
1/39

Punctual Structures

Ellen Hammatt

Victoria University of Wellington, Te Herenga Waka

Online Logic Seminar, 15 February 2024

Ellen Hammatt Punctual Structures



2/39

Plan for Today

1 Introduction and Motivation
2 Categoricity and Dimension
3 The Punctual Degrees
4 1-Decidability

Ellen Hammatt Punctual Structures



3/39

Part 1. Introduction and
Motivation
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Computable Structure Theory

Definition
A computable presentation of a structure A is a coding of A
with universe N and all functions and relations computable on
N.

We want to consider presentations up to the ‘correct notion of
sameness’.

Definition
Two computable presentations A,B are computably isomorphic
if there is a computable function f : A → B which is an
isomorphism.
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An example

We begin with the following example.

Example
Any two computable dense countable linear orders without end
points are computably isomorphic.
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An Example

A typical stage in the proof:

A : ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦
f : ↓ ↓ ↓ ↓ ↓ =⇒
B : ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ? ◦

Wait for an element to appear in the respective interval of B:

◦ ◦ ◦ ◦ • ◦
f : ↓ ↓ ↓ ↓ ⇓ ↓

◦ ◦ ◦ ◦ • ◦

But how long do we have to wait? This is an unbounded search.
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Primitive Recursion

What will happen if we forbid unbounded search?

In other words,

What is the primitive recursive content of mathematics?
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History

1 Mal’cev defined primitive recursive algebraic structures in
the 1960s.

2 Goodstein’s book (1961) ‘Recursive analysis’ is focused on
primitive recursive processes in elementary real analysis.

3 There has been some work in group theory in the 1970s
(word problem and such).

These initial attempts were essentially forgotten.
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History

In the 1990s:

Automatic algebra (Nerode, Khoussainov, Braun,
Strüngmann and others). But unfortunately automatic
algorithms are very rare: (Q,+) is not automatic (Tsankov,
2011).

Online combinatorics (Kierstead, Trotter, Downey, Askes
and many others). In contrast, “online” combinatorics relies
on very crude models of computation

Polynomial time algebra (Nerode, Remmel, Cenzer,
Grigorieff, more recently Alaev and Selivanov and others).
Can be notation dependent.
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Polynomial Time Proofs

The majority of proofs about polynomial time structures are
focused on eliminating unbounded search.

Sometimes the resulting primitive recursive algorithm is already
polynomial time “for free”.

To show that there is no polynomial time presentation, it is often
easiest to prove there is no primitive recursive one.
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Primitive Recursion

Primitive recursion is much less notation-dependent than
polynomial time (more robust).

Primitive recursion refines the crude approach in online
combinatorics.

Primitive recursion has a version of the Church-Turing thesis.

Primitive recursive algorithms occur naturally in model theory
(Henkin, Tarski’s quantifier elimination, etc.).
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The Main Definition

Definition (Kalimullin, Melnikov, Ng 2017)
An algebraic structure A is punctual if:

the domain of A is N,

the operations and relations of A are primitive recursive.

Note that this restriction is not in Mal’cev’s definition (delays
were allowed in the domain).
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Delays in the Domain

Mal’cev allowed a primitive recursive domain.

While the domain is decided quickly, elements in the domain
could grow in an unbounded way.

This feature adds a delay into the domain.

It is important that we ensure the domain is all of N.

Ellen Hammatt Punctual Structures



13/39

Delays in the Domain

Mal’cev allowed a primitive recursive domain.

While the domain is decided quickly, elements in the domain
could grow in an unbounded way.

This feature adds a delay into the domain.

It is important that we ensure the domain is all of N.

Ellen Hammatt Punctual Structures



13/39

Delays in the Domain

Mal’cev allowed a primitive recursive domain.

While the domain is decided quickly, elements in the domain
could grow in an unbounded way.

This feature adds a delay into the domain.

It is important that we ensure the domain is all of N.

Ellen Hammatt Punctual Structures



13/39

Delays in the Domain

Mal’cev allowed a primitive recursive domain.

While the domain is decided quickly, elements in the domain
could grow in an unbounded way.

This feature adds a delay into the domain.

It is important that we ensure the domain is all of N.

Ellen Hammatt Punctual Structures



14/39

Existence of Punctual Presentations

Theorem

In each of the following classes, every computable structure has a
punctual presentation:

1 Linear orders [Grigorieff, 1990].
2 Torsion-free abelian groups [Kalimullin, Melnikov, Ng 2017].
3 Boolean algebras [Kalimullin, Melnikov, Ng 2017].
4 Abelian p-groups [Kalimullin, Melnikov, Ng 2017].

In most of these cases we get a polynomial time copy almost
for free.
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No Punctual Presentations

Theorem

In each of the following classes, there exists a computable structure
that does not admit a punctual presentation

1 Torsion abelian groups [Cenzer and Remmel, ∼2000].
2 Archimedean ordered abelian groups [Kalimullin, Melnikov, Ng

2017].
3 Undirected graphs [Kalimullin, Melnikov, Ng 2017].

