On the spectra of computable bounded analytic functions

Online Logic Seminar, Southern Illinois University

Brian Zilli joint work with T.H. McNicholl

> Department of Mathematics Iowa State University

> > April 25, 2024

Zero sets of bounded analytic functions

Notation

$$\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$$

Theorem (Identity Theorem, see Greene and Krantz 2006) If $f : \mathbb{D} \to \mathbb{C}$ is holomorphic and a_0, a_1, a_2, \ldots is a sequence of zeros of f with a limit point in \mathbb{D} , then $f \equiv 0$.

That is, if f is holomorphic, has infinitely many zeros, and is *not* identically zero, then its zero set *must* accumulate to $\partial \mathbb{D}$.

Zero sets of bounded analytic functions

Theorem (see Greene and Krantz 2006)

If f is a nonconstant bounded holomorphic function on \mathbb{D} and a_0, a_1, \ldots are the zeros of f (repeated according to their multiplicities), then

$$\sum_{j=0}^{\infty} (1-|a_j|) < \infty.$$

Zero sets of bounded analytic functions

Conversely,

Theorem (see Greene and Krantz 2006) If the points a_0, a_1, \ldots in \mathbb{D} satisfy

$$\sum_{j=0}^{\infty}(1-|a_j|)<\infty,$$

then there is a bounded holomorphic function on \mathbb{D} which has zero set consisting precisely of the a_j 's, repeated according to their multiplicities.

The Blaschke product

converges uniformly on compact subsets of $\mathbb D$ and has zeros that are precisely the a_j 's.

- The individual terms b_{aj} of the product are Blaschke factors and the product B is a Blaschke product.
- We thus call a sequence $a = (a_j)_{j=0}^{\infty}$ satisfying $\sum_{j=0}^{\infty} (1 - |a_j|) < \infty$ a *Blaschke sequence*. The sum is called the *Blaschke sum* and is denoted Σ_a .
 - This canonical construction is analogous to the construction of a polynomial from linear factors corresponding to its zeros.
 - We denote by B_a the Blaschke product corresponding to the Blaschke sequence a

Spectra of bounded analytic functions on $\ensuremath{\mathbb{D}}$

Definition

The *spectrum* of a non-identically zero analytic function on \mathbb{D} is the set of accumulation points of its zero sequence.

Notation

For a function *B*, we denote its spectrum by spec *B*. For a Blaschke sequence $a = (a_j)_{j=0}^{\infty}$, we also denote its set of accumulation points by spec *a*. Spec Ba = Spec A

Remark

Such a spectrum is always a closed subset of $\partial \mathbb{D}.$

In fact,

Theorem (folklore)

For any nonempty, closed subset A of $\partial \mathbb{D}$, there exists a Blaschke product B with spec B = A.

Computability of complex-valued functions

Definition (McNicholl 2013)

A function $f : \mathbb{D} \to \mathbb{C}$ is *computable* if there is an algorithm P with the following properties:

- Approximation. On input $D_1 \subseteq \mathbb{D}$ (an open rational disk) with $\overline{D_1} \subseteq \mathbb{D}$, either P does not halt or returns another open rational disk D_2 .
- <u>Correctness.</u> If *P* halts on D_1 and returns D_2 , then $f[D_1] \subseteq D_2$.
- Convergence. For all $z \in \mathbb{D}$, if $U \ni f(z)$ is open, then there exists $D_1 \ni z$ such that, when D_1 is input to P, P returns D_2 such that $f(z) \in D_2 \subseteq U$.

This definition is most likely equivalent to others you have seen.

Computability of Blaschke products

Given the one-to-one correspondence between Blaschke products and Blaschke sequences, it is natural to ask if there is a correspondence between the computability of a Blaschke sequence and the computability of its corresponding Blaschke product.

Theorem (Matheson and McNicholl 2008, McNicholl 2013)

A Blaschke product is computable if and only if it has a computable zero sequence with computable Blaschke sum.

