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Motivation: Von Neumann's Trick

Suppose you have a biased coin, i.e. a coin such that
P(H)=p
and

P(T)=1-p

for some p € (0, %) and you would like to use it to simulate a fair

coin.

Von Neumann discovered a clever trick for doing so.



Von Neumann's Trick

Given a string such as:

010010111101011101000001101011110101111001
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Step 1: Split the string into blocks of two.



Von Neumann's Trick

Given a string such as:
010010111101011101000001101011110101111001

Step 1: Split the string into blocks of two.



Von Neumann's Trick

Given a string such as:
010010111101011101000001101011 110101111001
Step 1: Split the string into blocks of two.

Step 2: Delete all instances of 00 and 11
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Von Neumann's Trick

Given a string such as:
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Step 1: Split the string into blocks of two

Step 2: Delete all instances of 00 and 11

Step 3: Replace all instances of 01 with 0 and all instances of 10
with 1.



Von Neumann's Trick

Given a string such as:

0 ** 10 ** ** 01 01 ** 01 ** ** 01 10 10 ** ** 01 01 ** 10 01
Step 1: Split the string into blocks of two

Step 2: Delete all instances of 00 and 11

Step 3: Replace all instances of 01 with 0 and all instances of 10
with 1.
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Given a string such as:
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Von Neumann's Trick

Given a string such as:
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Step 2: Delete all instances of 00 and 11
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Von Neumann's Trick

Given a string such as:
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Given a string such as:
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Step 1: Split the string into blocks of two
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with 1.



Von Neumann's Trick

Given a string such as:
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Von Neumann's Trick

Given a string such as:

0 %% 1 %% Kok () () Rk () Rk kk () ] ] Kk Rk () () k% 1
Step 1: Split the string into blocks of two

Step 2: Delete all instances of 00 and 11

Step 3: Replace all instances of 01 with 0 and all instances of 10
with 1.



Von Neumann's Trick

Given a string such as:

0 %% 1 %% Kok () () Rk () Rk kk () ] ] Kk Rk () () k% 1
Step 1: Split the string into blocks of two

Step 2: Delete all instances of 00 and 11

Step 3: Replace all instances of 01 with 0 and all instances of 10
with 1.

The resulting string is 010000110010.



Formally

Von Neumann'’s trick gives us a monotone function ¢ : 2<% — 2<%
satisfying

> ¢(000) = ¢(011) = ¢(0),
» ¢(c01) = ¢(0)0, and
> ¢(010) = ¢(0)1

for every o € 2<% of even length.



Why does this work?

Recall we are given a biased coin such that for every o € 2<%,

P(c0|o)=p and P(ol|oc)=1—p.

Key Observation: for every o € 2<%,
P(000] o) =p? P(oll|o)=(1-p),
and
P(o01|o)=P(cl0|0)=p(1—p).
It thus follows that

B((6(0)0] 6(0) ) = B( 6011 | 6(0) ) = 3.



How efficient is Von Neumann's trick?

On average, how many biased bits are required to extract one
unbiased bit?

The answer depends on how biased the coin is.

Given a (p,1 — p)-coin, on average, we will need ( ) biased bits
to extract a single unbiased bit.



Peres’ refinement

In “lterating Von Neumann's Procedure for Extracting Random
Bits” (1992), Yuval Peres studies a sequence of generalizations of
von Neumann's trick obtained by iterating von Neumann's
procedure.

For each of these procedures, Peres calculates the associated
extraction rate.

Given a monotone function ¢ : 2<% — 2<% the extraction rate of
¢ with respect to the bias p is defined to be

||m SUp E(|¢(X17X27 e 7Xf7)’)

n—oo n

where the bits x; are independent and (p,1 — p)-distributed and E
stands for expected value.



Peres’ refinement (continued)

What Peres further shows is that the extraction rates of the
various iterations of von Neumann's trick approaches the entropy
of the underlying source,

H(p) = —plogy(p) — (1 — p) logy(1 — p).



Connections to computability theory?

A range of similar procedures and their corresponding extraction
rates have been studied in the randomness extraction literature.

Given this general phenomenon of the extraction rates of various
extraction procedures, what can we learn if we approach it from a
computability-theoretic point of view?

In particular, what connections are there to algorithmic
randomness?



Our methodology

1. For a range of Turing functionals, i.e., effective maps from 2%
to 2¢, we examine the corresponding notion of extraction rate.

2. For each such procedure, we investigate which notion of
algorithmically random sequence is representative of the
associated extraction rate.



Part 1: The Extraction Rates of Turing Functionals



Continuous Functionals

A continuous functional ® : 2 — 2“ may be represented by a
function ¢ : 2<% — 2<% such that the following hold for all
o€ 2%:

(1) a1 < o2 implies ¢(01) < ¢(02);

(2) For every n, there exists m such that for all o € {0,1}™,

6(0)| =
(3) Forall X € 2¥, &(X) =, o(Xn).
We call the function ¢ a representation of ®.
We can define partial functionals if we do not require condition (2).

