Generically Computable Linear Orderings

David Gonzalez

U.C. Berkeley
Based on joint work with Wesley Calvert, Douglas Cenzer and Valentina Harizanov

February 2024
Online Logic Seminar

Summary of the talk

We are going to discuss generic computability in the context of computable structure theory. We will take a structural perspective and consider Ramsey-like theorems.

Summary of the talk

We are going to discuss generic computability in the context of computable structure theory. We will take a structural perspective and consider Ramsey-like theorems.

We examine this concept in the context of linear orderings and develop generally useful tools through this analysis.

Summary of the talk

We are going to discuss generic computability in the context of computable structure theory. We will take a structural perspective and consider Ramsey-like theorems.

We examine this concept in the context of linear orderings and develop generally useful tools through this analysis.

1. The α-Ramsey property
2. Results for linear orderings
3. Connection with generic and coarse computability

Ramsey's Theorem - Undergraduate Version

- Every infinite graph, has a subgraph isomorphic to K_{∞} or the edgeless K_{∞}^{c}.

Ramsey's Theorem - Undergraduate Version

- Every infinite graph, has a subgraph isomorphic to K_{∞} or the edgeless K_{∞}^{c}.
- Every infinite graph with finitely many colors has a monochromatic subgraph isomorphic to K_{∞}.
- Every infinite linear ordering has a sub-ordering isomorphic to ω or ω^{*}.
- Every infinite partial ordering has a sub-ordering isomorphic to ω, ω^{*} or an anti-chain.
- Every infinite equivalence structure has an infinite class or infinitely many classes.

Ramsey's Theorem abstractly

There are many ways to abstract Ramsey's theorem; the way below is tied tightly to the "undergraduate" examples enumerated:

Ramsey's Theorem abstractly

There are many ways to abstract Ramsey's theorem; the way below is tied tightly to the "undergraduate" examples enumerated:

Every countable structure in the class \mathbb{K} has a substructure that is among the subclass $\mathbb{J} \subset \mathbb{K}$ of "simple" structures.

Ramsey's Theorem abstractly

There are many ways to abstract Ramsey's theorem; the way below is tied tightly to the "undergraduate" examples enumerated:

Every countable structure in the class \mathbb{K} has a substructure that is among the subclass $\mathbb{J} \subset \mathbb{K}$ of "simple" structures.

It is often natural and useful to ask for more than a substructure. We may need to relax our notion of simple.

Some history: notions of substrcture

- Calvert, Cenzer and Harizanov were examining equivalence relations when they realized that they should focus on substructures that saturate their equivalence classes.
- They were also looking at injection structures and p-groups and wanted to make this notion of substructure less ad hoc.

Some history: notions of substrcture

- Calvert, Cenzer and Harizanov were examining equivalence relations when they realized that they should focus on substructures that saturate their equivalence classes.
- They were also looking at injection structures and p-groups and wanted to make this notion of substructure less ad hoc.
- There was already a natural way to do this: Σ_{α}-elementary substructures.
Definition: A substructure $\mathcal{A} \subseteq \mathcal{B}$ is Σ_{α}-elementary if for all $\bar{p} \in \mathcal{A}$ and $\psi \in \Sigma_{\alpha}$

$$
\mathcal{A} \models \psi(\bar{p}) \Longleftrightarrow \mathcal{B} \models \psi(\bar{p})
$$

Some history: notions of substrcture

- Calvert, Cenzer and Harizanov were examining equivalence relations when they realized that they should focus on substructures that saturate their equivalence classes.
- They were also looking at injection structures and p-groups and wanted to make this notion of substructure less ad hoc.
- There was already a natural way to do this: Σ_{α}-elementary substructures.
Definition: A substructure $\mathcal{A} \subseteq \mathcal{B}$ is Σ_{α}-elementary if for all $\bar{p} \in \mathcal{A}$ and $\psi \in \Sigma_{\alpha}$

$$
\mathcal{A} \models \psi(\bar{p}) \Longleftrightarrow \mathcal{B} \models \psi(\bar{p})
$$

Note: Σ_{α} is a set of $\mathcal{L}_{\omega_{1}, \omega}$ formulas with $\alpha \in \omega_{1}$. Our results will also hold for computably infinitary formulas or first order formulas at finite levels.

