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Preface

In the late 19th and early 20th centuries, logic and probability were frequently
treated as closely related disciplines. Each has, in an important sense, gone its own
way, so that neither, in its modern form, is in any proper sense a systematization
of the “Laws of Thought,” as Boole called them.

However, the last four decades have seen a remarkable rapproachment. On the
most obvious level, the various probability logics have developed as formal systems
of reasoning in the modern sense of logic.

At a deeper level, though, attempts have been made to formulate logics in
which model theory of random variables, stochastic processes, and randomized
structures can be explored from the perspective of model theory. Continuous first-
order logic as a context for stability theory on metric structures is perhaps the most
conspicuous example, but others exist.

At the same time, algorithmic randomness in its various forms has come to play
a core role in computability theory, while probabilistic computation of various kinds
(randomized computation, interactive proofs, and others) has come to dominate
major parts of computational complexity. The older recursion-theoretic program of
machine learning, initiated by Gold in the 1960s, has become much more important
thanks to Valiant’s reformulation in probabilistic terms to allow for reasonable
errors.

The model theory of random objects, Fräıssé limits, and pseudofinite structures,
each of which embodies some important aspect of 0-1 laws, has been important for
longer, but advances in stability, simplicity, and the transition from finite to infinite
model theory have enriched this subject.

In set theory, too, the study of dynamics that respect probability measures has
played a central role in the study of equivalence relations. Probability is frequently
at the center of modern descriptive set theory.

Nor have these developments been independent. The PAC learning theory of
Valiant is inextricably linked to the model theory of NIP theories. The dynamics of
computable Polish spaces have become an important emerging area in computabil-
ity. Randomized computation is the natural computation on metric structures.
Notions of random structures have become intertwined with algorithmic random-
ness, and are naturally described in continuous first order logic.

Many of these developments have been adequately treated in isolation by vari-
ous books. Probability logic has been discussed at length from various perspectives
in [10, 239, 242, 394, 419]. Bayesian networks are well-covered, for instance,
in [219, 397, 398], and a monograph on adapted distributions also exists [180].
Randomized computation has a detailed treatment in [30]. Algorithmic random-
ness is the subject of three relatively recent books, [158, 387, 194]. Zero-one
laws are treated at length in [165, 230], and other places, and [266] includes an
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extended treatment of Fräıssé limits. Random graphs are extensively covered in
[74, 125, 338]. The definitive reference on PAC learning is [297]. In the field of
set-theoretic dynamics, there have been several treatments at several levels of de-
tail, among which [55, 260, 298, 303] merit special mention. There is no shortage
of book-length treatments of subjects within the range of this book.

However, a reader in a well-stocked library might well pass all these separate
books without knowing that they had anything substantive in common. Indeed,
one could read most of them in detail — in addition to the long papers that give
strong expositions on many related subjects (the seminal paper [61] on continuous
first-order logic comes to mind) — without finding a commonality.

It is true that [238] describes connections between probability logics and Bayesian
networks. However, it is silent on the rest of these issues.

The present book, then, attempts to take a unified — or, at least, unifying
— approach to this subject. The expanding literature in each of these fields has
seen more interaction between them, so that a model theorist might well want to
know more about the frontier of probabilistic work in set theory, or a computability
theorist more about the relevant work in model theory.

We focus here on mathematical logic and probability. Probability logic and
its relatives seem frequently to arise as works of philosophical logic, and this has
implications for the questions that are asked about it. Frequently it is seen in
connection with the theory of rational decision, as in [242]. Mathematical logic,
by contrast, asks about computability and undecidability; about theories and their
models; about reducibilities and regularity of sets. Alternate logics are of inter-
est to mathematical logic inasmuch as they provide the necessary infrastructure
for carrying out this program in interesting settings. Applications of logic to ar-
tificial intelligence and other modeling contexts are important, but they arise as
applications of the theory, not as its defining elements.

