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Summary of the talk

We are going to discuss generic computability in the context of
computable structure theory. We will take a structural perspective
and consider Ramsey-like theorems.

We examine this concept in the context of linear orderings and
develop generally useful tools through this analysis.

1. The α-Ramsey property

2. Results for linear orderings

3. Connection with generic and coarse computability
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Ramsey’s Theorem - Undergraduate Version

▶ Every infinite graph, has a subgraph isomorphic to K∞ or the
edgeless K c

∞.

▶ Every infinite graph with finitely many colors has a
monochromatic subgraph isomorphic to K∞.

▶ Every infinite linear ordering has a sub-ordering isomorphic to
ω or ω∗.

▶ Every infinite partial ordering has a sub-ordering isomorphic to
ω, ω∗ or an anti-chain.

▶ Every infinite equivalence structure has an infinite class or
infinitely many classes.
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Ramsey’s Theorem abstractly

There are many ways to abstract Ramsey’s theorem; the way
below is tied tightly to the ”undergraduate” examples enumerated:

Every countable structure in the class K has a substructure that is
among the subclass J ⊂ K of ”simple” structures.

It is often natural and useful to ask for more than a substructure.
We may need to relax our notion of simple.
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Some history: notions of substrcture

▶ Calvert, Cenzer and Harizanov were examining equivalence
relations when they realized that they should focus on
substructures that saturate their equivalence classes.

▶ They were also looking at injection structures and p-groups
and wanted to make this notion of substructure less ad hoc.

▶ There was already a natural way to do this: Σα-elementary
substructures.

Definition: A substructure A ⊆ B is Σα-elementary if for all
p̄ ∈ A and ψ ∈ Σα

A |= ψ(p̄) ⇐⇒ B |= ψ(p̄).

Note: Σα is a set of Lω1,ω formulas with α ∈ ω1. Our results will
also hold for computably infinitary formulas or first order formulas
at finite levels.
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The α-Ramsey property

Definition: We say a class of structures K has the α-Ramsey
property if:

Every countably infinite structure in the class K has a
Σα-elementary substructure that is among the subclass J ⊂ K of
computably presentable structures.

Note: Ramsey’s theorem gives that any class of relational
structures has the 0-Ramsey property.
Foreshadowing: This property of a class of structures is key to
understanding when its structures have Σα-generically c.e. copies.
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Focusing in

Results on linear orderings



The 1-Ramsey property

Theorem: [CCGH] The class of linear orderings has the 1-Ramsey
property. In fact, every linear ordering has a Σ1-elementary
substructure isomorphic to ω, ω∗, ζ, ω · ω∗, ω∗ · ω or η.

Lemma: For linear orderings A ⊆ B is Σ1-elementary if the first,
last, and between predicates are preserved.



Proof Sketch

Claim: Every linear ordering has a Σ1-elementary substructure
isomorphic to ω,ω∗, ζ, ω · ω∗, ω∗ · ω or η.

▶ The proof proceeds by looking at the 1-blocks of the ordering
B, the equivalence classes of the finite-distance ∼1.

▶ For any element x in any ordering [x ]∼1 is isomorphic to ω,
ω∗, ζ or a finite ordering.

▶ Case ω: There is a first 1-block with isomorphism type ω.

▶ Case ω∗: There is a last 1-block with isomorphism type ω∗.

▶ Case ζ: There is a 1-block with isomorphism type ζ.
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Proof Sketch (cont.)

Claim: Every linear ordering has a Σ1-elementary substructure
isomorphic to ω,ω∗, ζ, ω · ω∗, ω∗ · ω or η.

▶ Case ω∗ · ω: There is a decreasing infinite sequence of
1-blocks with isomorphism type ω.

▶ Case ω · ω∗: There is an increasing infinite sequence of
1-blocks with isomorphism type ω∗.

▶ Case η: The ω blocks are well ordered and do not contain the
first block, the ω∗ blocks are reverse well ordered and do not
contain the last block. There are no ζ blocks. Between the
first ω block and the last ω∗ block less than it there are only
finite blocks that must be densely ordered.
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The 2-Ramsey property

1. The set of scattered linear orderings has the 2-Ramsey
property.

2. They must be in the ω,ω∗, ζ, ω · ω∗ or ω∗ · ω case from the
previous theorem.

3. Each of these Σ1-elementary substructures can be upgraded
to a Σ2-elementary substructure by adding in the first and last
1-block if they exist.