A partial or total functional ® is a Turing functional if ¢ is
computable.



Martin-Lof randomness

Definition
A Martin-L6f test is a uniformly 9 sequence (U;);e,, such that for

each i, '
/\(Z/{,) <27

A sequence X € 2% passes the Martin-Lof test (U;)jc, if

X¢ﬂiui-

X € 2% is Martin-Lof random, denoted X € MLR, if X passes
every Martin-Lof test.
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Schnorr Randomness

Definition
A Schnorr test is a Martin-Lof test (U;);c,, such that for each i,

ANU) =27".
A sequence X € 2¥ passes the Schnorr test (U;)icy, if X & () Ui.

X € 2% is Schnorr random, denoted X € SR, if X passes every
Schnorr test.

Fact: MLR C SR.



Randomness with respect to non-uniform measures

We can also define Martin-Lof randomness and Schnorr
randomness with respect to a non-uniform computable measure pu:

p-Martin-Lof tests:  pu(U;)
p-Schnorr tests: ()

A

2”
2”

Let MLR,, denote the collection of p-Martin-Lof random sequences.
Let SR, denote the collection of p-Schnorr random sequences.

In general, we have MLR, C SR,,.



Almost Total Turing Functionals

Let dom(®) = {X : ®(X) € 2¥}.
Let 1 be a computable probability measure on 2%.

A functional ® : 2¥ — 2¥ is p-almost total if u(dom(®)) = 1.

Lemma
A Turing functional ® is p-almost total if and only if
MLR, C dom(®).



The canonical representation of a functional

If ¢ is a representation of ® with the property that ¢(o) is the
longest common initial segment of all members of
{®(X) : 0 < X}, we call ¢ the canonical representation of ®.

In general, the canonical representation of a partial computable
functional is computable in (/' and need not be computable.

® is nowhere constant if for any string o, if [o] C dom(®), then ®
is not constant on [o].

Proposition

If & is a total, nowhere constant Turing functional, then the
canonical representation ¢ of ® is computable.



Output-input ratios

Given a functional ® with representation ¢, we define the
¢-output/input ratio of o € 2<% to be

Ol (o) - 1910

o]

Moreover, we set Oly(X) = lim,_oc Olg(X[n) if this limit exists.



The average output-input ratio

Let 1 be a measure on 2“ and let ® be a p-almost functional with
representation ¢.

For [o] = {X € 2¥: 0 < X}, we will hereafter write u([o]) as
(o).

The average ¢-output/input ratio for strings of length n with
respect to the measure p is

Ag(®,1,m) = 3 p(0)Oly(0) = + 3 u(0)|6(0)].

oe2n oe2n



The extraction rate of a functional

The p-extraction rate of @ is

Rate(®, 1) = limsup Avg(®, u, n).

n—oo



Part 2: The Extraction Rates of Block Functionals



Block functionals

¢ : 2<% — 2<% is an n-block map if for any string
oc=o01 ... o T,

where |o;| =nfori=1,..., k and |7| < n,
6(0) = Blo1) "~ ...~ B0,
¢ is non-trivial if |¢(o)| > 0 for some o € 2".
® is an n-block functional if it has an n-block representation.

Block maps have been studied by Peres, Elias, Pae-1l and others.






Bernoulli measures

For p € (0,1), the Bernoulli measure p, on 2 is given by

(o) = p#o(rf (1— )#1

Given a Bernoulli measure 1 on (2")“, we can extend p to a
measure on 2%, which we call an n-step Bernoulli measure on 2.

A measure p is positive if u(o) > 0 for all o € 2<%,

Proposition

Suppose i is a positive n-step Bernoulli measure on 2% and ® is a
non-trivial n-block functional ®. Then ® is u-almost total.



The main results on block functionals

Theorem

Let i be a positive n-step Bernoulli measure and ® a non-trivial
n-block functional. Then

Rate(®, 1) = Avg(®, ).

Theorem

Let i be a computable, positive n-step Bernoulli measure, and let
X € 2“ be u-Schnorr random. Then for every non-trivial n-block
functional ® with canonical representation ¢,

lim [oXTm)l = Rate(P, p).

n—o0 n



A key ingredient

For our proof, we use the following effective version of Birkhoff's
Ergodic Theorem:

Theorem (Franklin-Towsner)

Let pn be a computable measure on 2% and let T : 2% — 2% be a
computable, u-invariant, ergodic transformation. Then for any
bounded computable function f and any p-Schnorr random

X e2v,
1 k=

I|m ;Z (X)) = /fd,u



A bit of ergodic theory
A transformation T : 2% — 2% is p-invariant if, for all 7 € 2<%,
pu(r) = w(TH([7])).