Chapter 1 begins to lay out the central thesis of the book: that all the other
chapters have something to say to one another. This is done by identifying several
important cross-cutting themes that come up in several of the other chapters.

In the next chapter, we begin the technical section of the book by describing
the various logics useful for probability. Continuous first-order logic has a central
role, not least because it generalizes many others. Probability logic is extensively
studied, and is explored here as well, as are some other approaches.

In a third chapter, we will consider the theory of algorithmic randomness, with
special attention to normal numbers, Martin-Löf randomness, and their relation
to computation. This treatment will not be complete, of course — the subject is
well-covered elsewhere. Rather, the focus will be on those aspects of algorithmic
randomness that interact with other areas of advance in the logic and probability
community.

The chapter on randomized computation involves the leap of reasoning that
computability and complexity still have something to say to one another. Recent
work on generic and coarse computability, as well as that on derandomization,
descriptive complexity, and continuous first-order logic support this hypothesis.

The following two chapters will take up the various approaches to random struc-
tures. The investigation of random structures seems to have arisen historically from
the study of random graphs, which invited generalization to 0-1 laws, and which
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connected with the earlier beginnings of Fräıssé limits. More recent approaches con-
sider the “random” structure as a single structure that somehow embodies the pos-
sible variation — graphons, Keisler randomizations, invariant random subgroups,
and the like. Others use algorithmic randomness to define the structure.

In taking up the problem of learning theory, there is a fair viewpoint from
which learning after the tradition of Gold, probably approximately correct (PAC)
learning after the tradition of Valiant, and the model theory of NIP structures are
wildly different fields. The chapter devoted to these topics takes the opposite view.
Valiant’s definition is a natural extension of Gold’s framework, and the theory of
Vapnik-Chervonenkis dimension governs both PAC learning and NIP theories.

The final chapter surveys the general area of dynamics. An introduction to
orbit equivalence relations and Borel cardinality is given, and several topics on
the relation of measure to equivalence relations are considered, including the im-
plications of ergodicity and Hjorth’s notion of turbulence. Recent model-theoretic
approaches to Szemeredi Regularity and Furstenberg Correspondence belong here,
too, as does the characterization of 1-randomness by the Ergodic Theorem and the
emerging theory of computable Polish spaces.

Of course, some limits must be set on the content of such a book. For instance,
a new line of thought has arisen in recent years over categorical treatments of
probability [199, 200, 395]. In view of traditional [350] and recent [119, 248,
247] work on connections between category theory and logic, this work is certainly
interesting and relevant, but it is hard, at this stage of the theory, to explain its
relationship to the other work.

The book is to be formally self-contained, but realistically anticipates a reader
who has completed a first course in logic at the graduate or upper undergradu-
ate level. Such a reader will, after reading the book, be prepared to understand
the frontier of the research literature in probability-related areas of computability,
model theory, set theory, and logical aspects of artificial intelligence. There is an
important place in the world for a reader equipped in this way: A major part of
logic in the coming years will involve connections between these fields, and those
who understand something of all of them will be well-poised to contribute.



CHAPTER 3

Random Sequences

Of the topics covered by chapters in this book, the subject of the present chapter
— often called algorithmic randomness — has perhaps had the most comprehensive
and recent treatment in other volumes. The goal here will be to draw attention to
some points that seem to have received less attention and to emphasize connections
with the other subjects of the present book. The canonical comprehensive treat-
ments of the modern theory of algorithmic randomness are [158] and [387], while
[193] provides an update on directions of research that have come to greater promi-
nence in the decade since those two comprehensive treatments were published. The
present section will draw heavily [158] and [193], and all three of these volumes
should be the first point of reference for readers interested in pursuing most of these
subjects further.

3.1. Normal Sequences

A notable exception to the comprehensiveness of the three books just mentioned
is the theory of normal numbers. Indeed, there is good ground for debate on whether
they deserve the name of “random” at all, as we shall see. However, there is at
least a continuity of thought between normal numbers and the various classes of
algorithmically random numbers, narrowly construed, and they have seen recent
activity in mathematical logic communities. A good reference on normal numbers
from a rather different perspective is [90].

