Computable Π_2^0 Scott sentences

Charlie McCoy, with Julia Knight and Karen Lange

November 14, 2024

Charlie McCoy, with Julia Knight and Karen Lange Computable Π_2^0 Scott sentences

• $L_{\omega_1,\omega}$ formulas

- finite tuples of variables
- countable infinitary conjunctions and disjunctions
- bulit up recursively over countable ordinals: $\Sigma_0, \Pi_0, \Sigma_\alpha, \Pi_\alpha$

• $L_{\omega_1,\omega}$ formulas

- finite tuples of variables
- countable infinitary conjunctions and disjunctions
- bulit up recursively over countable ordinals: $\Sigma_0, \Pi_0, \Sigma_\alpha, \Pi_\alpha$
- Computable $L_{\omega_1,\omega}$ formulas
 - formally, coding of formulas for $\alpha < \omega_1^{\textit{CK}}$
 - countable infinitary conjunctions and disjunctions over c.e. sets of formulas

Theorem 1 (Scott)

Let \mathcal{A} be a countable structure for a countable language L

- Then there is a sentence Φ in L_{ω1ω} that defines A up to isomorphism among countable structures
- That is, for \mathcal{B} a countable L-structure, $\mathcal{A} \cong \mathcal{B}$ iff $\mathcal{B} \models \Phi$

Observation 1

At face value, it does not appear that Φ being a Scott sentence for A would be known "internally" by A; must consider all other structures B and assert the existence of isomorphisms

Example 1

Consider the structure $(\mathbb{N}, +, \times, S, 0, 1)$. Then it has a Scott sentence formed as the infinitary conjunction of all basic addition and multiplication facts and the infinitary sentence $\forall x \bigvee_n (x = S^n(0))$

Let $\alpha \geq 1$ be a countable ordinal, and A be a countable structure for a countable language L. Then the following are equivalent:

- **1** \mathcal{A} has a $\Pi_{\alpha+1}$ Scott sentence
- **2** for each $\vec{a} \in A$, the automorphism orbit of \vec{a} is defined by a Σ_{α} formula
 - The proof of 2) \Rightarrow 1) goes back to Scott's own proof of his Isomorphism Theorem using Scott families

Let $\alpha \geq 1$ be a countable ordinal, and A be a countable structure for a countable language L. Then the following are equivalent:

- **1** \mathcal{A} has a $\Pi_{\alpha+1}$ Scott sentence
- **2** for each $\vec{a} \in A$, the automorphism orbit of \vec{a} is defined by a Σ_{α} formula
 - The proof of 2) \Rightarrow 1) goes back to Scott's own proof of his Isomorphism Theorem using Scott families
 - Scott's proof shows this characterization is internal to A (automorphism replaced with back-and-forth families)

Let $\alpha \geq 1$ be a countable ordinal, and A be a countable structure for a countable language L. Then the following are equivalent:

- **Q** \mathcal{A} has a $\Pi_{\alpha+1}$ Scott sentence
- **2** for each $\vec{a} \in A$, the automorphism orbit of \vec{a} is defined by a Σ_{α} formula
 - The proof of 2) \Rightarrow 1) goes back to Scott's own proof of his Isomorphism Theorem using Scott families
 - Scott's proof shows this characterization is internal to A (automorphism replaced with back-and-forth families)
 - When β is a limit ordinal, 1) \Rightarrow 2) holds: that is, having a Π_{β} Scott sentence implies having $\Sigma_{<\beta}$ orbit-defining formulas

伺 ト イヨ ト イヨト

Let $\alpha \geq 1$ be a countable ordinal, and A be a countable structure for a countable language L. Then the following are equivalent:

- **1** \mathcal{A} has a $\Pi_{\alpha+1}$ Scott sentence
- **2** for each $\vec{a} \in A$, the automorphism orbit of \vec{a} is defined by a Σ_{α} formula
 - The proof of 2) \Rightarrow 1) goes back to Scott's own proof of his Isomorphism Theorem using Scott families
 - Scott's proof shows this characterization is internal to A (automorphism replaced with back-and-forth families)
 - When β is a limit ordinal, 1) \Rightarrow 2) holds: that is, having a Π_{β} Scott sentence implies having $\Sigma_{<\beta}$ orbit-defining formulas

