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Russell’s peculiar remark (March 1911)

The axiom of infinity is only necessary because of the

theory of logical types, which serves to resolve the para-

doxes. It is therefore possible that, by modifying the

theory of types, the axiom of infinity would become un-

necessary.

(Russell, 1911/1992, 53)

Volume I of Principia appeared in December 1910.

Volume II was mostly complete by January 1911.
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Earlier (faulty) proofs of Infinity

That there are infinite classes is so evident that it will

scarcely be denied. Since, however, it is capable of for-

mal proof, we may as well prove it. A very simple proof

is that suggested in the Parmenides, which is as follows.

Let it be granted that there is a number 1. Then 1 is, or

has Being, and therefore is a Being. But 1 and Being

are two; hence there is a number 2; and so on. [...]

A better proof, analogous to the above, is derived from

the fact that, if n be any finite number, then the number

of numbers from 0 up to and including n is n+1, whence

it follows that n is not the number of numbers.

(Russell, 1903/1937, §339)

5



Type constraints

Type constraints block such faulty proofs. No univocal typical

meaning can be assigned to ‘Being’ or to ‘n’ in the proofs given.

So the usual (faulty) proofs of Infinity (which implicitly involve

type-lifting) are blocked by the theory of types.
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We do get strictly increasing universal classes in Principia

Theorem (schemata.)

⊢ ( Ext) xt =

/

xt

⊢ (

E

x(t), y(t)) x(t) =

/

y(t)

⊢ ( Ex((t)), y((t)), z((t))) x((t)) =

/

y((t))∧
y((t)) =

/

z((t)) ∧ x((t)) =

/

z((t))

...

So in Principia’s system, the universal classes of individuals are

strictly-increasing, not just non-empty.

Since the number of individuals is strictly-increasing, we can

ascend to some type t where there are at least n-many entities.
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Our result

Question: Is there a modification to Principia’s theory of types

that facilitates a (non-circular, not question-begging) proof of

Infinity?

Answer: yes!

Theorem

In the system ZPM with the new (finitary) axiom schema

Z❋107, we can prove Infinity.
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Logicism and Infinity
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Logicism

Logicism

All mathematical truths are logical truths.

Whitehead and Russell aimed to prove Logicism in Principia:

The purpose of the present subsection [Volume I.A] is

to set forth the first stage of the deduction of pure math-

ematics from its logical foundations.

(Whitehead and Russell, 1925/1957, 94)
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An (alleged) problem with the proof of Logicism

Take Peano postulate #3 (Russell, 1919, 5-6):

� No two numbers have the same successor.

Principia can only prove:

� If Infin ax, then no two numbers have the same successor.

Without a theorem (or an axiom) of infinity, the third Peano

postulate is not an unconditional theorem. But many feel that

this is manifestly an unconditional truth (of pure mathematics).

A partial list

(Bruner, 1943, 6-7)—(Carnap, 1983, 44-45)—(Copi, 1971, 64,

71)—(Hatcher, 1968, 142-143)—(Ramsey, 1926/1978, 229-230)
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A dilemma for Logicism

To recover the third Peano postulate unconditionally, what is

needed the thesis that there are at least ℵ0 individuals. But a

Logicist wants to recover this from logic alone. And it seems

not to be a logical truth that there are at least ℵ0 individuals.

Dilemma

Either a non-logical Axiom of Infinity must be added to prove

that all mathematical truths are logical ones, or else some

mathematical truths remain unproven.

On either horn of this dilemma, the proof of Logicism fails.
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Available responses

Some available responses are:

1. Reject Logicism

2. Dissolve the ‘problem’ of proving Infinity

3. Solve the problem of proving Infinity

We will pursue the third option.

Remark

Because proving Logicism was Principia’s goal (and is our

motivation), we want to only accept new logical principles.

13



Principia ’s N-Types
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N-Types

Principia’s type theory that starts from a lowest type. (Just as

N = {0, 1, 2, ...} starts from 0.) We specify the type symbols

recursively as follows:

� i is a type symbol.

� If t1, ..., tn are type symbols, so is (t1, ..., tn).

� Nothing else is a type symbol.

