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Zero sets of bounded analytic functions

Notation /

D:={zeC:|z|] < 1}

Theorem (Identity Theorem, see Greene and Krantz 2006)

If f : D — C is holomorphic and ag, a1, az, . .. is a sequence of
zeros of f with a limit point in D, then f = 0.

That is, if f is holomorphic, has infinitely many zeros, and is not
identically zero, then its zero set must accumulate to 9.



Zero sets of bounded analytic functions

Theorem (see Greene and Krantz 2006)

If f is a nonconstant bounded holomorphic function on D and
ag, a1, . .. are the zeros of f (repeated according to their
multiplicities), then

Z(l — |aj]) < 0.
.:0~ )



Zero sets of bounded analytic functions

Conversely,

Theorem (see Greene and Krantz 2006)
If the points ag, a1, ... in D satisfy

[o.¢]
> (1—la]) < oo,
j=0

then there is a bounded holomorphic function on ID which has zero
set consisting precisely of the a;'s, repeated according to their
multiplicities.



The Blaschke product

» Specifically, Z/ W

oo laj] aj—z T 0
B(z) = H baj(z) where baj(z) — { 2 1-az 19 #
Jj=0

e z ifaj:0.

converges uniformly on compact subsets of ID and has zeros
that are precisely the a;'s.

» The individual terms b, of the product are Blaschke factors
and the product B is a Blaschke product.

> We thus call a sequence a = (3;)%2, satisfying
Zj’io(l — |aj|) < 0o a Blaschke sequence. The sum is called

the Blaschke sum and is denoted X ,.

P This canonical construction is analogous to the construction
of a ponnom'sI’from linear factors corresponding to its zeros.

> We denote by B, the Blaschke product corresponding to the
Blaschke sequence In.



Spectra of bounded analytic functions on D

Definition VO"“‘M

The spectrum of a non-identically zero‘énalytic function on D is
the set of accumulation points of its zero sequence.

Notation
For a function B, we denote its spectrum by spec B. For a
Blaschke sequence a = (a;)7%,, we also denote its set of

lati ints b .
accumulation points by spec a sr“, G“ - S?ec o~

Remark
Such a spectrum is always a closed subset of OD.

In fact,

Theorem (folklore) \ﬂ
em—

For any nonempty, closed subset A of D, there exists a Blaschke
product B with spec B = A.



Computability of complex-valued functions

Definition (McNicholl 2013)
A function f : D — C is computable if there is an algorithm P with
the following properties:

» Approximation. On input D; C D (an open rational disk) with
Dy C D, either P does not halt or returns another open
rational disk D>.

» Correctness. If P halts on D; and returns D,, then
f[D1] C Ds.

» Convergence. For all z € D, if U > f(z) is open, then there
exists D; 3 z such that, when D; is input to P, P returns D,
such that f(z) € D, C U.

This definition is most likely equivalent to others you have seen.



Computability of Blaschke products

Given the one-to-one correspondence between Blaschke products
and Blaschke sequences, it is natural to ask if there is a
correspondence between the computability of a Blaschke sequence
and the computability of its corresponding Blaschke product.

Theorem (Matheson and McNicholl 2008, McNicholl 2013)

A Blaschke product is computable if and only if it has a
computable zero sequence with computable Blaschke sum.



Complexity notions for closed subsets of 0D

—

Definition
An open rational arc of D is a set of the formL/

A(a, B) :={expbi:a < 8 < 8}
where a < 3 are both elements of 7Q. We denote
—
A :={A: Ais an open rational arc}

and fix an effective enumeration (A,)0°, of A.
,



Complexity notions for closed subsets of 0D

Definition (cf. Weihrauch 2000)
For a closed subset A of 0D, we say A is £, M9, or A? closed if

<SA): {meN:A,NA#0D} é"‘
- —
isa X9 N9 or A (respectively) subset of N.

Notation

When B : D — C is analytic (B #0) and a = o is a
Blaschke sequence, we denote Sspecg and Ss,:,eca ‘a
respectively.



Complexity of spectra

Given that the spectrum of a bounded analytic function is a closed
subset of JD and we have established a notion of complexity for
such sets, it is natural to analyze the complexity of spectra o
computable bounded analytic functions.

Observation
For a computable Blaschke sequence a = (a;)72, and n

neES, < specanA, #0
I a; e ™
< (AmeN)(F*j eN) A, C A, A L € Ap,
a XJ-sentence. That is, if B is a computable bounded analytic
function on D, then spec B is Zg—closed.