The α-Ramsey property

Definition: We say a class of structures \mathbb{K} has the α-Ramsey property if:

Every countably infinite structure in the class \mathbb{K} has a Σ_{α}-elementary substructure that is among the subclass $\mathbb{J} \subset \mathbb{K}$ of computably presentable structures.

The α-Ramsey property

Definition: We say a class of structures \mathbb{K} has the α-Ramsey property if:
Every countably infinite structure in the class \mathbb{K} has a Σ_{α}-elementary substructure that is among the subclass $\mathbb{J} \subset \mathbb{K}$ of computably presentable structures.

Note: Ramsey's theorem gives that any class of relational structures has the 0-Ramsey property.

The α-Ramsey property

Definition: We say a class of structures \mathbb{K} has the α-Ramsey property if:
Every countably infinite structure in the class \mathbb{K} has a Σ_{α}-elementary substructure that is among the subclass $\mathbb{J} \subset \mathbb{K}$ of computably presentable structures.

Note: Ramsey's theorem gives that any class of relational structures has the 0-Ramsey property.
Foreshadowing: This property of a class of structures is key to understanding when its structures have Σ_{α}-generically c.e. copies.

Focusing in

Results on linear orderings

The 1-Ramsey property

Theorem: [CCGH] The class of linear orderings has the 1-Ramsey property. In fact, every linear ordering has a Σ_{1}-elementary substructure isomorphic to $\omega, \omega^{*}, \zeta, \omega \cdot \omega^{*}, \omega^{*} \cdot \omega$ or η.

Lemma: For linear orderings $\mathcal{A} \subseteq \mathcal{B}$ is Σ_{1}-elementary if the first, last, and between predicates are preserved.

Proof Sketch

Claim: Every linear ordering has a Σ_{1}-elementary substructure isomorphic to $\omega, \omega^{*}, \zeta, \omega \cdot \omega^{*}, \omega^{*} \cdot \omega$ or η.

- The proof proceeds by looking at the 1-blocks of the ordering \mathcal{B}, the equivalence classes of the finite-distance \sim_{1}.

Proof Sketch

Claim: Every linear ordering has a Σ_{1}-elementary substructure isomorphic to $\omega, \omega^{*}, \zeta, \omega \cdot \omega^{*}, \omega^{*} \cdot \omega$ or η.

- The proof proceeds by looking at the 1-blocks of the ordering \mathcal{B}, the equivalence classes of the finite-distance \sim_{1}.
- For any element x in any ordering $[x]_{\sim_{1}}$ is isomorphic to ω, ω^{*}, ζ or a finite ordering.

Proof Sketch

Claim: Every linear ordering has a Σ_{1}-elementary substructure isomorphic to $\omega, \omega^{*}, \zeta, \omega \cdot \omega^{*}, \omega^{*} \cdot \omega$ or η.

- The proof proceeds by looking at the 1-blocks of the ordering \mathcal{B}, the equivalence classes of the finite-distance \sim_{1}.
- For any element x in any ordering $[x]_{\sim_{1}}$ is isomorphic to ω, ω^{*}, ζ or a finite ordering.
- Case ω : There is a first 1-block with isomorphism type ω.

Proof Sketch

Claim: Every linear ordering has a Σ_{1}-elementary substructure isomorphic to $\omega, \omega^{*}, \zeta, \omega \cdot \omega^{*}, \omega^{*} \cdot \omega$ or η.

- The proof proceeds by looking at the 1-blocks of the ordering \mathcal{B}, the equivalence classes of the finite-distance \sim_{1}.
- For any element x in any ordering $[x]_{\sim_{1}}$ is isomorphic to ω, ω^{*}, ζ or a finite ordering.
- Case ω : There is a first 1-block with isomorphism type ω.
- Case ω^{*} : There is a last 1-block with isomorphism type ω^{*}.

Proof Sketch

Claim: Every linear ordering has a Σ_{1}-elementary substructure isomorphic to $\omega, \omega^{*}, \zeta, \omega \cdot \omega^{*}, \omega^{*} \cdot \omega$ or η.

- The proof proceeds by looking at the 1-blocks of the ordering \mathcal{B}, the equivalence classes of the finite-distance \sim_{1}.
- For any element x in any ordering $[x]_{\sim_{1}}$ is isomorphic to ω, ω^{*}, ζ or a finite ordering.
- Case ω : There is a first 1-block with isomorphism type ω.
- Case ω^{*} : There is a last 1-block with isomorphism type ω^{*}.
- Case ζ : There is a 1-block with isomorphism type ζ.

