

ii

BA
i

AxBy

BA
i

AByx

ii
DD










))(*))(*)(((sup))(*)((*)((sup≥)(∀ vrururvrururvrMv
iiXii BAAMu

i
BA

i
AuBy  

 Lemma 6. (Soundness of Fuzzy Syllogism Rule)

The fuzzy syllogism rule, in its classical form, is stated as:

sCBaresAQ

sCaresBAQ

sBaresAQ

)'&('

')'&(

''

3

2

1

     where  213 QQQ ×=

This rule can be formulated in GCL as follows:

)|(

)|(

)|(

:3

:2

:1

AisxCisxandBisxQ

BisxandAisxCisxQ

AisxBisxQ

sx

sx

sx

  , where

212211,3 )),(*)((sup)(
21

vvuvrvrur QQvvQ   and ]1,0[,, 21 vvu . The soundness of 

the soundness of the fuzzy syllogism rule is demonstrated as follows:

)
)(*)(

)(*)(*)(

(*)
)(

)(*)(

(

))|(:())|(:(

∑

∑

∑

∑
11

21

urur

ururur

r
ur

urur

r

BisxandAisxCisxsxQtsandAisxBisxsxQts

B
Mu

A

C
Mu

BA

Q

Mu
A

Mu
BA

Q

DD

S

S

S

S











)
)(

)(*)(*)(

()|((
∑

∑
3:3

S

S

Mu
A

C
Mu

BA

Qsx
D

ur

ururur

rAisxCisxandBisxQts



 , let

∑

∑

)(

)(*)(

1

S

S

Mu
A

Mu
BA

ur

urur

v



  and  
)(*)(

)(*)(*)(

∑

∑
2 urur

ururur

v
B

Mu
A

C
Mu

BA

S

S



 , and

∑

∑

)(

)(*)(*)(

S

S

Mu
A

C
Mu

BA

ur

ururur

u



   then 21 *vvu   , thus

)()(*)((sup)(*)(
2121 32111,2111 urvrvrvrvr

vvuQQQvvQQ 
 )
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Notice that  3Qr  is also the smallest interpretation (or fuzzy set) that makes the fuzzy 

syllogism rule sound (the proof is similar to that of the extension principle).

4.2 Extending Zadeh’s Deduction Rules

The compositional semantics of GCL along with the notion of soundness provides a 

basis to describe new inference rules that are semantically valid. This is illustrated via 

an example. Let us assume that we would like to find the average risk of developing a 

breast cancer for a person, knowing that the average risk is, in general, a fuzzy 

function of the person’s age. Suppose:

For most x, if age(x) is in 30s then average-riskbc(x) is about 0.4 %, if  age(x) is in 40s then
average-riskbc(x) is about 1.5 %, and  if  age(x) is in 50s or greater, then average-riskbc(x)
is about 2.5% 

Based on this information, we are interested to find the average risk of breast cancer 

for a young person. In other words, we would like to perform the following deduction:

?)(

)(

})%)5.2,'50(),%5.1,'40(,)%4.0,'30{())(),(((
***

:

isyriskBc

youngisyage

sssisfgxriskBCxagemost peoplex 

The abstract form (protoform) of this deduction is:

?)(

)(

)}),{())(),(((:

Bisyg

Aisyf

BAisfgxgxfQ iisx

Where the interpretations of Ais  (rAi), Bis (rBi), and A (rAi ) are given in some 

explanatory database and the inference rule would have to derive the interpretation of 

B (rB). The above rule can be viewed as an instance of a quantified fuzzy graph 

interpolation rule. A variant of this rule (called the usuality-qualified fuzzy graph 

interpolation rule) is nominated by Zadeh as an instance of an inference rule that has 

to be developed and added to the deduction database. 

Based on definition 2, this rule is sound in GCL if and only if:

))((*))}),{())(),(((())(( : AisyftsBAisfgxgxfQtsBisygts D
viisx

D
v

D
v 

Thus we need to find the smallest fuzzy set for B, rB,  which makes the above rule 

sound:
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Hence, ))((sup*)
||

)))((*))(((

()( )(, ufr
M

ugrufr

rvrv AugvMu
S

Mu
BA

i
QB s

S

ii



 

  

is the smallest interpretation for B which makes the inference rule sound.

Accordingly, the answer to the preceding example is calculated as follows: 

))((sup*)()( )(, uagecrvrMv uriskBCvMumostBRISK PEOPLE  , where

||

)))((*))((( .'
∨

People

PEOPLEu
BA

i

M

uriskbcruager
c

ii
 , }50,30,20{ sssAi   and

}5.2,5.1,4{. ***iB   

5. Summary and Future Work

The generalized constraint language is the essence of CW. In this paper, we argued 

that further theoretical and practical advancements of CW demand formalization of 

GCL. We defined recursive syntax for GCL and characterized the test score semantics

in the spirit of model theory. We proved the soundness of Zadeh’s basic inference 

rules in the proposed language and pointed out briefly how new sound rules may be 

developed and added to the deduction database.

The GCL language defined here includes formula with fuzzy quantifiers as well as 

possibilistic, veristic, and fuzzy graph semantics modalities. 

Our future work must extend the language to take account of other modalities such as 

probability, rough sets, random sets, and bimodal (possibility/probability) 

distributions. The two major future objectives would be (1) to formulate a set of 

axioms that is both complete and consistent, and (2) to identify a set of canonical 

forms that every formula in GCL may be reduced to, and to develop an automated 

inference mechanism on top of GCL.
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