< ∃ > _

• 2) \Rightarrow 1) is not true in general for limit ordinals

Theorem 3 (Alvir, Knight, M)

For $\alpha \geq 2$ a computable ordinal, if A has a computable Π_{α} Scott sentence, then each tuple has an orbit defined by computable $\Sigma_{<\alpha}$ formula

Some natural examples:

- ($\mathbb{N}, +, \times, S, 0, 1$)
- $\langle \mathbb{Q}, + \rangle$
- Any computable subfield K of the algebraic numbers

Proposition 4 (Alvir, Knight, M)

The converse of Theorem 3 is false for $\alpha = 2$

Charlie McCoy, with Julia Knight and Karen Lange Computable Π_2^0 Scott sentences

The structure is built from a computable tree $T \subset 2^{<\omega}$ (constructed previously by Badaev) with the following features:

- No terminal nodes
- One non-computable path from which we can enumerate the elements of the Halting Set in order

The theory ${\mathscr T}$ is formed from the tree

- Language has a unary predicate U_n for each level n of the tree
- Each $\sigma \in T$ corresponds to a conjunction of $U_n(x)$ and $\neg U_n(x)$ for $n < |\sigma|$; call it $\sigma(x)$
- $\mathcal T$ is axiomatized by saying:
 - for each element *a* and each level *n*, there is some σ of length *n* with $\sigma(a)$
 - $\bullet\,$ for any σ and any m, there are m elements satisfying $\sigma\,$

 $\bullet\,$ The elements of a model ${\mathcal A}$ of ${\mathscr T}$ correspond to paths through the tree

- $\bullet\,$ The elements of a model ${\mathcal A}$ of ${\mathscr T}$ correspond to paths through the tree
- \bullet Every model of ${\mathscr T}$ has infinitely many elements corresponding to each isolated path

- \bullet The elements of a model ${\mathcal A}$ of ${\mathscr T}$ correspond to paths through the tree
- Every model of ${\mathscr T}$ has infinitely many elements corresponding to each isolated path
- The prime model has only these elements; there is a computable copy of the prime model

- \bullet The elements of a model ${\mathcal A}$ of ${\mathscr T}$ correspond to paths through the tree
- Every model of \mathscr{T} has infinitely many elements corresponding to each isolated path
- The prime model has only these elements; there is a computable copy of the prime model
- Non-prime models have one or more elements corresponding to the non-isolated path

 every tuple of distinct elements a₁,..., a_k has an orbit that is simply the finite conjunction of the q.f. σ(x_i) that isolates the path corresponding to a_i

- every tuple of distinct elements a₁,..., a_k has an orbit that is simply the finite conjunction of the q.f. σ(x_i) that isolates the path corresponding to a_i
- By Theorem 2, \mathcal{A} has a Π_2 Scott sentence

- every tuple of distinct elements a₁,..., a_k has an orbit that is simply the finite conjunction of the q.f. σ(x_i) that isolates the path corresponding to a_i
- By Theorem 2, \mathcal{A} has a Π_2 Scott sentence
- Consider B, a model of T with just one element corresponding to the non-isolated, non-computable path f

- every tuple of distinct elements a₁,..., a_k has an orbit that is simply the finite conjunction of the q.f. σ(x_i) that isolates the path corresponding to a_i
- By Theorem 2, \mathcal{A} has a Π_2 Scott sentence
- Consider \mathcal{B} , a model of \mathscr{T} with just one element corresponding to the non-isolated, non-computable path f
- Any computable Π₂ Scott sentence true of A and not true of B would allow us to compute f

Question 1

When does a structure A with a Π_2 Scott sentence have a computable Π_2 Scott sentence?

Note: for the computable counter-example \mathcal{A} from Proposition 4, we cannot computably assign a tuple to its orbit-defining formula

Proposition 5

Let \mathcal{A} be a computable structure. If there is a computable function f so that $f(\vec{a})$ assigns \vec{a} to an orbit-defining existial formula, then \mathcal{A} has a computable Π_2 Scott sentence

Initial speculation: At least among computable structures, is the key to distinguishing structures that have computable Π_2 Scott sentences from those that don't somehow bound up in the complexity of a function that assigns each tuple \vec{a} to an orbit-defining existential formula?

NO!!