Complexity notions for closed subsets of $\partial \mathbb{D}$

Definition

An open rational arc of $\partial \mathbb{D}$ is a set of the form

$$A(\alpha,\beta) := \{ \exp \theta i : \alpha < \theta < \beta \}$$

where $\alpha < \beta$ are both elements of $\pi \mathbb{Q}$. We denote $\mathcal{A} := \{A : A \text{ is an open rational arc}\}$

and fix an effective enumeration $(A_n)_{n=0}^{\infty}$ of \mathcal{A} .

Complexity notions for closed subsets of $\partial \mathbb{D}$

Definition (cf. Weihrauch 2000)

For a closed subset A of $\partial \mathbb{D}$, we say A is Σ_n^0 , Π_n^0 , or Δ_n^0 closed if

$$\mathcal{S}_A = \{ m \in \mathbb{N} : A_m \cap A \neq \emptyset \}$$

is a Σ_n^0 , Π_n^0 , or Δ_n^0 (respectively) subset of \mathbb{N} .

Notation

When $B : \mathbb{D} \to \mathbb{C}$ is analytic $(B \neq 0)$ and $a = (a_n)_{n=0}^{\infty}$ is a Blaschke sequence, we denote $S_{\text{spec }B}$ and $S_{\text{spec }a}$ by S_B and S_a , respectively.

Complexity of spectra

Given that the spectrum of a bounded analytic function is a closed subset of $\partial \mathbb{D}$ and we have established a notion of complexity for such sets, it is natural to analyze the complexity of spectra of computable bounded analytic functions.

Observation

For a computable Blaschke sequence $a = (a_j)_{j=0}^{\infty}$ and $n \in \mathbb{R}$

$$n \in S_a \iff \operatorname{spec} a \cap A_n \neq \emptyset$$
$$\iff (\exists m \in \mathbb{N}) (\exists^{\infty} j \in \mathbb{N}) \ \overline{A_m} \subset A_n \land \frac{a_j}{|a_j|} \in A_m,$$

a Σ_3^0 -sentence. That is, if *B* is a computable bounded analytic function on \mathbb{D} , then spec *B* is Σ_3^0 -closed.

A Σ_3^0 -complete spectrum $z \in \{e \in \mathbb{N}: We \}$ is cofinite?

Theorem (McNicholl & Z., 2023)

There exists a computable Blaschke product B for which $Cof \leq_m S_B$. Consequently, S_B is Σ_3^0 -complete.

Proof sketch.

Let $(C_e)_{e \in \mathbb{N}}$ be an effective sequence of disjoint rational open arcs in $\partial \mathbb{D}$ not containing 1.

Uniformly in e, construct a computable Blaschke product B_e for which spec $B_e \subseteq C_e \cup \{1\}$,

spec $B_e \cap C_e \neq \emptyset \iff e \in Cof$, and $\Sigma_{B_e} = 2^{-e}$. Then $B = \prod_{e \in \mathbb{N}} B_e$ has computable zero sequence (e.g., by dovetailing), $\Sigma_B = 2$, and $C_e \cap \operatorname{spec} B \neq \emptyset \iff e \in Cof$.

Constructing the B_e

Let $(c_{e,m})_{m\in\mathbb{N}}$ be an effective sequence of rational points in C_e accumulating to the right endpoint of C_e . Goals:

$$\blacktriangleright c_{e,m} \in \operatorname{spec} B_e \iff (\forall n \ge m) \ n \in W_e$$

▶ Place zeros of B_e only on radii to the $c_{e,m}$ and

Suffices to construct $B_{e,m}$ with:

▶ spec
$$B_{e,m} \subseteq \{c_{e,m}, 1\}$$

▶ $c_{e,m} \in \text{spec } B_{e,m} \iff (\forall n \ge m) \ n \in W_e$
Let $n_0 = m$. At stage s , if $n_s \in W_{e,s}$, let $n_{s+1} = n_s + 1$ and let
arg $a_s = c_{e,m}$. Otherwise, let $n_{s+1} = n_s$ and let arg $a_s = 1$.
In either case, let $|a_s| = 2^{-s-e-m-1}$.
Then $B_{e,m}$ with zero sequence $(a_s)_{s=0}^{\infty}$ and $B_e = \prod_{m \in \mathbb{N}} B_{e,m}$ have
the desired properties.