For example, the shift transformation T(X) = (X(1), X(2),...) is
p-invariant with respect to any Bernoulli measure y on 2¢.

A p-invariant transformation T is ergodic if for every p-measurable
set A C 2% with T7}(A) = A, u(A) =0 or u(A) = 1.

We say that p is ergodic if the shift is ergodic with respect to p.

For an ergodic measure i, we may define the entropy of u as

() = lim 3 (o) log (o).
jol=n



Theorem (Franklin-Towsner)

Let u be a computable measure on 2% and let T : 2 — 2“ be a
computable, p-invariant, ergodic transformation. Then for any

bounded computable function f and any p-Schnorr random
X e2v,

=

-1
i 1
m —
k—oo k .
1

F(T'(X)) :/fdu.

Il
o
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> Let T be the n-shift operator, which is ergodic with respect to
any n-step Bernoulli measure.
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» Then [ f du = Avg(®, i, n) = Rate(P, p).



Theorem (Franklin-Towsner)

Let u be a computable measure on 2% and let T : 2 — 2“ be a
computable, p-invariant, ergodic transformation. Then for any

bounded computable function f and any p-Schnorr random
X e2v,

1 i
kLmOOka(T(X)):/fdu.

> Let T be the n-shift operator, which is ergodic with respect to
any n-step Bernoulli measure.

> Let f(X) = |¢>(ann)

» Then [ f du = Avg(®, i, n) = Rate(P, p).

k1 12X Tmingi)| _ [$(X k)

n nk

F X f(TIX) = 205



Part 3: The Extraction Rates of Functionals
Induced by DDG-Trees



DDG-trees

Discrete Distribution Generating trees were defined by Knuth and
Yao (“The Complexity of Non-Uniform Random Number
Generation") in their study of using a fair coin to generate a biased
distribution.

A DDG-tree is a tree S C 2<%
» with terminal nodes D(S) C S,
> together with a labelling function

ls:D(S)— A={a1,...,a}
» which induces a discrete probability distribution on A by

setting
= 3 2

Ls(T)=a;

We assume that the set [S] of infinite paths through S has
measure 0, so that fozl pi=1









Average running time of extraction

Knuth and Yao define the average running time of randomness
extraction by a DDG-tree S to be

AvgRT(S) = Z i- M[D(S) N 2.

That is, AvgRT(S) is the average number of input bits needed to
produce a single output bit.



The functional induced by a DDG-tree

Given a DDG-tree S, we can define a functional &5 : 2 — A“ by
applying the Knuth-Yao procedure successively along initial
segments of an input X € 2%.



Extraction rate of ®s

Theorem

Let X € 2% be Schnorr random. Then for every computable
DDG-tree S, we have

i [@s(XIn) _ 1
n—oo ~ AvgRT(S)

The proof of this results depends another effective version of
Birkhoff's Ergodic Theorem due to Gacs, Hoyrup and Rojas.

By integrating over the Schnorr random sequences, we have:

Corollary

1
Rate(®s, \)

~ AvgRT(S)’



Part 4: The Extraction Rate of the Levin-Kautz
Conversion Procedure



A theorem due to Levin and Kautz

Theorem (Levin/Kautz)

For every pair of computable measures 11 and v on 2, there is an
effective procedure that transforms every non-computable
u-Martin-Lof random sequence into a v-Martin-L6f random
sequence.

Question
Can we determine the rate at which v-randomness can be
extracted from a p-random sequence?



Levin-Kautz conversion

We define for computable measures 1 and v, a p-almost total
functional ®,,_,, that transforms p-randomness into v-randomness.

For non-computable X € MLR, and Y € 2% such that
®,,(X) =Y (so that Y € MLR,),

(i) (q)u%u © q>l/~>,u,)(X) = X, and
(i) (Pyop0®usn)(Y) =Y,

and thus X =1 VY.



The extraction rate for Levin-Kautz conversion

A measure 1 on 2¥ is strongly positive if there is some § € (0, 3)

2
such that for every o € 2<%, u(0c0] o) € [6,1 — 4.

Theorem
Let pw and v be computable, shift-invariant, ergodic measures that
are strongly positive. Then for every non-computable X € MLR,,,

Ols, .(X) = 3.

In particular, in the case that v = A, we have Oly,_,, (X) = h(u).



Effective Shannon-McMillan-Breiman Theorem

A key feature of our proof is the following result of Hoyrup's,
which follows from yet another effective version of Birkhoff's
ergodic theorem.

Theorem (Hoyrup)

Let i be a computable shift-invariant ergodic measure on 2% .
Then for every p-Martin-Lof random sequence X € 2%,

tim O = i S



A few open problems

Problem: ldentify features of an almost total Turing functional
that guarantee that its extraction rate is witnessed pointwise by
sufficiently random inputs to the functional.

Problem: For each of the classes of functionals discussed here,
determine the level of randomness necessary for a sequence to
witness the extraction rate.



Thank you!