Charlie McCoy, with Julia Knight and Karen Lange Computable Π_2^0 Scott sentences

æ

イロト イ団ト イヨト イヨト

• Let \mathcal{A} be a countable *L*-structure with a Π_2 Scott family. It is $\Pi_2^0(\mathcal{A}, L)$ to determine whether a given existential formula $\varphi(\vec{x})$ defines the orbit of a given tuple \vec{a} in \mathcal{A}

- Let \mathcal{A} be a countable *L*-structure with a Π_2 Scott family. It is $\Pi_2^0(\mathcal{A}, L)$ to determine whether a given existential formula $\varphi(\vec{x})$ defines the orbit of a given tuple \vec{a} in \mathcal{A}
- The computable unary structure \mathcal{A} built from Badaev's tree does *not* have a computable Π_2 Scott sentence, but there is a Δ_2^0 function that takes each tuple in \mathcal{A} to a quantifier free formula that defines its orbit

- Let \mathcal{A} be a countable *L*-structure with a Π_2 Scott family. It is $\Pi_2^0(\mathcal{A}, L)$ to determine whether a given existential formula $\varphi(\vec{x})$ defines the orbit of a given tuple \vec{a} in \mathcal{A}
- The computable unary structure \mathcal{A} built from Badaev's tree does *not* have a computable Π_2 Scott sentence, but there is a Δ_2^0 function that takes each tuple in \mathcal{A} to a quantifier free formula that defines its orbit
- There is a computable graph G that does have a computable Π₂ Scott sentence, but there is no Δ₂⁰ function that takes each tuple in G to an existential formula that defines its orbit

- Let \mathcal{A} be a countable *L*-structure with a Π_2 Scott family. It is $\Pi_2^0(\mathcal{A}, L)$ to determine whether a given existential formula $\varphi(\vec{x})$ defines the orbit of a given tuple \vec{a} in \mathcal{A}
- The computable unary structure \mathcal{A} built from Badaev's tree does *not* have a computable Π_2 Scott sentence, but there is a Δ_2^0 function that takes each tuple in \mathcal{A} to a quantifier free formula that defines its orbit
- There is a computable graph \mathcal{G} that *does* have a computable Π_2 Scott sentence, but there is *no* Δ_2^0 function that takes each tuple in \mathcal{G} to an existential formula that defines its orbit
- There is a computable field *K* that *does* have a computable Π₂ Scott sentence, but there is *no* Δ₂⁰ function that takes each tuple in *K* to an existential formula that defines its orbit

Finding a "precursor" to a tuple's orbit-defining existential formula

In the last two examples, there *is* a c.e. list of existential formulas $(\varphi_i)_{i \in \omega}$ with:

- **1** each $\vec{a} \in \mathcal{A}$ satisfies one of the φ_i
- ② for each i ∈ ω, there is a finite list of orbit-defining existential formulas γ₁,..., γ_{ki} with A ⊨ [φ_i → (γ₁ ∨ ··· ∨ γ_{ki})]

Finding a "precursor" to a tuple's orbit-defining existential formula

In the last two examples, there *is* a c.e. list of existential formulas $(\varphi_i)_{i \in \omega}$ with:

- **(**) each $\vec{a} \in \mathcal{A}$ satisfies one of the φ_i
- ② for each i ∈ ω, there is a finite list of orbit-defining existential formulas γ₁,..., γ_{ki} with A ⊨ [φ_i → (γ₁ ∨ ··· ∨ γ_{ki})]

Proposition 6

Assume A has a Π_2 Scott sentence, and Th(A) has some extra effectiveness. Then a c.e. list as above guarantees A has a computable Π_2 Scott sentence

Finding a "precursor" to a tuple's orbit-defining existential formula

In the last two examples, there *is* a c.e. list of existential formulas $(\varphi_i)_{i \in \omega}$ with:

- **(**) each $\vec{a} \in \mathcal{A}$ satisfies one of the φ_i
- ② for each i ∈ ω, there is a finite list of orbit-defining existential formulas γ₁,..., γ_{ki} with A ⊨ [φ_i → (γ₁ ∨ ··· ∨ γ_{ki})]

Proposition 6

Assume A has a Π_2 Scott sentence, and Th(A) has some extra effectiveness. Then a c.e. list as above guarantees A has a computable Π_2 Scott sentence

Corollary 7

Under the same initial assumptions of Proposition 6, if Th(A) is \aleph_0 -categorical, then A has a computable Π_2 Scott sentence

