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Zero sets of bounded analytic functions

Notation

D := {z ∈ C : |z | < 1}

Theorem (Identity Theorem, see Greene and Krantz 2006)

If f : D → C is holomorphic and a0, a1, a2, . . . is a sequence of
zeros of f with a limit point in D, then f ≡ 0.

That is, if f is holomorphic, has infinitely many zeros, and is not
identically zero, then its zero set must accumulate to ∂D.



Zero sets of bounded analytic functions

Theorem (see Greene and Krantz 2006)

If f is a nonconstant bounded holomorphic function on D and
a0, a1, . . . are the zeros of f (repeated according to their
multiplicities), then

∞∑

j=0

(1− |aj |) < ∞.



Zero sets of bounded analytic functions

Conversely,

Theorem (see Greene and Krantz 2006)

If the points a0, a1, . . . in D satisfy

∞∑

j=0

(1− |aj |) < ∞,

then there is a bounded holomorphic function on D which has zero
set consisting precisely of the aj ’s, repeated according to their
multiplicities.



The Blaschke product

▶ Specifically,

B(z) =
∞∏

j=0

baj (z) where baj (z) =

{ |aj |
aj

aj−z
1−az if aj ̸= 0

z if aj = 0.

converges uniformly on compact subsets of D and has zeros
that are precisely the aj ’s.

▶ The individual terms baj of the product are Blaschke factors
and the product B is a Blaschke product.

▶ We thus call a sequence a = (aj)
∞
j=0 satisfying∑∞

j=0(1− |aj |) < ∞ a Blaschke sequence. The sum is called
the Blaschke sum and is denoted Σa.

▶ This canonical construction is analogous to the construction
of a polynomial from linear factors corresponding to its zeros.

▶ We denote by Ba the Blaschke product corresponding to the
Blaschke sequence a.



Spectra of bounded analytic functions on D

Definition
The spectrum of a non-identically zero analytic function on D is
the set of accumulation points of its zero sequence.

Notation
For a function B, we denote its spectrum by specB. For a
Blaschke sequence a = (aj)

∞
j=0, we also denote its set of

accumulation points by spec a.

Remark
Such a spectrum is always a closed subset of ∂D.
In fact,

Theorem (folklore)

For any nonempty, closed subset A of ∂D, there exists a Blaschke
product B with specB = A.



Computability of complex-valued functions

Definition (McNicholl 2013)

A function f : D → C is computable if there is an algorithm P with
the following properties:

▶ Approximation. On input D1 ⊆ D (an open rational disk) with

D1 ⊆ D, either P does not halt or returns another open
rational disk D2.

▶ Correctness. If P halts on D1 and returns D2, then
f [D1] ⊆ D2.

▶ Convergence. For all z ∈ D, if U ∋ f (z) is open, then there
exists D1 ∋ z such that, when D1 is input to P, P returns D2

such that f (z) ∈ D2 ⊆ U.

This definition is most likely equivalent to others you have seen.



Computability of Blaschke products

Given the one-to-one correspondence between Blaschke products
and Blaschke sequences, it is natural to ask if there is a
correspondence between the computability of a Blaschke sequence
and the computability of its corresponding Blaschke product.

Theorem (Matheson and McNicholl 2008, McNicholl 2013)

A Blaschke product is computable if and only if it has a
computable zero sequence with computable Blaschke sum.



Complexity notions for closed subsets of ∂D

Definition
An open rational arc of ∂D is a set of the form

A(α, β) := {exp θi : α < θ < β}

where α < β are both elements of πQ. We denote

A := {A : A is an open rational arc}

and fix an effective enumeration (An)
∞
n=0 of A.



Complexity notions for closed subsets of ∂D

Definition (cf. Weihrauch 2000)

For a closed subset A of ∂D, we say A is Σ0
n, Π

0
n, or ∆

0
n closed if

SA := {m ∈ N : Am ∩ A ̸= ∅}

is a Σ0
n, Π

0
n, or ∆

0
n (respectively) subset of N.