Type symbols look, for example, like this:

� i− (i)− ((i))− (i, i)− ((i), i)− (i, i, i)− ((i), i, ((i)))− ...
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Heterogeneous Types

Principia, like ZF set theory, proves Cantor’s Power Theorem.

The key to this result is heterogeneously typed relations (or

classes), relations (or classes) between terms of different types

(or classes of different places in membership chains).

For example, y((i),(i)) is homogeneous because it is a binary

relation between terms of the same type, (i).

In contrast, z(((i)),(i)) is a heterogeneous relation from terms of

type ((i)) to terms of type (i).
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Cantor’s Power Theorem

Principia, like ZF set theory, proves Cantor’s Power Theorem:

for a class α we have |2α| > |α|. In Principia’s notation:

Theorem (Cantor’s Power Theorem for Classes)

❋117·66. ⊢ N0c‘Cl‘α > N0c‘α, that is, for any class α, the

(homogeneous) cardinal number of Cl‘α is strictly greater

than the (homogeneous) cardinal number of α.

There is also this related result that Principia does not prove:

Theorem (Cantor’s Power Theorem for Individuals)

⊢ ∼∼∼(

E

βxt)(

Λ

x(t) sm βxt), that is, no βxt (including

Λ

xt) is

similar to the universal class

Λ

x(t) (Landini, forthcoming).
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Cantor’s Power Theorem relies on heterogeneous types

Notice in the very statement Cantor’s Power Theorem we have

a relation between the cardinality of A and its power set. The

power set P (A) of a set A is of strictly higher type than A.

So Cantor’s Power Theorem relies on a heterogeneously typed

relation of cardinal similarity between classes of terms having

different types (in Principia’s context).
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Some facts about Principia ’s N-type system

Metatheorem

Infin ax is independent of Principia’s system.
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The (minimal) N-type hierarchy

Figure 1: Simple N-Type Hierarchy
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Idea

What if there was no lowest type?

What if the universal classes were strictly-increasing and there

were infinitely-many types below any given type instead of just

finitely-many? Would that make a difference?
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The Z-type hierarchy

Figure 2: Simple Z-Type Hierarchy
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Negative (Homogeneous) Types and

Typical Ambiguity
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Wang’s 1950 “Negative Types”

Hao Wang developed a system of negative types (NT).

Theorem

1. Comprehension: any (homogeneously typed) formula ϕ

comprehends a class containing those entities satisfying ϕ.

2. Extensionality: two classes (of type t) are identical if and

only if they contain the same members (of type (t− 1)).

Here a type index t can be any integer.
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Wang’s result

Question: can we prove Infinity in Negative Types?

Theorem (Wang 1952)

In the system of negative types, Infinity cannot be a theorem.
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Specker’s 1966 “Typical Ambiguity”

Specker explored the different meanings one might attach to

“typical ambiguity” (in some sense letting the type indices go

unspecified as one does in axiom schemata).

Meaning 1 If a formula T is a theorem, then T+ is a theorem

(where T+ results from T by uniformly raising the

type indices in T by 1).

Meaning 2 Given a formula T , if the type-lifted formula T+ is

a theorem, then T is a theorem.

Meaning 3 Given a formula T , T ⇐⇒ T+ is a theorem. (TA)
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Specker’s Result

The first meaning is in fact a metatheoretic fact about

Principia and ZPM, and also about ST and NT.

The second meaning is in general false (e.g. ∃x(0)∃y(0)(x ̸= y)).

The third meaning is a very strong fact indeed. Specker showed:

Theorem (Specker 1966)

Quine’s New Foundations is equiconsistent with TS plus TA.
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Some facts about New Foundations

In New Foundations (Forster, 1995, §2.1-§2.2):

1. There is one universal set V .

2. V is a complete Boolean algebra under ⊂ (so P(V ) ⊂ V ).

3. V is non-Cantorian (the set of singletons in V is strictly

smaller than V ), so Cantor’s Power Theorem isn’t provable.

4. V is infinite (so New Foundations proves Infinity).

5. The negation of Choice is provable.
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Homogeneous ST/NT and Heterogeneous PM/ZPM

The equivalence of ST plus TA with NF shows that ST and NT,

being homogeneously typed systems, are in a logical and definite

sense of a totally different character from Principia and ZPM.