3.1.1. Popper and Randomness. Normal numbers were introduced in [80],
but in some sense the more basic concept is the free sequence. A normal number
is a real number whose expansions in various bases constitute a free sequence.

Free sequences are described in Popper’s Logic of Scientific Discovery as part
of his effort to explain the foundations of probability [407]. His overall program
was to describe the method by which scientific knowledge could be justified.

His view was that a hypothesis would be “put up tentatively,” and conclusions
deduced from it. It might then be tested empirically by observing evidence for or
against the conclusions deduced from the hypothesis. An important aspect of this
program is a description of how a statement of probability “can be explicitly tested
and corroborated.”

Following von Mises’ development of the foundations of probability, Popper
attempted to describe what it would mean to hypothesize that a given sequence of
observations approximates “empirical sequences of a chance-like or random charac-
ter.”

Whatever a sequence of random character might be, we at least sympathize
with comic strip character Dilbert. A random number generator is introduced to
him as it reports its random sequence “Nine nine nine nine nine nine nine. . . .”

39



40 3. RANDOM SEQUENCES

“Are you sure that’s random?” Dilbert asks [12]. To be sure, whatever random
means, a constant sequence can’t be it. One way to explain this intuition is to say
that the next element of a constant sequence is guaranteed to have a particular
value.

Popper suggests that this can be extended. We also recognize

(0, 1, 0, 1, 0, 1 . . . )

as a non-random sequence. Although P (xn+1 = 1) = 1
2 , suggesting a superficial

randomness, we can remove this apparent randomness by conditioning on the pre-
vious bit. Indeed, P (xn+1 = 1|xn−1) is either 1 or 0, depending on the value of
xn−1. The same applies to the sequence

(0, 0, 1, 1, 0, 0, 1, 1, . . . )

with conditioning on the previous two elements. This leads to a definition.

Definition 3.1.1. Let X := (xi : i ∈ N) be a sequence in Σω for some alphabet
Σ.

(1) For each n, k ∈ N and each ¯̀∈ Σn, we define a function p
¯̀
k(s) by

p
¯̀
k(s) :=

∣∣∣∣∣
{
j ≤ k : xj = s ∧

∧
i≤n

xj−i = `i

}∣∣∣∣∣∣∣∣∣∣
{
j ≤ k :

∧
i≤n

xj−1 = `i

}∣∣∣∣∣
.

(2) We say that X is n-free if and only if for every ¯̀∈ Σn and every s ∈ Σ,
we the formula

lim
k→∞

p
¯̀
k

gives a uniform distribution on Σ.

So in the prior examples, we see that (0, 1, 0, 1, . . . ) ∈ 2ω is 0-free but not
1-free, and (0, 0, 1, 1, 0, 0, 1, 1, . . . ) is 0-free and 1-free, but not 2-free. In general,
an n-free sequence can be constructed by taking the set of all distinct elements
σ1, . . . , σk ∈ Σn+1, concatenating them in any order, and repeating that finite
sequence infinitely. Popper points out that any periodic n-free sequence must have
period at least 2n+1. The natural limit, then, is a sequence that is n-free for all n.

Definition 3.1.2. We say that a sequence X is absolutely free if and only if it
is n-free for every n ∈ N.

One argument against understanding these sequences as “random” is the fact
that there are absolutely free sequences X such that there is an algorithm to com-
pute, for each n, the value of xn. Indeed, the kind of “unpredictability” required
is quite rigid: no look-back window of fixed length should allow a favorable chance
of guessing the next element. This does not prevent other methods of guessing,
including a prediction of xn based on (x1, . . . , xn−1), or even a prediction of xn
based solely on n, with no reference to the previous entries.

Theorem 3.1.3 ([407]). There is a computable absolutely free sequence.