Proof Sketch (cont.)

Claim: Every linear ordering has a Σ_{1}-elementary substructure isomorphic to $\omega, \omega^{*}, \zeta, \omega \cdot \omega^{*}, \omega^{*} \cdot \omega$ or η.

- Case $\omega^{*} \cdot \omega$: There is a decreasing infinite sequence of 1-blocks with isomorphism type ω.

Proof Sketch (cont.)

Claim: Every linear ordering has a Σ_{1}-elementary substructure isomorphic to $\omega, \omega^{*}, \zeta, \omega \cdot \omega^{*}, \omega^{*} \cdot \omega$ or η.

- Case $\omega^{*} \cdot \omega$: There is a decreasing infinite sequence of 1-blocks with isomorphism type ω.
- Case $\omega \cdot \omega^{*}$: There is an increasing infinite sequence of 1-blocks with isomorphism type ω^{*}.

Proof Sketch (cont.)

Claim: Every linear ordering has a Σ_{1}-elementary substructure isomorphic to $\omega, \omega^{*}, \zeta, \omega \cdot \omega^{*}, \omega^{*} \cdot \omega$ or η.

- Case $\omega^{*} \cdot \omega$: There is a decreasing infinite sequence of 1-blocks with isomorphism type ω.
- Case $\omega \cdot \omega^{*}$: There is an increasing infinite sequence of 1-blocks with isomorphism type ω^{*}.
- Case η : The ω blocks are well ordered and do not contain the first block, the ω^{*} blocks are reverse well ordered and do not contain the last block. There are no ζ blocks. Between the first ω block and the last ω^{*} block less than it there are only finite blocks that must be densely ordered.

The 2-Ramsey property

1. The set of scattered linear orderings has the 2-Ramsey property.

The 2-Ramsey property

1. The set of scattered linear orderings has the 2-Ramsey property.
2. They must be in the $\omega, \omega^{*}, \zeta, \omega \cdot \omega^{*}$ or $\omega^{*} \cdot \omega$ case from the previous theorem.

The 2-Ramsey property

1. The set of scattered linear orderings has the 2-Ramsey property.
2. They must be in the $\omega, \omega^{*}, \zeta, \omega \cdot \omega^{*}$ or $\omega^{*} \cdot \omega$ case from the previous theorem.
3. Each of these Σ_{1}-elementary substructures can be upgraded to a Σ_{2}-elementary substructure by adding in the first and last 1-block if they exist.
4. This argument is more technical than the previous argument, but goes through with consideration of back and forth games.

The 2-Ramsey property: a counterexample

1. The 2-Ramsey property does not hold for the class of all linear orderings.

The 2-Ramsey property: a counterexample

1. The 2-Ramsey property does not hold for the class of all linear orderings.
2. The shuffle sum of countably many linear orderings $\operatorname{Sh}\left(\left\{L_{i}\right\}_{i \in \omega}\right)$ is obtained by partitioning η into countably many mutually dense sets and replacing all elements in the $i^{\text {th }}$ part with a copy of L_{i}.

The 2-Ramsey property: a counterexample

1. The 2-Ramsey property does not hold for the class of all linear orderings.
2. The shuffle sum of countably many linear orderings $\operatorname{Sh}\left(\left\{L_{i}\right\}_{i \in \omega}\right)$ is obtained by partitioning η into countably many mutually dense sets and replacing all elements in the $i^{\text {th }}$ part with a copy of L_{i}.
3. If A is a set of natural numbers, we let $\operatorname{Sh}(A)$ be the shuffle sum where we treat each $n \in A$ as the unique linear orderings of size n.

The 2-Ramsey property: a counterexample

1. The 2-Ramsey property does not hold for the class of all linear orderings.
2. The shuffle sum of countably many linear orderings $\operatorname{Sh}\left(\left\{L_{i}\right\}_{i \in \omega}\right)$ is obtained by partitioning η into countably many mutually dense sets and replacing all elements in the $i^{\text {th }}$ part with a copy of L_{i}.
3. If A is a set of natural numbers, we let $\operatorname{Sh}(A)$ be the shuffle sum where we treat each $n \in A$ as the unique linear orderings of size n.
4. $\operatorname{Sh}(A)$ does not always have a Σ_{2}-elementary substructure with a computable copy, e.g. if A is Σ_{3}^{0} immune.