In each case the result gives the simplest construction of a
computable structure without polynomial time copy.
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Part 2. Categoricity and
Dimension
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Punctual Categoricity

Recall that in the computable case we look at presentations up
to computable isomorphism.

What do we do in the punctual case?

The inverse of a primitive recursive function is not necessarily
primitive recursive.

Definition

f : N → N is punctual if both f and f−1 are primitive recursive.

Definition (Kalimullin, Melnikov, Ng 2017)
A punctual A is punctually categorical if it has a unique punctual
presentation up to punctual isomorphism.
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Punctual Categoricity

Theorem (Kalimullin, Melnikov, Ng 2017)
1 A linear order is punctually categorical iff it is finite.
2 A Boolean algebra is punctually categorical iff it is finite.
3 An abelian p-group is punctually-categorical iff it has the form

F ⊕ V, where pV = 0 and F is finite.
4 A torsion-free abelian group is punctually categorical iff it is the

trivial group 0.

This resembles:
Theorem [Khoussainov and Nerode 1994] A structure is
automatically categorical iff it is finite.
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Non-Categoricity

All examples of punctually categorical structures on the
previous slide were computably categorical.

Question
Is every punctually categorical structure computably categorical?

Theorem (Kalimullin, Melnikov, Ng 2017)
There exists a punctually categorical structure which is

not computably categorical.

The techniques used in this proof are novel and the structure is
constructed by hand.

Repeating patterns are coded into the structure.
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Computable Dimension

In 1980 Goncharov proved that there is a structure having
exactly two computable presentations, up to computable
isomorphism.

We call the number of computable presentations of a structure
A up to computable isomorphism, the computable dimension of
A.
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Examples of Computable Dimension 2

In each of the following classes, there is a structure with
computable dimension 2:

1 two-step nilpotent groups [Goncharov 1981]
2 fields [Miller, Poonen, Schoutens, Shlapentokh 2018]
3 and many other classes [Hirschfeldt, Khoussainov, Shore,

Slinko 2002]

In all of these cases the structures must be specifically
constucted and are complex.
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Punctual Dimension

We call the number of punctual presentations of a structure A
up to punctual isomorphism, the punctual dimension of A.

Theorem (Melnikov, Ng 2020)

There is a structure of punctual dimension 2.

This proof is non-standard, it does not resemble the techniques
as in the proofs for finite computable dimension.

Techniques are based on those from the structure that is
punctually categorical but not computably categorical.
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Punctual Dimension
It is folklore that there exists structures of computable
dimension n for any n ∈ N.

This is done by using disjoint unions of a structure of
computable dimension 2.

What about the punctual case?

Theorem (H.)
For all punctual structures A and B, the disjoint union of A and
B has punctual dimension 1 or ∞.

We are provably justified to construct structures of punctual
dimension n by hand.

Theorem (H.)
There exists a structure of punctual dimension n for any n ∈ N
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Part 3. The Punctual Degrees
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The Punctual Degrees

Notice that primitive recursive isomorphism induces a natural
order on the collection of presentations of a structure.

Let PR(A) be the collection of all punctual presentations of a
countably infinite structure A.

Definition (Kalimullin, Melnikov, Ng 2017)

For A1,A2 ∈ PR(A), write A1 ≤pr A2 if there exists a primitive
recursive isomorphism from A1 onto A2.

Note that this is a completely new idea that is not present in the
computable case.

The punctual degrees of A is denoted as PR(A) = PR(A)/ ∼=pr
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Non-Isomorphic Punctual Degrees

Naturally we wish to investigate the structure of the punctual
degrees.

Theorem (Melnikov, Ng 2018)
The punctual degrees of:
- the dense linear order η,
- the random graph R, and
- the universal divisible abelian p-group P
are pairwise non-isomorphic.

The punctual degrees are able to separate the subtle difference
between these structures.
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Density in the Punctual Degrees

We have the following results about the density of the punctual
degrees of various structures:

For a finitely generated structure M, PR(M) is dense
[Bazhenov, Kalimullin, Melnikov, Ng 2020]
More examples of density including almost rigid structures
and (Z, <) [Downey, Dorzhieva, H., Melnikov, Ng 2023]
There exist structures where the punctual degrees are not
dense [Greenberg, Harrison-Trainor, Melnikov, Turetsky
2020]
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The Punctual Degrees of (Q, <)

Theorem (Koh, Melnikov, Ng 2024)

The punctual degrees of (Q, <) are not dense.

The rationals are not dense enough!

The proof is brutal. We wish to understand the structure of the
punctual degrees of (Q, <) further.
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The Punctual Degrees of (Q, <)

We have been working on embedding the atomless Boolean
algebra into the punctual degrees of (Q, <) (with Dorzhieva).

