
The Automated-Reasoning Revolution:
from Theory to Practice and Back

Moshe Y. Vardi

Rice University

Is This Time Different? The Opportunities and
Challenges of Artificial Intelligence

Jason Furman, Chair, Council of Economic Advisers, July 2016:

“Even though we have not made as much progress recently on other
areas of AI, such as logical reasoning, the advancements in deep
learning techniques may ultimately act as at least a partial substitute
for these other areas.”

1

P vs. NP : An Outstanding Open Problem

Does P = NP?

• The major open problem in theoretical computer science

• A major open problem in mathematics

– A Clay Institute Millennium Problem
– Million dollar prize!

What is this about? It is about computational complexity – how hard it is
to solve computational problems.

2

Rally To Restore Sanity, Washington, DC, October 2010

3

Computational Problems

Example: Graph – G = (V,E)

• V – set of nodes
• E – set of edges

Two notions:

• Hamiltonian Cycle: a cycle that visits every node exactly once.
• Eulerian Cycle: a cycle that visits every edge exactly once.

Question: How hard it is to find a Hamiltonian cycle? Eulerian cycle?

4

Figure 1: The Bridges of Königsburg

5

Figure 2: The Graph of The Bridges of Königsburg

6

Figure 3: Hamiltonian Cycle

7

Computational Complexity

Measuring complexity: How many (Turing machine) operations does it
take to solve a problem of size n?

• Size of (V,E): number of nodes plus number of edges.

Complexity Class P : problems that can be solved in polynomial time – nc

for a fixed c

Examples:

• Is a number even?
• Is a number square?
• Does a graph have an Eulerian cycle?

What about the Hamiltonian Cycle Problem?

8

Hamiltonian Cycle

• Naive Algorithm: Exhaustive search – run time is n! operations

• “Smart” Algorithm: Dynamic programming – run time is 2n operations

Note: The universe is much younger than 2200 Planck time units!

Fundamental Question: Can we do better?

• Is HamiltonianCycle in P?

9

Checking Is Easy!

Observation: Checking if a given cycle is a Hamiltonian cycle of a
graph G = (V,E) is easy!

Complexity Class NP : problems where solutions can be checked in
polynomial time.

Examples:

• HamiltonianCycle
• Factoring numbers

Significance: Tens of thousands of optimization problems are in NP!!!

• CAD, flight scheduling, chip layout, protein folding, . . .

10

P vs. NP

• P : efficient discovery of solutions
• NP : efficient checking of solutions

The Big Question: Is P = NP or P 6= NP?

• Is checking really easier than discovering?

Intuitive Answer: Of course, checking is easier than discovering, so
P 6= NP !!!

• Metaphor: finding a needle in a haystack
• Metaphor: Sudoku
• Metaphor: mathematical proofs

Alas: We do not know how to prove that P 6= NP .

11

P 6= NP

Consequences:

• Cannot solve efficiently numerous important problems
• RSA encryption may be safe.

Question: Why is it so important to prove P 6= NP , if that is what is
commonly believed?

Answer:

• If we cannot prove it, we do not really understand it.
• May be P = NP and the “enemy” proved it and broke RSA!

12

P = NP

S. Aaronson, MIT: “If P = NP , then the world would be a profoundly
different place than we usually assume it to be. There would be no special
value in ‘creative leaps,’ no fundamental gap between solving a problem and
recognizing the solution once it’s found. Everyone who could appreciate
a symphony would be Mozart; everyone who could follow a step-by-step
argument would be Gauss.”

Consequences:

• Can solve efficiently numerous important problems.
• RSA encryption is not safe.

Question: Is it really possible that P = NP?

Answer: Yes! It’d require discovering a very clever algorithm, but it
took 40 years to prove that LinearProgramming is in P .

13

Sharpening The Problem

NP -Complete Problems: hardest problems is NP

• HamilatonianCycle is NP -complete! [Karp, 1972]

Corollary: P = NP if and only if HamiltonianCycle is in P

There are thousands of NP -complete problems. To resolve the P = NP
question, it’d suffice to prove that one of them is or is not in P .

14

History

• 1950-60s: Futile effort to show hardness of search problems.
• Stephen Cook, 1971: Boolean Satisfiability is NP-complete.
• Richard Karp, 1972: 20 additional NP-complete problems– 0-1 Integer

Programming, Clique, Set Packing, Vertex Cover, Set Covering,
Hamiltonian Cycle, Graph Coloring, Exact Cover, Hitting Set, Steiner
Tree, Knapsack, Job Scheduling, ...
– All NP-complete problems are polynomially equivalent!

• Leonid Levin, 1973 (independently): Six NP-complete problems
• M. Garey and D. Johnson, 1979: “Computers and Intractability: A Guide

to NP-Completeness” - hundreds of NP-complete problems!
• Clay Institute, 2000: $1M Award!