The 2-Ramsey property: a counterexample

1. The 2-Ramsey property does not hold for the class of all linear orderings.
2. The shuffle sum of countably many linear orderings $\operatorname{Sh}\left(\left\{L_{i}\right\}_{i \in \omega}\right)$ is obtained by partitioning η into countably many mutually dense sets and replacing all elements in the $i^{\text {th }}$ part with a copy of L_{i}.
3. If A is a set of natural numbers, we let $\operatorname{Sh}(A)$ be the shuffle sum where we treat each $n \in A$ as the unique linear orderings of size n.
4. $\operatorname{Sh}(A)$ does not always have a Σ_{2}-elementary substructure with a computable copy, e.g. if A is Σ_{3}^{0} immune.
5. This follows from the fact that the set of block sizes of an ordering is Σ_{3}^{0} in the presentation of that ordering.

A 2-Ramsey Question

Question: Can we describe the maximal class of linear orderings for which the 2-Ramsey property holds?

A 2-Ramsey Question

Question: Can we describe the maximal class of linear orderings for which the 2-Ramsey property holds?

Rephrased: Can we describe which linear orderings have infinite, computable Σ_{2}-elementary substructures?

A 2-Ramsey Question

Question: Can we describe the maximal class of linear orderings for which the 2-Ramsey property holds?

Rephrased: Can we describe which linear orderings have infinite, computable Σ_{2}-elementary substructures?

Rephrased again: Can we describe which linear orderings have Σ_{2}-generically c.e. copies?

A 2-Ramsey Question

Question: Can we describe the maximal class of linear orderings for which the 2-Ramsey property holds?

Rephrased: Can we describe which linear orderings have infinite, computable Σ_{2}-elementary substructures?

Rephrased again: Can we describe which linear orderings have Σ_{2}-generically c.e. copies?

Answer: No.

Some Theorems

Theorem:[CCGH] The maximal class of linear orderings for which the 2-Ramsey property holds is $\boldsymbol{\Sigma}_{1}^{1}$-complete.

Some Theorems

Theorem:[CCGH] The maximal class of linear orderings for which the 2-Ramsey property holds is $\boldsymbol{\Sigma}_{1}^{1}$-complete.

Question: Can we avoid this at higher levels?

Some Theorems

Theorem:[CCGH] The maximal class of linear orderings for which the 2-Ramsey property holds is $\boldsymbol{\Sigma}_{1}^{1}$-complete.

Question: Can we avoid this at higher levels?
Theorem:[CCGH] The maximal class of linear orderings for which the ($\alpha+2$)-Ramsey property holds is $\boldsymbol{\Sigma}_{1}^{1}$-complete for any $\alpha \in \omega_{1}^{c k}$.

Some Theorems

Theorem:[CCGH] The maximal class of linear orderings for which the 2-Ramsey property holds is $\boldsymbol{\Sigma}_{1}^{1}$-complete.

Question: Can we avoid this at higher levels?
Theorem:[CCGH] The maximal class of linear orderings for which the ($\alpha+2$)-Ramsey property holds is $\boldsymbol{\Sigma}_{1}^{1}$-complete for any $\alpha \in \omega_{1}^{c k}$.

Note: This is new behavior for structures in general; these results also apply to structurally complete classes like graphs and groups.

Proof idea for Σ_{2}

- We construct a continuous embedding $\Phi: \mathbb{L} \mathbb{O} \rightarrow \mathbb{L} \mathbb{O}$ such that \mathcal{B} is well founded if and only if $\Phi(\mathcal{B})$ has an infinite, computable Σ_{2}-elementary substructure.

Proof idea for Σ_{2}

- We construct a continuous embedding $\Phi: \mathbb{L} \mathbb{O} \rightarrow \mathbb{L} \mathbb{O}$ such that \mathcal{B} is well founded if and only if $\Phi(\mathcal{B})$ has an infinite, computable Σ_{2}-elementary substructure.
- Key insight: any linear ordering with a decreasing sequence of 1-blocks isomorphic to ω (and no first or last element) has $\omega \cdot \omega^{*}$ as a Σ_{2}-elementary substructure.