Proof. We have already shown, for any n, how to generate a sequence τn of
length n′ > n which, if repeated infinitely often, is n-free. Moreover, this sequence
can be chosen in such a way as to begin with any sequence σ ∈ Σn. There are many
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ways to do this effectively, but for concreteness, we could list the n + 1-tuples in
lexicographical order.

For some arbitrary n ∈ N, we generate such a τn. Then we pick some n1 ≥ n′

and form an n1-free τn1
of length n′1 whose first n′ elements are τn. For each i > 1,

we pick some ni+1 > n′i, and form an ni+1-free τni+1
of length n′i+1. For any fixed

t, this process will converge on the tth element of the sequence. �

We will see in the next section methods to control the complexity of this com-
putation. Nevertheless, there are computational limitations.

Definition 3.1.4 ([18]). Let Σ be an alphabet.

(1) A deterministic finite automaton with output is a quadruple (Q,Σ, δ, q0, τ),
where Q is a finite set of states q0 is an initial state, δ : Q× Σ→ Q, and
τ : Q→ Σ.

(2) We say that a sequence X ∈ Σω is automatic if and only if there is a deter-
ministic finite automata with output such that if wn is a representation
of n in Σ (say, a base k expansion where |Σ| = k) and w′ is the reverse of
w, then xn = τ(δ(q0, w

′)).

Clearly every automatic sequence is computable, but the reverse fails.

Theorem 3.1.5. No automatic sequence is absolutely free.

Proof. In an automatic sequence, the number of distinct subsequences of
length n is bounded by O(n) (see Corollary 10.3.2 of [18]). Since an absolutely free
sequence must have more distinct subsequences, it cannot be automatic. �

3.1.2. The Problem of Bases, and Normal Numbers. Of course, we can
treat a sequence of numbers as a single real number. For instance, a sequence of
numbers, each at most k, can be read as a base-k representation. In this sense, we
could think of n-free and absolutely free real numbers. There is, however, a problem
of robustness in this approach, in that the same real number may be absolutely free
in one base and not absolutely free in another base.

Definition 3.1.6 ([80]). Let x be a real number and b ∈ N.

(1) We say that x is simply normal to base b if and only if, in the base b
representation of x, each symbol from {0, 1, . . . , b−1} occurs with limiting
probability 1

b .
(2) We say that x is normal to base b if and only if, in the base b representation

of x, for each ` ∈ N, every sequence in {0, 1, . . . , b − 1}` occurs with
identical limiting probability.

It is straightforward to observe that x is normal to base b if and only if its base
b expansion is an absolutely free sequence. In this sense, we have shown that there
exist, for each b, computable numbers normal to base b.

Proposition 3.1.7 ([310]). Given b ∈ N, the set of real numbers that are
normal to base b is Π0

3 complete.

Proof. The Π0
3 definition of normality is straightforward. On the other hand,

let x =
∞∑
i=1

αi
bi be normal to base b, and let I0(x) be the set of i such that αi = 0.
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We now denote by k(i) the position of i in an increasing enumeration of I0, and we
define a function on Cantor space T : 2ω → R by setting, for each σ ∈ 2ω,

t(αi) :=

{
1 if i ∈ I0(x) and σ(k(i)) = 1
αi otherwise

.

We define T (σ) :=
∑
i=1

∞ t(αi)
bi .

Now we consider cerain properties of σ. We define the density of σ, denoted
δ(σ) to be

δ(σ) := lim
i→∞

|{n ≤ i : σ(n) = 1}|
i

.

If δ(σ) = 0, then T (σ) is normal to base b. Otherwise, T (σ) is not even simply
nromal to base b. It now suffices to show that the set of σ with density zero is Π0

3

complete, which turns out to be true. �

The property of normality is dependent on the base.