4. This argument is more technical than the previous argument,
but goes through with consideration of back and forth games.
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The 2-Ramsey property: a counterexample

1. The 2-Ramsey property does not hold for the class of all linear
orderings.

2. The shuffle sum of countably many linear orderings
Sh({Li}i∈ω) is obtained by partitioning η into countably many
mutually dense sets and replacing all elements in the i th part
with a copy of Li .

3. If A is a set of natural numbers, we let Sh(A) be the shuffle
sum where we treat each n ∈ A as the unique linear orderings
of size n.

4. Sh(A) does not always have a Σ2-elementary substructure
with a computable copy, e.g. if A is Σ0

3 immune.

5. This follows from the fact that the set of block sizes of an
ordering is Σ0

3 in the presentation of that ordering.
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A 2-Ramsey Question

Question: Can we describe the maximal class of linear orderings
for which the 2-Ramsey property holds?

Rephrased: Can we describe which linear orderings have infinite,
computable Σ2-elementary substructures?

Rephrased again: Can we describe which linear orderings have
Σ2-generically c.e. copies?

Answer: No.
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Some Theorems

Theorem:[CCGH] The maximal class of linear orderings for which
the 2-Ramsey property holds is Σ1

1-complete.

Question: Can we avoid this at higher levels?

Theorem:[CCGH] The maximal class of linear orderings for which
the (α+2)-Ramsey property holds is Σ1

1-complete for any α ∈ ωck
1 .

Note: This is new behavior for structures in general; these results
also apply to structurally complete classes like graphs and groups.
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Proof idea for Σ2

▶ We construct a continuous embedding Φ : LO → LO such
that B is well founded if and only if Φ(B) has an infinite,
computable Σ2-elementary substructure.

▶ Key insight: any linear ordering with a decreasing sequence of
1-blocks isomorphic to ω (and no first or last element) has
ω · ω∗ as a Σ2-elementary substructure.

▶ We define Φ(B) = (Sh(A) + ω) · B for a Σ0
3 immune set A.

▶ If B is ill-founded it definitely has ω · ω∗ as a Σ2-elementary
substructure.

▶ If B is well founded, a technical argument shows that any
substructure must have blocks of size n for infinitely many
n ∈ A.
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Proof idea for higher Σα+2

▶ We fix an A that is a Σ0
α+4 immune set.

▶ If α = 2β, we define the map Φ(B) = ζβ · (Sh(A) + ω) · B.
▶ If α = 2β + 1 we defined the map

Φ(B) = ζβ · (η + 2 + η) · (Sh(A) + ω) · B.
▶ There are many technical elements, many actually developed

in (G., Rossegger) to analyze Scott sentences of linear
orderings, that allow us to bootstrap the argument in the Σ2

case to these higher cases.



Proof idea for higher Σα+2

▶ We fix an A that is a Σ0
α+4 immune set.

▶ If α = 2β, we define the map Φ(B) = ζβ · (Sh(A) + ω) · B.

▶ If α = 2β + 1 we defined the map
Φ(B) = ζβ · (η + 2 + η) · (Sh(A) + ω) · B.

▶ There are many technical elements, many actually developed
in (G., Rossegger) to analyze Scott sentences of linear
orderings, that allow us to bootstrap the argument in the Σ2

case to these higher cases.



Proof idea for higher Σα+2

▶ We fix an A that is a Σ0
α+4 immune set.

▶ If α = 2β, we define the map Φ(B) = ζβ · (Sh(A) + ω) · B.
▶ If α = 2β + 1 we defined the map

Φ(B) = ζβ · (η + 2 + η) · (Sh(A) + ω) · B.

▶ There are many technical elements, many actually developed
in (G., Rossegger) to analyze Scott sentences of linear
orderings, that allow us to bootstrap the argument in the Σ2

case to these higher cases.



Proof idea for higher Σα+2

▶ We fix an A that is a Σ0
α+4 immune set.

▶ If α = 2β, we define the map Φ(B) = ζβ · (Sh(A) + ω) · B.
▶ If α = 2β + 1 we defined the map

Φ(B) = ζβ · (η + 2 + η) · (Sh(A) + ω) · B.
▶ There are many technical elements, many actually developed

in (G., Rossegger) to analyze Scott sentences of linear
orderings, that allow us to bootstrap the argument in the Σ2

case to these higher cases.



Spilling the beans

Connections to Generic and Coarse
Computability



Generic and Coarse Computability

Definition: Let S ⊆ N.
1. The density of S up to n, denoted by ρn(S), is given by

ρn(S) =
|S ∩ {0, 1, 2, . . . , n}|

n + 1
.

2. The asymptotic density of S , denoted by ρ(S), is given by
lim
n→∞

ρn(S).