15

Boole’s Symbolic Logic

Boole’s insight: Aristotle’s syllogisms are about classes of objects, which
can be treated algebraically.

“If an adjective, as ‘good’, is employed as a term of description, let us
represent by a letter, as y, all things to which the description ‘good’
is applicable, i.e., ‘all good things’, or the class of ‘good things’. Let
it further be agreed that by the combination xy shall be represented
that class of things to which the name or description represented by
x and y are simultaneously applicable. Thus, if x alone stands for
‘white’ things and y for ‘sheep’, let xy stand for ‘white sheep’.

16

Vardi at Univ. College Cork, Ireland, March 2017

17

Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using “and”
(∧) “or”, (∨) and “not” (¬), is there a satisfying solution (an assignment
of 0’s and 1’s to the variables that makes the expression equal 1)?

Example:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x3 ∨ x1 ∨ x4)

Solution: x1 = 0, x2 = 0, x3 = 1, x4 = 1

18

Complexity of Boolean Reasoning

History:

• William Stanley Jevons, 1835-1882: “I have given much attention,
therefore, to lessening both the manual and mental labour of the process,
and I shall describe several devices which may be adopted for saving trouble
and risk of mistake.”

• Ernst Schröder, 1841-1902: “Getting a handle on the consequences
of any premises, or at least the fastest method for obtaining these
consequences, seems to me to be one of the noblest, if not the ultimate
goal of mathematics and logic.”

• Cook, 1971, Levin, 1973: Boolean Satisfiability is NP-complete.

19

Algorithmic Boolean Reasoning: Early History

• Newell, Shaw, and Simon, 1955: “Logic Theorist”

• Davis and Putnam, 1958: “Computational Methods in The
Propositional calculus”, unpublished report to the NSA

• Davis and Putnam, JACM 1960: “A Computing procedure for
quantification theory”

• Davis, Logemman, and Loveland, CACM 1962: “A machine program
for theorem proving”

DPLL Method: Propositional Satisfiability Test

• Convert formula to conjunctive normal form (CNF)

• Backtracking search for satisfying truth assignment

• Unit-clause preference

20

Modern SAT Solving

CDCL = conflict-driven clause learning

• Backjumping

• Smart unit-clause preference

• Conflict-driven clause learning (and forgetting!)

• Smart choice heuristic (brainiac vs speed demon)

• Restarts

Key Tools: GRASP, 1996; Chaff, 2001

Current capacity: millions of variables

21

S. A. Seshia 1

Some Experience with SAT Solving
Sanjit A. Seshia

Speed-up of 2012 solver over other solvers

1

10

100

1,000

Solver

S
p

e
e

d
-u

p
 (

lo
g

 s
c

a
le

)

Figure 4: SAT Solvers Performance
%labelfigure

22

Knuth Gets His Satisfaction

SIAM News, July 26, 2016: “Knuth Gives Satisfaction in SIAM von
Neumann Lecture”

Donald Knuth gave the 2016 John von Neumann lecture at the SIAM
Annual Meeting. The von Neumann lecture is SIAM’s most prestigious
prize.

Knuth based the lecture, titled ”Satisfiability and Combinatorics”, on
the latest part (Volume 4, Fascicle 6) of his The Art of Computer
Programming book series. He showed us the first page of the fascicle,
aptly illustrated with the quote ”I can’t get no satisfaction,” from the
Rolling Stones. In the preface of the fascicle Knuth says ”The story of
satisfiability is the tale of a triumph of software engineering, blended
with rich doses of beautiful mathematics”.

23

Applications of SAT Solving in SW Engineering

Leonardo De Moura+Nikolaj Björner, 2012: Applications of Z3 at Microsoft

• Symbolic execution

• Model checking

• Static analysis

• Model-based design

• . . .

24

Verification of HW/SW systems

HW/SW Industry: $0.75T per year!

Major Industrial Problem: Functional Verification – ensuring that
computing systems satisfy their intended functionality

• Verification consumes the majority of the development effort!

Two Major Approaches:

• Formal Verification: Constructing mathematical models of systems
under verification and analyzing them mathematically: ≤ 10% of verification
effort

• Dynamic Verification: simulating systems under different testing
scenarios and checking the results: ≥ 90% of verification effort

25

Dynamic Verification

• Dominant approach!

• Design is simulated with input test vectors.

• Test vectors represent different verification scenarios.

• Results compared to intended results.

• Challenge: Exceedingly large test space!

26

Motivating Example: HW FP Divider

z = x/y: x, y, z are 128-bit floating-point numbers

Question How do we verify that circuit works correctly?

• Try for all values of x and y?

• 2256 possibilities

• Sun will go nova before done! Not scalable!