A ¥9—complete spectrum
:§e €MN: We is cafinzted

Cof <, Sg. Consequently, Sg is £3—complete. C )
e

Proof sketch.
Let (Ce)ecn be an effective sequence of disjoint rational open arcs

in 0D not containing 1.
Uniformly in e, construct a computable Blaschke product B, for

which spec B, C C. U {1},

V
and Yp, = 2. &=~

Then B = [[.cn Be has computable zero sequence (e.g., by
dovetailing), g =2, and C, Nspec B # ) <= e € Cof. O

1

spec Be N Ce # ) — e € Cof,
Qe— [—



Constructing the B, —_ C:“'K

Let (Ce,m)men be an effective sequence of rational points i

accumulating to the right endpoint of C,.
Goals: % ir-

» Cem €specBe <= (Vn>m) ne W,

» Place zeros of Be only on radii to the ce , an
Suffices to construct Be , with:

» spec Bem C {Cem, 1}

» Cem €SpeCBem <= (Yn>m) ne W,

Let ng = m. At stage s, if ns € W, s, let ns;1 = ns + 1 and let
arg as = Ce,m- OtherW|se let ns+1 = ns and let argas = 1.

In &ither case, let |as| Fy—s—e-m-1 &

Then Be m with zero sequence (as)e2y and Be = [ ], ,cry Be,m have
the desired properties.



Not all ¥9—closed sets are spectra

Theorem (McNicholl & Z., 2023)

There exists a Zg—closed S C 0D which is not the spectrum of any
computable Blaschke product.

Definition
A sequence A of points in D is a computable parti nce if
there exists f : N2 — {e/™ : 0 @} such that

1. f is a computable partial function, and

2. (myn+1) € dom(f) = (m, n) € dom(f) and
|f(m,n) — f(m,n+1)] <271, <__

Proof sketch of theorem.
Careful diagonalization argurseft oV computable partial
sequences. " L]



All MY—closed sets are spectra

Theorem (McNicholl & Z., 2023)

If S C 0D is N9—closed, then there exists a computable Blaschke
product with spec B = S.

Proof sketch. W




Containments

o C spectra C @)



Stolz regions
The following may be compared to the definitions of cone and
nontangential limit in Garnett and Marshall 2005:
Definition
For 0 < r < 1and ¢ € 9D, 5.(¢) is the convex hull containing

{¢} U D,(0), with ¢ removed. We call 5,(¢) the Stolz region at ¢
with angle 2 arcsin r.

Figure: The Stolz region S,(£) (from Fulmer 2014).

Such a region is given explicitly by

B '|(—z| 14r
5,({)—{26[@.1_|Z| gl_r}




Nontangential limits of modulus 1

Definition }.
A sequence of points {a,}°2, in D is said to approach ¢ € 0D
nontangentially if

1. lim, a, =¢, and

2. (3r€(0,1)) (Yn e N) a, € 5.(¢).

Definitigp

unction f : D — C has hontangential limits of modulus 1 at
¢ € OD if, for all sequences {an}52, which approach ¢
non-tangentially, lim,_,~ f(a,) exists and is of modulus 1.

laper ¢ ke re '0-‘ "’mf"" of nol '&
: l\odu;-""‘




The Frostman condition

Definition (as stated in Matheson 2007)

A Blaschke product B with zero sequence {a,}2, satisfies the
Frostman condition at ¢ € 0D if

is finite. The function og(() is the Frostman indicator of B.
A Blaschke product is uniform Frostman if its Frostman constant

og = sup og(()
CeoD
is finite.
We note that 1 — |a,| < |1{_|z:I so satisfaction of the Frostman
condition implies that a sequence is Blaschke.




Frostman's theorem

Theorem (Frostman 1942)

A Blaschke product B has nontangential limits of modulus 1 at
¢ € 0D if and only if B satisfies the Frostman condition at (.

This reveals an interesting parallel between the Frostman condition
and the Blaschke condition:

» Just as Blaschke requires 1 — |as| < oo so that
1 —|as| — 0 “rapidly,”

> Frostman similarly requires S° _ 1122 < o6 so that

neEN [(—ap|
IZ:';:I — 0 (so all the zeros never lie in one Stolz region)
‘rapidly.”

Thus, if a Blaschke product is uniform Frostman, then we may say
it "has nontangential limits of modulus 1" (at all points of OD).



Uniform Frostman Blaschke Products

Theorem (Matheson 2007)

If B is a uniform Frostman Blaschke product, then spec B is
nowhere dense in .

Theorem (Matheson 2007)

If F is a nowhere closed dense subset of D and € > 0, then there
exists a uniform Frostman Blaschke product B with spec B = F
andog < 1+e.



Computable Uniform Frostman Blaschke Products

Theorem (McNicholl & Z., 2023)

If S C 0D is computably closed and nowhere dense, then for every
k € N, there is a computable (uniform Frostman) Blaschke product
f with spec(f) = S and of < 1427k
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