Proof idea for Σ_{2}

- We construct a continuous embedding $\Phi: \mathbb{L} \mathbb{O} \rightarrow \mathbb{L} \mathbb{O}$ such that \mathcal{B} is well founded if and only if $\Phi(\mathcal{B})$ has an infinite, computable Σ_{2}-elementary substructure.
- Key insight: any linear ordering with a decreasing sequence of 1-blocks isomorphic to ω (and no first or last element) has $\omega \cdot \omega^{*}$ as a Σ_{2}-elementary substructure.
- We define $\Phi(\mathcal{B})=(S h(A)+\omega) \cdot \mathcal{B}$ for a Σ_{3}^{0} immune set A.

Proof idea for Σ_{2}

- We construct a continuous embedding $\Phi: \mathbb{L} \mathbb{O} \rightarrow \mathbb{L} \mathbb{O}$ such that \mathcal{B} is well founded if and only if $\Phi(\mathcal{B})$ has an infinite, computable Σ_{2}-elementary substructure.
- Key insight: any linear ordering with a decreasing sequence of 1-blocks isomorphic to ω (and no first or last element) has $\omega \cdot \omega^{*}$ as a Σ_{2}-elementary substructure.
- We define $\Phi(\mathcal{B})=(S h(A)+\omega) \cdot \mathcal{B}$ for a Σ_{3}^{0} immune set A.
- If \mathcal{B} is ill-founded it definitely has $\omega \cdot \omega^{*}$ as a Σ_{2}-elementary substructure.

Proof idea for Σ_{2}

- We construct a continuous embedding $\Phi: \mathbb{L} \mathbb{O} \rightarrow \mathbb{L} \mathbb{O}$ such that \mathcal{B} is well founded if and only if $\Phi(\mathcal{B})$ has an infinite, computable Σ_{2}-elementary substructure.
- Key insight: any linear ordering with a decreasing sequence of 1-blocks isomorphic to ω (and no first or last element) has $\omega \cdot \omega^{*}$ as a Σ_{2}-elementary substructure.
- We define $\Phi(\mathcal{B})=(S h(A)+\omega) \cdot \mathcal{B}$ for a Σ_{3}^{0} immune set A.
- If \mathcal{B} is ill-founded it definitely has $\omega \cdot \omega^{*}$ as a Σ_{2}-elementary substructure.
- If \mathcal{B} is well founded, a technical argument shows that any substructure must have blocks of size n for infinitely many $n \in A$.

Proof idea for higher $\Sigma_{\alpha+2}$

- We fix an A that is a $\Sigma_{\alpha+4}^{0}$ immune set.

Proof idea for higher $\Sigma_{\alpha+2}$

- We fix an A that is a $\Sigma_{\alpha+4}^{0}$ immune set.
- If $\alpha=2 \beta$, we define the $\operatorname{map} \Phi(\mathcal{B})=\zeta^{\beta} \cdot(S h(A)+\omega) \cdot \mathcal{B}$.

Proof idea for higher $\Sigma_{\alpha+2}$

- We fix an A that is a $\Sigma_{\alpha+4}^{0}$ immune set.
- If $\alpha=2 \beta$, we define the $\operatorname{map} \Phi(\mathcal{B})=\zeta^{\beta} \cdot(S h(A)+\omega) \cdot \mathcal{B}$.
- If $\alpha=2 \beta+1$ we defined the map $\Phi(\mathcal{B})=\zeta^{\beta} \cdot(\eta+2+\eta) \cdot(S h(A)+\omega) \cdot \mathcal{B}$.

Proof idea for higher $\Sigma_{\alpha+2}$

- We fix an A that is a $\Sigma_{\alpha+4}^{0}$ immune set.
- If $\alpha=2 \beta$, we define the $\operatorname{map} \Phi(\mathcal{B})=\zeta^{\beta} \cdot(\operatorname{Sh}(A)+\omega) \cdot \mathcal{B}$.
- If $\alpha=2 \beta+1$ we defined the map $\Phi(\mathcal{B})=\zeta^{\beta} \cdot(\eta+2+\eta) \cdot(S h(A)+\omega) \cdot \mathcal{B}$.
- There are many technical elements, many actually developed in (G., Rossegger) to analyze Scott sentences of linear orderings, that allow us to bootstrap the argument in the Σ_{2} case to these higher cases.

Spilling the beans

Connections to Generic and Coarse Computability

Generic and Coarse Computability

Definition: Let $S \subseteq \mathbb{N}$.