A set A is said to be generically computable if and only if there is a
partial computable function ϕ such that ϕ agrees with χA

throughout the domain of ϕ, and such that the domain of ϕ has
asymptotic density 1.

A set A is said to be coarsely computable if and only if there is a
total computable function ϕ that agrees with χA on a set of
asymptotic density 1.



Generic and Coarse Computability

Definition: Let S ⊆ N.
1. The density of S up to n, denoted by ρn(S), is given by

ρn(S) =
|S ∩ {0, 1, 2, . . . , n}|

n + 1
.

2. The asymptotic density of S , denoted by ρ(S), is given by
lim
n→∞

ρn(S).

A set A is said to be generically computable if and only if there is a
partial computable function ϕ such that ϕ agrees with χA

throughout the domain of ϕ, and such that the domain of ϕ has
asymptotic density 1.

A set A is said to be coarsely computable if and only if there is a
total computable function ϕ that agrees with χA on a set of
asymptotic density 1.



Generic and Coarse Computability

Definition: Let S ⊆ N.
1. The density of S up to n, denoted by ρn(S), is given by

ρn(S) =
|S ∩ {0, 1, 2, . . . , n}|

n + 1
.

2. The asymptotic density of S , denoted by ρ(S), is given by
lim
n→∞

ρn(S).

A set A is said to be generically computable if and only if there is a
partial computable function ϕ such that ϕ agrees with χA

throughout the domain of ϕ, and such that the domain of ϕ has
asymptotic density 1.

A set A is said to be coarsely computable if and only if there is a
total computable function ϕ that agrees with χA on a set of
asymptotic density 1.



Generically and Coarsely Computable structures

▶ A substructure B of A, with universe B, is a computably
enumerable (c.e.) substructure if the set B is c.e., each
relation is c.e. and the graph of each function is c.e.

▶ A is Σα-generically c.e. if there is a dense c.e. set D such
that the substructure D with universe D is a c.e. substructure
and also a Σα elementary substructure of A.

▶ A structure A is Σα-coarsely c.e. if there exist a dense set D
and a c.e. structure E such that the substructure D with
universe D is a Σα elementary substructure of both A and E .
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Generically and Coarsely Computable copies

Since the first ventures into generically and coarsely computable
structures there have been results about individual structures and
about structures up to isomorphism.

Our recent preprint has both of these types of results but are
focused here on structures up to isomorphism. In this case, the
idea of density is washed away as any infinite set can be placed on
a dense set up to isomorphism.

Lemma: For a linear ordering A, A has a Σα-generically c.e. copy
if and only if it has a Σα elementary substructure that is
isomorphic to a computable structure.
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Rephrased results

We get the following theorems using similar arguments to the
Ramsey-like results presented:

Theorem:[CCGH] Every linear ordering has a Σ1-generically c.e.
copy.
Theorem:[CCGH] Every linear ordering has a Σ1-coarsely c.e.
copy.
Theorem:[CCGH] The class of linear orderings with a
Σα+2-generically c.e. copy is Σ1

1-complete.
Theorem:[CCGH] The class of linear orderings with a
Σα+2-coarsely c.e. copy is Σ1

1-complete.
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A contrast with normal computability

This shows that generic and coarse computability act very
differently to ordinary computability.

Theorem:[Nadel] The set of models with computable copies in
any Lω1,ω elementary class is Borel. If the class is an Lc,ω

elementary class, then this set is Σ0
ωck
1 +3

at worst.

We even see this difference at the lowest interesting level of our
hierarchy:
Theorem:[CCGH] The class of successor linear orderings with a
Σ1-generically c.e. copy is Σ1

1-complete.
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Thank you!



Appendix: Coarse Computability

▶ Coarse computability is generally a lot tougher than generic
computability in this setting.

▶ We lack an exact structural characterization for having coarse
copies.

▶ It acts quite differently: Sh(A) always has a Σ2 coarsely
computable copy.

▶ We can bootstrap this example by considering ζβ · Sh(A);
coarse computability and generic computability do not
coincide at any computable level.
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Appendix: Coarse Computability

Our canonical example of an ordering with no Σ2 coarsely
computable copy is the η representation of A for A not Σ3

0:

KA := η + a0 + η + a1 + η + · · · .

This takes the place of Sh(A) and generally leads to far more
technical arguments.

The main idea is that any 2-elementary substructure of an η
representation is isomorphic to that η representation.
Once you get an η representation of a sufficiently complex A as a
sub-ordering you can extract A by listing block sizes starting at a
certain point; in general this takes about one more jump to
execute than the generic arguments.
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