Not all Σ_2^0 -closed sets are spectra

Theorem (McNicholl & Z., 2023)

There exists a Σ_2^0 -closed $S \subseteq \partial \mathbb{D}$ which is not the spectrum of any computable Blaschke product.

Definition

A sequence A of points in \mathbb{D} is a *computable partial sequence* if there exists $f : \mathbb{N}^2 \to \{e^{i\pi\theta} : \theta \in \mathbb{Q}\}$ such that

1. f is a computable partial function, and

2.
$$(m, n+1) \in \operatorname{dom}(f) \implies (m, n) \in \operatorname{dom}(f)$$
 and $|f(m, n) - f(m, n+1)| < 2^{-n-1}$.

Proof sketch of theorem.

Careful diagonalization argument over the computable partial sequences.

All Π_2^0 -closed sets are spectra

Theorem (McNicholl & Z., 2023) If $S \subseteq \partial \mathbb{D}$ is Π_2^0 -closed, then there exists a computable Blaschke product with spec B = S.

Containments

Stolz regions

The following may be compared to the definitions of *cone* and *nontangential limit* in Garnett and Marshall 2005:

Definition

For 0 < r < 1 and $\zeta \in \partial \mathbb{D}$, $S_r(\zeta)$ is the convex hull containing $\{\zeta\} \cup D_r(0)$, with ζ removed. We call $S_r(\zeta)$ the *Stolz region* at ζ with angle 2 arcsin r.

Figure: The Stolz region $S_r(\xi)$ (from Fulmer 2014).

Such a region is given explicitly by

$$\mathcal{S}_r(\zeta) = \left\{ z \in \mathbb{D} : rac{|\zeta - z|}{1 - |z|} \leq rac{1 + r}{1 - r}
ight\}$$

Nontangential limits of modulus 1

Definition

A sequence of points $\{a_n\}_{n=0}^{\infty}$ in \mathbb{D} is said to approach $\zeta \in \partial \mathbb{D}$ nontangentially if

- 1. $\lim_{n\to\infty} a_n = \zeta$, and
- 2. $(\exists r \in (0,1)) \ (\forall n \in \mathbb{N}) \ a_n \in S_r(\zeta).$

Definition A function $f : \mathbb{D} \to \mathbb{C}$ has *nontangential limits of modulus* 1 at $\zeta \in \partial \mathbb{D}$ if, for all sequences $\{a_n\}_{n=0}^{\infty}$ which approach ζ non-tangentially, $\lim_{n\to\infty} f(a_n)$ exists and is of modulus 1.

The Frostman condition

Definition (as stated in Matheson 2007)

A Blaschke product *B* with zero sequence $\{a_n\}_{n=0}^{\infty}$ satisfies the *Frostman condition* at $\zeta \in \partial \mathbb{D}$ if

$$\sigma_B(\zeta) := \sum_{n=0}^\infty rac{1-|a_n|}{|\zeta-a_n|}$$

is finite. The function $\sigma_B(\zeta)$ is the Frostman indicator of B. A Blaschke product is uniform Frostman if its Frostman constant

$$\sigma_B := \sup_{\zeta \in \partial \mathbb{D}} \sigma_B(\zeta)$$

is finite.

We note that $1 - |a_n| \le \frac{1 - |a_n|}{|\zeta - a_n|}$, so satisfaction of the Frostman condition implies that a sequence is Blaschke.