Theorem 3.1.8 ([365, 433]). Let b1 ∈ N and x ∈ R. Then x is normal to base
b1 exactly when x is normal to every base b2 = bq1 with q ∈ Q. Moreover, if B ⊆ N
is (relative to N) closed under rational powers, then B can occur as the set of bases
to which a real number is normal.

Proof. We give a proof of the first assertion of the theorem, for which it
suffices to prove that x is normal to base b1 exactly when x is normal to base br1 for
some integer r. One side of this implication is straightforward from the definition
of normality (as opposed to simple normality).

Suppose x is normal to base br1. Now for any integer t, we have x normal to
base btr1 , so that x is simply normal to base t, as is explained in detail in [90]. �

This result can be extended to simple normality. In the following theorem, it
will be helpful to recall the definition of Hausdorff dimension. This is described,
for instance in [184]. It suffices for the present purpose to give the definition for
subsets of R.

Definition 3.1.9. Let p, δ ≥ 0, and A ⊆ R.

(1) We define Hp,δ(A) to be inf

{ ∞∑
i=1

rpj

}
, where A is covered by a union of

balls
∞⋃
i=1

Bri(xi), with all ri ≤ δ, and the infimum is taken over all such

collections of balls.
(2) The p-dimensional Hausdorff measure of A, denoted Hp(A), is given by

lim
δ→0

Hp,δ(A).

(3) The Hausdorff dimension of A is given by the infimum of the set of all
nonnegative p such that Hp(A) = 0.

If A is a singleton, for instance, or even a discrete set of points in R, then for
any p, δ ≥ 0, we have Hp,δ(A) = 0, so that the Hausdorff dimension of A is 0. On
the other hand, the Hausdorff dimension of R is 1. It is a slightly more involved
exercise to show that the Hausdorff dimension of the usual middle-thirds Cantor set
is log3 2. We have the following result on the ubiquity of numbers simply normal
to some bases but not to others.
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Theorem 3.1.10 ([50]). Let S be the set of positive integers that are not perfect
powers, and let M : F → P(Z)+ such that for every s ∈ S, the following hold:

(1) If m ∈M(s) and d|m, then d ∈M(S)
(2) If M(s) is infinite, then it is equal to Z+.

Then there is a nonempty set X ⊂ R with the following properties:

(1) X has Hausdorff dimension 1, and
(2) For every s ∈ S and every m ∈ Z+, every x ∈ X is simply normal to base

sm if and only if m ∈M(s).

Proof. We first show the nonemptiness of X by constructing x ∈ R satisfying
the necessary properties. If M(s) is infinite for every s ∈ S, then the result will
follow from Theorem 3.1.13, so we assume that there is some s such that M(s) is
finite. In that case, we define sequences (nj : j ∈ N), (rj : j ∈ N), (sj : j ∈ N),
(s∗j : j ∈ N), (`j : j ∈ N), (Uj : j ∈ N), (pj : j ∈ N), to satisfy several conditions.
In many cases the satisfiability of these conditions is nontrivial, but we offer this
outline.

We will use the term balanced. In particular, for a word σ of length ` and a
finite set V , with v ∈ V , we define occ(w, v) to be the number of occurrances in w
of v. We then define

D−(w, V ) = max

{∣∣∣∣occ(w, v)

`
− 1

|V |

∣∣∣∣ : v ∈ V
}
.

Definition 3.1.11. We define balanced in the following senses:

(1) A word σ ∈ V ` is said to be balanced for an integer m if
(a) ` is a multiple of m, and
(b) The sequence τ of blocks of length m whose concatenation is the

longest initial segment of σ whose length is a multiple of m has the
property that D−(τ, V `) = 0.

(2) A string σ is said to be balanced for a set M if and only if is balanced for
every element of M .

(3) A set W ⊆ V ` is said to be balanced for a set M if and only if
(a) ` is a multiple of each element of M , and
(b) The concatenation of the elements of W is balanced for M .

We construct the sequences to satisfy the following conditions.