Notation
When B : D → C is analytic (B ̸≡ 0) and a = (an)

∞
n=0 is a

Blaschke sequence, we denote SspecB and Sspec a by SB and Sa,
respectively.



Complexity of spectra

Given that the spectrum of a bounded analytic function is a closed
subset of ∂D and we have established a notion of complexity for
such sets, it is natural to analyze the complexity of spectra of
computable bounded analytic functions.

Observation
For a computable Blaschke sequence a = (aj)

∞
j=0 and n ∈ N,

n ∈ Sa ⇐⇒ spec a ∩ An ̸= ∅
⇐⇒ (∃m ∈ N)(∃∞j ∈ N) Am ⊂ An ∧

aj
|aj |

∈ Am,

a Σ0
3-sentence. That is, if B is a computable bounded analytic

function on D, then specB is Σ0
3–closed.



A Σ0
3–complete spectrum

Theorem (McNicholl & Z., 2023)

There exists a computable Blaschke product B for which
Cof ≤m SB . Consequently, SB is Σ0

3–complete.

Proof sketch.
Let (Ce)e∈N be an effective sequence of disjoint rational open arcs
in ∂D not containing 1.
Uniformly in e, construct a computable Blaschke product Be for
which specBe ⊆ Ce ∪ {1},

specBe ∩ Ce ̸= ∅ ⇐⇒ e ∈ Cof ,

and ΣBe = 2−e .
Then B =

∏
e∈N Be has computable zero sequence (e.g., by

dovetailing), ΣB = 2, and Ce ∩ specB ̸= ∅ ⇐⇒ e ∈ Cof .



Constructing the Be

Let (ce,m)m∈N be an effective sequence of rational points in Ce

accumulating to the right endpoint of Ce .
Goals:

▶ ce,m ∈ specBe ⇐⇒ (∀n ≥ m) n ∈ We

▶ Place zeros of Be only on radii to the ce,m and 1

Suffices to construct Be,m with:

▶ specBe,m ⊆ {ce,m, 1}
▶ ce,m ∈ specBe,m ⇐⇒ (∀n ≥ m) n ∈ We

Let n0 = m. At stage s, if ns ∈ We,s , let ns+1 = ns + 1 and let
arg as = ce,m. Otherwise, let ns+1 = ns and let arg as = 1.
In either case, let |as | = 2−s−e−m−1.
Then Be,m with zero sequence (as)

∞
s=0 and Be =

∏
m∈N Be,m have

the desired properties.



Not all Σ0
2–closed sets are spectra

Theorem (McNicholl & Z., 2023)

There exists a Σ0
2–closed S ⊆ ∂D which is not the spectrum of any

computable Blaschke product.

Definition
A sequence A of points in D is a computable partial sequence if
there exists f : N2 → {e iπθ : θ ∈ Q} such that

1. f is a computable partial function, and

2. (m, n + 1) ∈ dom(f ) =⇒ (m, n) ∈ dom(f ) and
|f (m, n)− f (m, n + 1)| < 2−n−1.

Proof sketch of theorem.
Careful diagonalization argument over the computable partial
sequences.



All Π0
2–closed sets are spectra

Theorem (McNicholl & Z., 2023)

If S ⊆ ∂D is Π0
2–closed, then there exists a computable Blaschke

product with specB = S .

Proof sketch.
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Stolz regions
The following may be compared to the definitions of cone and
nontangential limit in Garnett and Marshall 2005:

Definition
For 0 < r < 1 and ζ ∈ ∂D, Sr (ζ) is the convex hull containing
{ζ} ∪ Dr (0), with ζ removed. We call Sr (ζ) the Stolz region at ζ
with angle 2 arcsin r .