Frostman's theorem

Theorem (Frostman 1942)

A Blaschke product B has nontangential limits of modulus 1 at $\zeta \in \partial \mathbb{D}$ if and only if B satisfies the Frostman condition at ζ .

This reveals an interesting parallel between the Frostman condition and the Blaschke condition:

- ▶ Just as Blaschke requires $\sum_{n \in \mathbb{N}} 1 |a_n| < \infty$ so that $1 |a_n| \to 0$ "rapidly,"
- ▶ Frostman similarly requires $\sum_{n \in \mathbb{N}} \frac{1-|a_n|}{|\zeta-a_n|} < \infty$ so that $\frac{1-|a_n|}{|\zeta-a_n|} \rightarrow 0$ (so all the zeros never lie in one Stolz region) "rapidly."

Thus, if a Blaschke product is uniform Frostman, then we may say it "has nontangential limits of modulus 1" (at all points of $\partial \mathbb{D}$).

Uniform Frostman Blaschke Products

Theorem (Matheson 2007)

If B is a uniform Frostman Blaschke product, then spec B is nowhere dense in $\partial \mathbb{D}$.

Theorem (Matheson 2007)

If F is a nowhere closed dense subset of $\partial \mathbb{D}$ and $\epsilon > 0$, then there exists a uniform Frostman Blaschke product B with spec B = F and $\sigma_B < 1 + \epsilon$.

Computable Uniform Frostman Blaschke Products

Theorem (McNicholl & Z., 2023)

If $S \subseteq \partial \mathbb{D}$ is computably closed and nowhere dense, then for every $k \in \mathbb{N}$, there is a computable (uniform Frostman) Blaschke product f with spec(f) = S and $\sigma_f < 1 + 2^{-k}$.

References I

 Frostman, Otto (1942). "Sur les produits de Blaschke". In: Kungl. Fysiografiska Sällskapets i Lund Förhandlingar [Proc. Roy. Physiog. Soc. Lund] 12.15, pp. 169–182. ISSN: 0368-5349.
 Fulmer, Shanda (2014). "Closed-Range Composition Operators on Weighted Bergman Spaces and Applications". PhD thesis. University of Arkansas. ISBN: 978-1303-86055-3. URL: https://scholarworks.uark.edu/cgi/viewcontent.cgi? article=3842&context=etd.

 Garnett, John B. and Donald E. Marshall (2005). Harmonic measure. Vol. 2. New Mathematical Monographs. Cambridge University Press, Cambridge, pp. xvi+571. ISBN: 978-0-521-47018-6; 0-521-47018-8. DOI: 10.1017/CB09780511546617. URL: https://doi.org/10.1017/CB09780511546617.

References II

- Greene, Robert E. and Steven G. Krantz (2006). Function theory of one complex variable. Third. Vol. 40. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, pp. x+504. ISBN: 0-8218-3962-4. DOI: 10.1090/gsm/040.
- Matheson, Alec (2007). "Boundary spectra of uniform
 Frostman Blaschke products". In: *Proc. Amer. Math. Soc.* 135.5, pp. 1335–1341. ISSN: 0002-9939. DOI: 10.1090/S0002-9939-06-08470-X.
- Matheson, Alec and Timothy H. McNicholl (2008). "Computable analysis and Blaschke products". In: *Proc. Amer.*

Math. Soc. 136.1, pp. 321–332. ISSN: 0002-9939. DOI:

10.1090/S0002-9939-07-09102-2.

McNicholl, Timothy H. (2013). "On the computable theory of bounded analytic functions". In: Blaschke products and their applications. Vol. 65. Fields Inst. Commun. Springer, New York, pp. 223–248. DOI: 10.1007/978–1–4614–5341–3_13.

References III

Weihrauch, Klaus (2000). Computable analysis. Texts in Theoretical Computer Science. An EATCS Series. An introduction. Springer-Verlag, Berlin, pp. x+285. ISBN: 3-540-66817-9. DOI: 10.1007/978-3-642-56999-9.