1. The density of S up to n, denoted by $\rho_{n}(S)$, is given by

$$
\rho_{n}(S)=\frac{|S \cap\{0,1,2, \ldots, n\}|}{n+1} .
$$

2. The asymptotic density of S, denoted by $\rho(S)$, is given by $\lim _{n \rightarrow \infty} \rho_{n}(S)$.

Generic and Coarse Computability

Definition: Let $S \subseteq \mathbb{N}$.

1. The density of S up to n, denoted by $\rho_{n}(S)$, is given by

$$
\rho_{n}(S)=\frac{|S \cap\{0,1,2, \ldots, n\}|}{n+1} .
$$

2. The asymptotic density of S, denoted by $\rho(S)$, is given by $\lim _{n \rightarrow \infty} \rho_{n}(S)$.

A set A is said to be generically computable if and only if there is a partial computable function ϕ such that ϕ agrees with χ_{A} throughout the domain of ϕ, and such that the domain of ϕ has asymptotic density 1 .

Generic and Coarse Computability

Definition: Let $S \subseteq \mathbb{N}$.

1. The density of S up to n, denoted by $\rho_{n}(S)$, is given by

$$
\rho_{n}(S)=\frac{|S \cap\{0,1,2, \ldots, n\}|}{n+1} .
$$

2. The asymptotic density of S, denoted by $\rho(S)$, is given by $\lim _{n \rightarrow \infty} \rho_{n}(S)$.

A set A is said to be generically computable if and only if there is a partial computable function ϕ such that ϕ agrees with χ_{A} throughout the domain of ϕ, and such that the domain of ϕ has asymptotic density 1 .

A set A is said to be coarsely computable if and only if there is a total computable function ϕ that agrees with χ_{A} on a set of asymptotic density 1 .

Generically and Coarsely Computable structures

- A substructure \mathcal{B} of \mathcal{A}, with universe B, is a computably enumerable (c.e.) substructure if the set B is c.e., each relation is c.e. and the graph of each function is c.e.

Generically and Coarsely Computable structures

- A substructure \mathcal{B} of \mathcal{A}, with universe B, is a computably enumerable (c.e.) substructure if the set B is c.e., each relation is c.e. and the graph of each function is c.e.
$-\mathcal{A}$ is Σ_{α}-generically c.e. if there is a dense c.e. set D such that the substructure \mathcal{D} with universe D is a c.e. substructure and also a Σ_{α} elementary substructure of \mathcal{A}.

Generically and Coarsely Computable structures

- A substructure \mathcal{B} of \mathcal{A}, with universe B, is a computably enumerable (c.e.) substructure if the set B is c.e., each relation is c.e. and the graph of each function is c.e.
$-\mathcal{A}$ is Σ_{α}-generically c.e. if there is a dense c.e. set D such that the substructure \mathcal{D} with universe D is a c.e. substructure and also a Σ_{α} elementary substructure of \mathcal{A}.
- A structure \mathcal{A} is Σ_{α}-coarsely c.e. if there exist a dense set D and a c.e. structure \mathcal{E} such that the substructure \mathcal{D} with universe D is a Σ_{α} elementary substructure of both \mathcal{A} and \mathcal{E}.

Generically and Coarsely Computable copies

Since the first ventures into generically and coarsely computable structures there have been results about individual structures and about structures up to isomorphism.

Generically and Coarsely Computable copies

Since the first ventures into generically and coarsely computable structures there have been results about individual structures and about structures up to isomorphism.

Our recent preprint has both of these types of results but are focused here on structures up to isomorphism. In this case, the idea of density is washed away as any infinite set can be placed on a dense set up to isomorphism.

Generically and Coarsely Computable copies

Since the first ventures into generically and coarsely computable structures there have been results about individual structures and about structures up to isomorphism.

Our recent preprint has both of these types of results but are focused here on structures up to isomorphism. In this case, the idea of density is washed away as any infinite set can be placed on a dense set up to isomorphism.

Lemma: For a linear ordering \mathcal{A}, \mathcal{A} has a Σ_{α}-generically c.e. copy if and only if it has a Σ_{α} elementary substructure that is isomorphic to a computable structure.