27

Test Generation

Classical Approach: manual test generation - capture intuition about
problematic input areas

• Verifier can write about 20 test cases per day: not scalable!

Modern Approach: random-constrained test generation

• Verifier writes constraints describing problematic inputs areas (based
on designer intuition, past bug reports, etc.)

• Uses constraint solver to solve constraints, and uses solutions as test
inputs – rely on industrial-strength constraint solvers!

• Proposed by Lichtenstein+Malka+Aharon, 1994: de-facto industry
standard today!

28

Random Solutions

Major Question: How do we generate solutions randomly and
uniformly?

• Randomly: We should not reply on solver internals to chose input vectors;
we do not know where the errors are!

• Uniformly: We should not prefer one area of the solution space to
another; we do not know where the errors are!

Uniform Generation of SAT Solutions: Given a SAT formula, generate
solutions uniformly at random, while scaling to industrial-size problems.

29

Constrained Sampling: Applications

Many Applications:

• Constrained-random Test Generation: discussed above

• Personalized Learning: automated problem generation

• Search-Based Optimization: generate random points of the candidate
space

• Probabilistic Inference: Sample after conditioning

• . . .

30

Constrained Sampling – Prior Approaches, I

Theory:

• Jerrum+Valiant+Vazirani: Random generation of combinatorial
structures from a uniform distribution, TCS 1986 – uniform generation
by a randomized polytime algrithm with an Σp2 oracle.

• Bellare+Goldreich+Petrank: Uniform generation of NP -witnesses using
an NP -oracle, 2000 – uniform generation by a randomized polytime
algorithm with an NP oracle.

We implemented the BPG Algorithm: did not scale above 16 variables!

31

Constrained Sampling – Prior Work, II

Practice:

• BDD-based: Yuan, Aziz, Pixley, Albin: Simplifying Boolean constraint
solving for random simulation-vector generation, 2004 – poor scalability

• Heuristics approaches: MCMC-based, randomized solvers, etc. – good
scalability, poor uniformity

32

Almost Uniform Generation of Solutions

New Algorithm – UniGen: Chakraborty, Fremont, Meel, Seshia, V,
2013-15:

• almost uniform generation by a randomized polytime algorithms with a
SAT oracle.

• Based on universal hashing.

• Uses an SMT solver.

• Scales to millions of variables.

• Enables parallel generation of solutions after preprocessing.

33

Uniformity vs Almost-Uniformity

• Input formula: ϕ; Solution space: Sol(ϕ)

• Solution-space size: κ = |Sol(ϕ)|

• Uniform generation: for every assignment y: Prob[Output = y]=1/κ

• Almost-Uniform Generation: for every assignment y:
(1/κ)
(1+ε) ≤ Prob[Output = y] ≤ (1/κ)× (1 + ε)

34

The Basic Idea

1. Partition Sol(ϕ) into “roughly” equal small cells of appropriate size.

2. Choose a random cell.

3. Choose at random a solution in that cell.

You got random solution almost uniformly!

Question: How can we partition Sol(ϕ) into “roughly” equal small cells
without knowing the distribution of solutions?

Answer: Universal Hashing [Carter-Wegman 1979, Sipser 1983]

35

Universal Hashing

Hash function: maps {0, 1}n to {0, 1}m

• Random inputs: All cells are roughly equal (in expectation)

Universal family of hash functions: Choose hash function randomly from
family

• For arbitrary distribution on inputs: All cells are roughly equal (in
expectation)

36

Strong Universality

Universal Family: Each input is hashed uniformly, but different inputs
might not be hashed independently.

H(n,m, r): Family of r-universal hash functions mapping {0, 1}n to {0, 1}m
such that every r elements are mapped independently.

• Higher r: Stronger guarantee on range of sizes of cells

• r-wise universality: Polynomials of degree r − 1

37

Strong Universality

Key: Higher universality ⇒ higher complexity!

• BGP: n-universality ⇒ all cells are small ⇒ uniform generation

• UniGen: 3-universality⇒ a random cell is small w.h.p⇒ almost-uniform
generation

From tens of variables to millions of variables!

38

XOR-Based 3-Universal Hashing

• Partition {0, 1}n into 2m cells.

• Variables: X1, X2, . . . Xn

• Pick every variable with probability 1/2, XOR them, and equate to 0/1
with probability 1/2.

– E.g.: X1 +X7 + . . .+X117 = 0 (splits solution space in half)

• m XOR equations ⇒ 2m cells

• Cell constraint: a conjunction of CNF and XOR clauses

39

SMT: Satisfiability Modulo Theory

SMT Solving: Solve Boolean combinations of constraints in an underlying
theory, e.g., linear constraints, combining SAT techniques and domain-
specific techniques.

• Tremendous progress since 2000!