(1) sj is an element of S.
(2) M(sj) is finite.
(3) nj /∈M(sj).
(4) Every pair (n, s) appearing as (nj , sj) for some j appears for infinitely

many j.
(5) (rj : j ∈ N) enumerates {sm : s ∈ S,m ∈M(s)} in increasing order.

(6) s∗j = s
`j
j .

(7) Uj is a set of strings of length `j .
(8) Uj is balanced for M(sj)
(9) Uj is not balanced for nj

(10) If sj is odd, then Uj is the set of `j-tuples of elements from {0, . . . , sj−1}
except the even singletons.

(11) If sj is even, then Uj is the set of `j-tuples of elements form {0, . . . , sj−1}
except the pairs (a, b) with a < b and a even and b odd.
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(12) There is εj > 0 and a sequence dj of length nj from {0, . . . , sj} such that

for any δj > 0 there is a positive ˆ̀
j such that for ` > ˆ̀

j , the number
of sequences u of length ``j from {0, . . . , sj} with dj occurring in u �nj
strictly less than 1

snj
− εj is at least (1− δ)|Uj |`.

(13) pj is the least positive integer with the property that r
pj
k ≥ 2(j + 1) for

each k ≤ j.
We now construct a sequence of approximations (xt : t ∈ N), and x will be

defined by the fact that x ∈
[
xt, xt + (s∗jt)

pt
)
, for appropriate sequences jt and pt.

We will have a function ` : N→ N that is specified in the paper’s full treatment of
this proof, but that we do not specify here. Let z(j, a, y) be the least number shuch
that there is a sequence of length da+ `(j)/ ln s∗je.

Letting y be the least number k
sjt+1

α
> xt, and choose an appropriate a. Then

we can define xt+1 = z(jt+1, a, y).
The Hausdorff dimension of the set X can be calculated by means of a careful

analysis of this construction, in combination with a result of [167]. �

It is in some sense a failure of canonicity in the definition of normality that
numbers can be normal to one base but not to others, and that such examples
are in some sense the norm. To remove this dependency, Borel described another
standard of normality.

Definition 3.1.12. We say that a real number x is absolutely normal if and
only if it is normal to every base.

Borel observed that almost all numbers are absolutely normal, but did not
explicitly give a proof. There are several proofs available, but we defer a proof
until a later section, in which we prove that almost all real numbers have a stronger
property that implies absolute normality.

Theorem 3.1.13 (Borel). Almost all numbers are absolutely normal.

Both Borel and Sierpinski proposed a relationship between normality and irra-
tionality. Of course, rational numbers cannot be absolutely normal. The normality
of e and π are well-known open questions.

The study of transcendental numbers has a (generally well-deserved) reputation
for difficulty, but one class of transcendentals that has been well-explored is the
Liouville numbers [40].

Definition 3.1.14. Let x be a real number. Then x is said to be Liouville if

and only if there is a sequence
(
pn
qn

: n ∈ N
)

of rational numbers and a sequence

(ωn : n ∈ N) such that the following hold:

(1) lim supωn =∞
(2)

∣∣∣x− pn
qn

∣∣∣ < 1
qωnn

.

In particular, a Liouville number witnessed by
(
pn
bn : n ∈ N

)
will have arbitrarily

long sequences of zeroes in its base b representation, making that number very far
from being simply normal to base b. We say that such a number is Liouville to base
b.

Problem 3.1.15 (Slaman). Is there a number which is normal to base 2 but
Liouville to base 3?
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3.1.3. Computability of Normal Numbers. Writing considerably before
the advent of a mathematical approach to the theory of algorithms, Borel observed
that in the contemporary state of knowledge, the “effective determination” of an
absolutely normal number seemed very difficult — he even proposed that it would
be interesting either to do so or to prove that any number that can be “really
defined” must fail to be absolutely normal — remarkably prescient in being much
more open to algorithmic unsolvability than either Hilbert or Dehn at about the
same time. The problem was first solved by Sierpinski in 1917 by demonstrating a
computable absolutely normal real number, in the course of giving an elementary
proof of Theorem 3.1.13.