Rephrased results

We get the following theorems using similar arguments to the Ramsey-like results presented:

Rephrased results

We get the following theorems using similar arguments to the Ramsey-like results presented:
Theorem:[CCGH] Every linear ordering has a Σ_{1}-generically c.e. copy.
Theorem:[CCGH] Every linear ordering has a Σ_{1}-coarsely c.e.
copy.

Rephrased results

We get the following theorems using similar arguments to the Ramsey-like results presented:
Theorem:[CCGH] Every linear ordering has a Σ_{1}-generically c.e.
copy.
Theorem:[CCGH] Every linear ordering has a Σ_{1}-coarsely c.e.
copy.
Theorem:[CCGH] The class of linear orderings with a $\Sigma_{\alpha+2}$-generically c.e. copy is $\boldsymbol{\Sigma}_{1}^{1}$-complete.
Theorem:[CCGH] The class of linear orderings with a
$\Sigma_{\alpha+2}$-coarsely c.e. copy is $\boldsymbol{\Sigma}_{1}^{1}$-complete.

A contrast with normal computability

This shows that generic and coarse computability act very differently to ordinary computability.

A contrast with normal computability

This shows that generic and coarse computability act very differently to ordinary computability.

Theorem:[Nadel] The set of models with computable copies in any $\mathcal{L}_{\omega_{1}, \omega}$ elementary class is Borel. If the class is an $\mathcal{L}_{c, \omega}$ elementary class, then this set is $\boldsymbol{\Sigma}_{\omega_{1}^{c k}+3}^{0}$ at worst.

A contrast with normal computability

This shows that generic and coarse computability act very differently to ordinary computability.

Theorem:[Nadel] The set of models with computable copies in any $\mathcal{L}_{\omega_{1}, \omega}$ elementary class is Borel. If the class is an $\mathcal{L}_{c, \omega}$ elementary class, then this set is $\boldsymbol{\Sigma}_{\omega_{1}^{c k}+3}^{0}$ at worst.

We even see this difference at the lowest interesting level of our hierarchy:
Theorem:[CCGH] The class of successor linear orderings with a Σ_{1}-generically c.e. copy is $\boldsymbol{\Sigma}_{1}^{1}$-complete.

Thank you!

Appendix: Coarse Computability

- Coarse computability is generally a lot tougher than generic computability in this setting.
- We lack an exact structural characterization for having coarse copies.

Appendix: Coarse Computability

- Coarse computability is generally a lot tougher than generic computability in this setting.
- We lack an exact structural characterization for having coarse copies.
- It acts quite differently: $\operatorname{Sh}(A)$ always has a Σ_{2} coarsely computable copy.

Appendix: Coarse Computability

- Coarse computability is generally a lot tougher than generic computability in this setting.
- We lack an exact structural characterization for having coarse copies.
- It acts quite differently: $\operatorname{Sh}(A)$ always has a Σ_{2} coarsely computable copy.
- We can bootstrap this example by considering $\zeta^{\beta} \cdot \operatorname{Sh}(A)$; coarse computability and generic computability do not coincide at any computable level.

Appendix: Coarse Computability

Our canonical example of an ordering with no Σ_{2} coarsely computable copy is the η representation of A for A not Σ_{0}^{3} :

$$
K_{A}:=\eta+a_{0}+\eta+a_{1}+\eta+\cdots .
$$

This takes the place of $\operatorname{Sh}(A)$ and generally leads to far more technical arguments.

Appendix: Coarse Computability

Our canonical example of an ordering with no Σ_{2} coarsely computable copy is the η representation of A for A not Σ_{0}^{3} :

$$
K_{A}:=\eta+a_{0}+\eta+a_{1}+\eta+\cdots
$$

This takes the place of $S h(A)$ and generally leads to far more technical arguments.
The main idea is that any 2-elementary substructure of an η representation is isomorphic to that η representation.

Appendix: Coarse Computability

Our canonical example of an ordering with no Σ_{2} coarsely computable copy is the η representation of A for A not Σ_{0}^{3} :

$$
K_{A}:=\eta+a_{0}+\eta+a_{1}+\eta+\cdots
$$

This takes the place of $\operatorname{Sh}(A)$ and generally leads to far more technical arguments.
The main idea is that any 2-elementary substructure of an η representation is isomorphic to that η representation.
Once you get an η representation of a sufficiently complex A as a sub-ordering you can extract A by listing block sizes starting at a certain point; in general this takes about one more jump to execute than the generic arguments.