CryptoMiniSAT: M. Soos, 2009

• Specialized for combinations of CNF and XORs

• Combine SAT solving with Gaussian elimination

40

UniGen Performance: Uniformity

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 160 180 200 220 240 260 280 300 320

#
 o

f
S
o
lu

ti
o
n
s

Count

US
UniGen

Uniformity Comparison: UniGen vs Uniform Sampler

41

UniGen Performance: Runtime

0.1	

1	

10	

100	

1000	

10000	

100000	

ca
se
47
	

ca
se
_3

_b
14

_3
	

ca
se
10

5	
ca
se
8	

ca
se
20

3	
ca
se
14

5	
ca
se
61

	
ca
se
9	

ca
se
15

	
ca
se
14

0	
ca
se
_2

_b
14

_1
	

ca
se
_3

_b
14

_1
	

sq
ua

rin
g1

4	
sq
ua

rin
g7
	

ca
se
_2

_p
tb
_1

	
ca
se
_1

_p
tb
_1

	
ca
se
_2

_b
14

_2
	

ca
se
_3

_b
14

_2
	

Time(s)	

Benchmarks	

UniGen	

XORSample'	

Runtime Comparison: UniGen vs XORSample’

42

From Sampling to Counting

• Input formula: ϕ; Solution space: Sol(ϕ)

• #SAT Problem: Compute |Sol(ϕ)|

– ϕ = (p ∨ q)

– Sol(ϕ) = {(0, 1), (1, 0), (1, 1)}

– |Sol(ϕ)| = 3

Fact: #SAT is complete for #P – the class of counting problems for
decision problems in NP [Valiant, 1979].

43

Constrained Counting

A wide range of applications!

• Coverage in random-constrained verification

• Bayesian inference

• Planning with uncertainty

• . . .

But: #SAT is really a hard problem! In practice, quite harder than SAT .

44

Approximate Counting

Probably Approximately Correct (PAC):

• Formula: ϕ, Tolerance: ε, Confidence: 0 < δ < 1

• |Sol(ϕ)| = κ

• Prob[κ
(1+ε) ≤ Count ≤ κ× (1 + ε) ≥ δ

• Introduced in [Stockmeyer, 1983]

• [Jerrum+Sinclair+Valiant, 1989]: BPPNP

• No implementation so far.

45

From Sampling to Counting

ApproxMC: [Chakraborty+Meel+V., 2013]

• Use m random XOR clauses to select at random an appropriately small
cell.

• Count number of solutions in cell and multiply by 2m to obtain estimate
of |Sol(ϕ)|.

• Iterate until desired confidence is achieved.

ApproxMC runs in time polynomial in |ϕ|, ε−1, and log(1 − δ)−1, relative
to SAT oracle.

46

ApproxMC Performance: Accuracy

1.0E+00	

3.2E+01	

1.0E+03	

3.3E+04	

1.0E+06	

3.4E+07	

1.1E+09	

3.4E+10	

1.1E+12	

3.5E+13	

1.1E+15	

3.6E+16	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	

Co
un

t	

Benchmarks	

Cachet*1.75	

Cachet/1.75	

ApproxMC	

Accuracy: ApproxMC vs Cachet (exact counter)

47

ApproxMC Performance: Runtime

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	 110	 120	 130	 140	 150	 160	 170	 180	 190	

Ti
m
e	
(s
ec

on
ds

)	

Benchmarks	

ApproxMC	

Cachet	

Runtime Comparison: ApproxMC vs Cachet’

48

SAT Solving

• The improvement in the performance of SAT solvers over the past 20
years is revolutionary!

– Better marketing: Deep Solving

• SAT solving is an enabler, e.g., approximate sampling and counting

• When you have a big hammer, look for nails!!!

• Scalability is an ongoing challenge!

49

Reflection on P vs. NP

Old Cliché “What is the difference between theory and practice? In theory,
they are not that different, but in practice, they are quite different.”

P vs. NP in practice:

• P=NP: Conceivably, NP-complete problems can be solved in polynomial
time, but the polynomial is n1,000 – impractical!

• P6=NP: Conceivably, NP-complete problems can be solved by nlog log logn

operations – practical!

Conclusion: No guarantee that solving P vs. NP would yield practical
benefits.

50

Are NP-Complete Problems Really Hard?

• When I was a graduate student, SAT was a “scary” problem, not to be
touched with a 10-foot pole.
• Indeed, there are SAT instances with a few hundred variables that cannot

be solved by any extant SAT solver.
• But today’s SAT solvers, which enjoy wide industrial usage, routinely

solve real-life SAT instances with millions of variables!

Conclusion We need a richer and broader complexity theory, a theory that
would explain both the difficulty and the easiness of problems like SAT.

Question: Now that SAT is “easy” in practice, how can we leverage that?

• We showed how to leverage for sampling and counting. What else?

• Is BPPNP the “new” PTIME?

51