Proposition 8

There is a computable structure A that has a computable Π_2 Scott sentence, but there is no c.e. list of existential formulas satisfying the properties of Proposition 6

- \mathcal{A} is a structure in a unary language
- built from a family of trees T_e so elements of A represent paths through these trees
- each T_e is constructed to foil W_e from being a list of existential formulas satisfying the properties of Proposition 6

Weak saturation, computable Π_2 Scott sentence, and \aleph_0 -categoricity

Definition 1

 \mathcal{A} has the weak saturation property if any c.e. set $\Gamma(\vec{x})$ of universal formulas finitely satisfied by \mathcal{A} is satisfied by \mathcal{A}

Proposition 9

Let \mathcal{A} be a structure whose theory has some extra effectiveness; assume that \mathcal{A} has a Π_2 Scott sentence and the weak saturation property. Then \mathcal{A} has a computable Π_2^0 Scott sentence iff \mathcal{A} is \aleph_0 -categorical

This, proposition can best be viewed as a "negative result," because it says that, for any structure that *isn't* \aleph_0 -categorical, weak saturation *precludes* having a computable Π_2^0 Scott sentence

We look at the family of structures formed from trees like the one from Proposition 4

- Computable tree T with no terminal nodes, isolated paths dense
- Computable structure \mathcal{A} with each element corresponding to an isolated path, each isolated path represented by infinitely many elements. So \mathcal{A} has a Π_2 Scott sentence

Proposition 10

Such a structure \mathcal{A} has a computable Π_2 Scott sentence iff there is a computable Π_2 formula $\psi(x)$ such that in all models of \mathscr{T} , $\psi(x)$ is satisfied by all elements that represent isolated paths and not by any elements that represent non-isolated paths

Is there a reason for our inability to find necessary and sufficient conditions?

Question 2

Could it be that characterizing the structures with computable Π_2 Scott sentences is just very hard (in the technical sense)?

Index set arguments with these unary structures from trees; e.g., working currently to try to produce a sequence of computable structures A_n so that $n \in Cof$ iff A_n has a computable Π_2 Scott sentence

• There is a nice, internal characterization for being relatively computably categorical: a Σ_1 Scott family (For relative computable categoricity, all isomorphic copies, not just the computable ones, must be considered.)

- There is a nice, internal characterization for being relatively computably categorical: a Σ_1 Scott family (For relative computable categoricity, all isomorphic copies, not just the computable ones, must be considered.)
- There is no such characterization for being computably categorical, because this property is Π¹₁ hard (Downey, Kach, Lempp, Lewis-Pye, Montalbán, Turetsky)

- There is a nice, internal characterization for being relatively computably categorical: a Σ_1 Scott family (For relative computable categoricity, all isomorphic copies, not just the computable ones, must be considered.)
- There is no such characterization for being computably categorical, because this property is Π¹₁ hard (Downey, Kach, Lempp, Lewis-Pye, Montalbán, Turetsky)
- There is a nice, internal characterization for having a Π₂ Scott sentence (The characterization captures all Π₂ Scott sentences, not just the computable ones.)

- There is a nice, internal characterization for being relatively computably categorical: a Σ_1 Scott family (For relative computable categoricity, all isomorphic copies, not just the computable ones, must be considered.)
- There is no such characterization for being computably categorical, because this property is Π¹₁ hard (Downey, Kach, Lempp, Lewis-Pye, Montalbán, Turetsky)
- There is a nice, internal characterization for having a Π₂ Scott sentence (The characterization captures all Π₂ Scott sentences, not just the computable ones.)
- Is it possible that there is no nice characterization for having a computable Π₂ Scott sentence, because the problem is complete at a very high level?

・ 戸 ト ・ ヨ ト ・ ヨ ト

- When comparing categoricity to Scott sentences, the implication between the items in the analogy is actually reversed
- That is, for categoricity, (relative computable categoricity) ⇒ (computable categoricity)
- Whereas for Scott sentences, (having a *computable* Π_2 Scott sentence) \Rightarrow (having a Scott sentence)

Thank you!

Charlie McCoy, with Julia Knight and Karen Lange Computable Π_2^0 Scott sentences

æ

Happy birthday, Julia Knight!

Charlie McCoy, with Julia Knight and Karen Lange