Theorem (Dorzhieva, H. 2024)

There are A,B, C and D in PR(Q, <) such that C and D are
incomparable, A <pr C,D <pr B and A = inf(C,D) and
B = sup(C,D).

The strategy to preserve the supremum and infimum required
careful attention.

Conjecture
Any distributive lattice can be embedded into the punctual
degrees of (Q, <)

Recall that the atomless Boolean algebra is universal for
distributive lattices.
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The Punctual Degrees of Other Linear Orders

Q has been very difficult.

We have looked into the punctual degrees of other linear orders
and we have the following result.

Theorem (Dorzhieva, H. 2024)
Let L be a linear order such that there is an infinite interval L0
in L such that for any φ ∈ Aut(L), φ ↾L0= idL0 . The atomless
Boolean algebra can be embedded into the punctual degrees of
L.
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Part 4: 1-Decidability

Ellen Hammatt Punctual Structures



32/39

1-Decidability

A computable presentation of a structure is 1-decidable if
given an existential formula there is an algorithm to decide the
truth of this formula in this presentation.

Definition
A punctual presentation is punctually 1-decidable if for any
existential formula ∃x̄φ(x̄ , ā), there is a primitive recursive
algorithm that outputs x̄ such that φ(x̄ , ā) holds, and otherwise
outputs −1.

Notice the difference in this definition.
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Boolean Algebras

(B,∨,∧,¬,0,1)
finite and cofinite subsets of N the 1-atom
interval algebra of Q (finite unions of left half-closed
intervals with rational end points) the atomless

Definition
For a Boolean Algebra B. An element x ∈ B is called an atom if
there is no y , z ∈ B such that x = y ∨ z and y ∧ z = 0.

Theorem (Alaev 2018)
A Boolean algebra B is punctually 1-decidable if B is punctual,
the relation Atom(x) is primitive recursive and there is a
primitive recursive function w(x) which given x, outputs y , z
such that y ∨ z = x if they exist.
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Punctually 1-Decidable Boolean Algebras

Theorem (Alaev 2017, Downey 2021)
Any 1-decidable Boolean algebra is isomorphic to a punctually
1-decidable Boolean algebra.

The idea is to use the following theorem:

Theorem (Remmel-Vaught 1989)

Suppose a Boolean algebra B has infinitely many atoms. Let B̂
be the Boolean algebra obtained by splitting each atom of B
finitely many times. Then B̂ is isomorphic to B.
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Proof Sketch

The opponent plays a 1-decidable Boolean algebra B and
we build a punctually 1-decidable Boolean algebra A
isomorphic to B.
We build A by copying B but the opponent can wait
unbounded lengths of time before declaring whether an
element is an atom or not. We are building a punctual
copy, we cannot wait.
While we ‘wait’ we split all elements that are not yet
declared to be atoms.
If an element in B is eventually declared to be an atom.
Then we stop splitting and declare all descendants of the
copy of this element in A to be an atom.

By applying Remmel-Vaught we succeed.
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Not Computably Isomorphic

But the isomorphism described in the previous slide is not
necessarily computable.

Theorem (Downey, H., Melnikov 2023)
There exists a 1-decidable Boolean algebra that is not
computably isomorphic to any punctually 1-decidable Boolean
algebra.
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Characterisation

We have a complete characterisation.

Theorem (Downey, H., Melnikov 2023)
For a countable Boolean algebra B, the following are
equivalent:

1 Every 1-decidable presentation A of B is computably
isomorphic to some punctually 1-decidable P ∼= B.

2 B splits into finitely many C0, ..., Ck such that each Ci is
either atomless, an atom, or a 1-atom.

Note that (2) is exactly the Boolean algebras which are
computably categorical relative to the 1-decidable
presentations.

Ellen Hammatt Punctual Structures



37/39

Characterisation

We have a complete characterisation.

Theorem (Downey, H., Melnikov 2023)
For a countable Boolean algebra B, the following are
equivalent:

1 Every 1-decidable presentation A of B is computably
isomorphic to some punctually 1-decidable P ∼= B.

2 B splits into finitely many C0, ..., Ck such that each Ci is
either atomless, an atom, or a 1-atom.

Note that (2) is exactly the Boolean algebras which are
computably categorical relative to the 1-decidable
presentations.

Ellen Hammatt Punctual Structures



38/39

1-Decidable Categoricity

Recall the structure that is punctually categorical but not
computably categorical.

What about the 1-decidable case?

Unfortunately we cannot use the same strategy as in the non
1-decidable proof.

Theorem (H., Melnikov, Ng 2024)
There is a structure that is punctually categorical relative to
1-decidable presentations but not computably categorical
relative to 1-decidable presentations.

The construction uses a mix of priority and Marker’s extension
and a new labelling technique. These techniques are novel.
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Thank you!
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