In ST and NT, you cannot relate cardinal numbers of different

types in the object language (because instances of

comprehension are homogeneously typed). You can still have

universal classes in a given type with {xt : x = x}.
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Motivations for Homogeneity

There are good reasons for insisting on (implicit) homogeneity

in NF; if there is to be a universal class, one cannot also have

(an unrestricted) Cantor’s Power Theorem.

The usual proof of Cantor’s Power Theorem in ZF set theory

involves assuming there is a surjection f from a set A to its

power set P (A). Then consider the class given by

{x ∈ A : x ̸∈ f(x)}.

From whence we get a contradiction, showing there can be no

onto function from a set to its power set.

But in NF this does not comprehend a set (and cannot do so on

pain of contradiction).

30



Relation to Principia

Principia has its own features:

1. Infinity is not (dis)provable.

2. Choice is not (dis)provable.

3. There are universal classes of individuals of each type.

4. Heterogeneously typed relations can occur in instances of

comprehension (and so Cantor’s Power Theorem holds).

Is it possible to prove Infinity without sacrificing these other

features?
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ZPM’s Z-Types
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Z-Types

The type symbols of our new (heterogeneous) Z-type theory,

ZPM, are as follows:

1. For any integer z ∈ Z, z is a type symbol.

2. If z1, ..., zn are type symbols (n ≥ 2), then (z1, ..., zn) is a

type symbol.

3. Nothing else is a type symbol.
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Another metatheorem of ZPM

Metatheorem

For any Z-type z, at least n-many individuals of type z exist.

(

E

x1, ..., xn) ∧ xz1 =

/

xz2 ∧ ... ∧ xzn−1 =

/

xzn.

Any instance of this metatheorem for a fixed n ϵN is provable

in ZPM’s object-language as follows:

� Fix n and choose a type z.

� Pick any sufficiently low level of the Z-type hierarchy (say,

n levels below z, or (n+ (n mod 2))/2 levels below z).

� From that type z − n, iterate Cantor’s Power Theorem for

Z-Individuals until you reach type z.
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A problem

We cannot turn this procedure into an object-language proof

because the number of levels one must descend the Z-type
hierarchy increases with n (so proof by induction will not work).

There is no meaningful object-language relation between the

variable indices n in our metatheorem with Z-type indices z.
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A solution

We propose a finitary axiom schema that does not beg the

question about Infinity, but suffices in the ZPM system to prove

Infinity.

Z❋107. ⊢ (n)(n ∈ NC induct ⊃
(α)(αxz+1 ∈ n ⊃ (∃β)(βxz sm αxz+1))).

Our new axiom schema Z❋107 assures us that any finite class of

individuals in any z + 1-type is similar to a class of individuals

in the adjacent z-type below.
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Accepting Z❋107

Remark

For a fixed n ϵN, any instance of this schema can be proved in

the object-language of ZPM and its proof will have a fixed

minimal length. Thus all models of ZPM satisfy Z❋107.

So if ZPM is a logical system, then PrinZipia plus Z❋107 is.

But is adding Z❋107 question-begging?

No, because its analogue in Principia, ❋107, does not secure a

theorem of infinity. So it is not logically equivalent to Infin ax.
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A theorem of infinity for PrinZipia Mathematica

Theorem (Infinity(

Λ

xz))

ZPM + Z❋107. ⊢ (n)(n ϵN0Cinduct⊃⊃⊃

Λ

xz /∈ n).

Proof.

Assume ( En)(n ϵN0Cinduct
Λ

xz ϵn).

By Z❋107, ( Eβxz−1)(βxz−1 sm

Λ

xz).

This contradicts Cantor’s Theorem for Z-Individuals.
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Takeaways

� A new logical system, ZPM plus Z❋107, proves Infinity.

� One major criticism of the proof of Logicism in Principia

can be rebutted in ZPM plus Z❋107.

We also validate Russell’s insightful remark made 110 years ago:

The axiom of infinity is only necessary because of the

theory of logical types, which serves to resolve the para-

doxes. It is therefore possible that, by modifying the

theory of types, the axiom of infinity would become un-

necessary.

(Russell, 1911/1992, 53)
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