Figure 1: A stolz region

Note that if a curve approaches ⇠ from inside the region S(⇠, r), then this curve cannot be

tangent to the unit circle. For f in Hp, we say f has nontangential limit L at the point ⇠

if for all r in (0, 1) and for every sequence {zn} in S(⇠, r) that converges to the point ⇠, we

have limn!1 f(zn) = L. Also, for r in (0, 1) and for any complex function f defined on D,

we define the nontangential maximal function Nrf on T by

Nrf(⇠) = sup{|f(z)| : z 2 S(⇠, r)}.

For any f in Hp, 0 < p < 1 and any r in (0, 1), we have Nrf 2 Lp(T). It is well known (see

[19]) that the nontangential limits of f in Hp, denoted f ⇤(ei✓), exist almost everywhere [m]

on T and f ⇤ 2 Lp(T). Furthermore, ||f ⇤||p = ||f ||p for all f in Hp. An inner function is a

function M in H1 such that |M⇤| = 1 a.e. [m]. A function of the form

Sµ(z) = exp{�
Z ⇡

�⇡

⇣ + z

⇣ � z
dµ(t)},

where µ is a positive Borel measure on T that is singular with respect to m, is known as a

3

Figure: The Stolz region Sr (ξ) (from Fulmer 2014).

Such a region is given explicitly by

Sr (ζ) =

{
z ∈ D :

|ζ − z |
1− |z | ≤

1 + r

1− r

}



Nontangential limits of modulus 1

Definition
A sequence of points {an}∞n=0 in D is said to approach ζ ∈ ∂D
nontangentially if

1. limn→∞ an = ζ, and

2. (∃r ∈ (0, 1)) (∀n ∈ N) an ∈ Sr (ζ).

Definition
A function f : D → C has nontangential limits of modulus 1 at
ζ ∈ ∂D if, for all sequences {an}∞n=0 which approach ζ
non-tangentially, limn→∞ f (an) exists and is of modulus 1.



The Frostman condition

Definition (as stated in Matheson 2007)

A Blaschke product B with zero sequence {an}∞n=0 satisfies the
Frostman condition at ζ ∈ ∂D if

σB(ζ) :=
∞∑

n=0

1− |an|
|ζ − an|

is finite. The function σB(ζ) is the Frostman indicator of B.
A Blaschke product is uniform Frostman if its Frostman constant

σB := sup
ζ∈∂D

σB(ζ)

is finite.

We note that 1− |an| ≤ 1−|an|
|ζ−an| , so satisfaction of the Frostman

condition implies that a sequence is Blaschke.



Frostman’s theorem

Theorem (Frostman 1942)

A Blaschke product B has nontangential limits of modulus 1 at
ζ ∈ ∂D if and only if B satisfies the Frostman condition at ζ.

This reveals an interesting parallel between the Frostman condition
and the Blaschke condition:

▶ Just as Blaschke requires
∑

n∈N 1− |an| < ∞ so that
1− |an| → 0 “rapidly,”

▶ Frostman similarly requires
∑

n∈N
1−|an|
|ζ−an| < ∞ so that

1−|an|
|ζ−an| → 0 (so all the zeros never lie in one Stolz region)
“rapidly.”

Thus, if a Blaschke product is uniform Frostman, then we may say
it “has nontangential limits of modulus 1” (at all points of ∂D).



Uniform Frostman Blaschke Products

Theorem (Matheson 2007)

If B is a uniform Frostman Blaschke product, then specB is
nowhere dense in ∂D.

Theorem (Matheson 2007)

If F is a nowhere closed dense subset of ∂D and ϵ > 0, then there
exists a uniform Frostman Blaschke product B with specB = F
and σB < 1 + ϵ.



Computable Uniform Frostman Blaschke Products

Theorem (McNicholl & Z., 2023)

If S ⊆ ∂D is computably closed and nowhere dense, then for every
k ∈ N, there is a computable (uniform Frostman) Blaschke product
f with spec(f ) = S and σf < 1 + 2−k .
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