There has been considerable work since Sierpinski in the possibilities for effec-
tiveness in normal numbers, and [430] provides a recent survey. We have already
seem that no absolutely free sequence is automatic. It follows then, that the digits
of an absolutely normal number, in whatever base, cannot constitute an automatic
sequence. In fact, more is true. We begin by describing a notion of compression.

Definition 3.1.16. We describe the action of a finite-state compressor.

(1) A finite-state compressor is a sextuple C = (A,B,Q, q0, δ, o), where A and
B are alphabets, Q is a finite set of states, q0 ∈ Q is the initial state,
δ : Q×A → Q is the transition function, and o : Q×A → B∗ generates
an output.

(2) Any finite-state compressor, as above, induces functions δ∗ : Q×A∗ → Q
and o : Q × A∗ → B∗ in the obvious way (by composition in δ and by
concatenation in o).

(3) C is said to be lossless if and only if the mapping f : A∗ → Q×B∗ given
by f(σ) = 〈o∗(q0, σ), δ∗(q0, σ)〉 is injective.

The name “compressor” arises because of the following calculation.

Definition 3.1.17. We describe the compression of strings by finite-state com-
pressors.

(1) The compression ratio for a finite state compressor C on a finite string
σ ∈ A∗, denoted by ρC(σ), is given by the output length divided by
|σ| log|B| |A|, a standard optimal coding of σ in B.

(2) The compression ratio ρC(σ) for an infinite string σ ∈ Aω is given by
lim inf
n→∞

ρC(σ �n).

(3) We say that an infinite string σ ∈ Aω is compressible if and only if there
is a lossless finite-state compressor C with ρC(σ) < 1. We say that it is
incompressible otherwise.

From this perspective, the following result gives limits on the computation by
automata of normal numbers.

Theorem 3.1.18 ([52]). A real number is normal to base b if and only if its
base b expansion is incompressible.

Proof. Let x be normal to base b, and let A = {0, . . . , b − 1}. Let C =
(A,B,Q, q0, δ, o) be a lossless compressor, and ε > 0.

For each σ ∈ A∗, we set aσ = min
q∈Q
|o∗(q, σ)|. For n ∈ N, we define the set

Sn :=
{
σ ∈ An : aσ > (1− ε)n log|B| |A|

}
, and the proof, in the end, will consist of
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a lower bound on this set’s cardinality. By counting arguments, we can see that

|Sn| > |An| − |B||Q|2|A|(1−ε)n.

We can naturally replace C by Cn (with output function on,∗, which accepts
inputs from An, and can view x as a sequence x̂ of elements of An. By the simle
normality of x̂, we can show that

ρCn(x̂) = lim inf
k→∞

|on∗(q0, x̂ �k)|
k log|B| |An|

≥ (1− ε)3.

It follows that ρC(x) ≥ (1− ε)3. Since this holds for every ε, we conclude that x is
incompressible.

The proof of the converse is also elementary. �

Further work in [51] describes enhancements to a finite state transducers that
would allow compression of normal numbers, leaving open the following problem.

Problem 3.1.19. Can a deterministic push-down transducer compress a nor-
mal word?

Beyond the world of automata, much of the work on effective normal numbers
seems to center on tradeoffs between computational complexity and the speed of
convergence to normality. The latter is measured in terms of the discrepancy.

Definition 3.1.20. Let X be a sequence of real numbers.
We define the discrepancy of X to be the quantity

DN (X) = sup
I=(i1,i2)

∣∣∣∣ |{n ∈ {1, . . . , N} : xn mod 1 ∈ I}|
N

− (i2 − i1)

∣∣∣∣
where I ranges over all open subintervals of [0, 1).
We say that X is uniformly distributed modulo 1 if and only if lim

N→infty
DN (X) = 0.

Now a real number x is normal to base b if and only if Bx := (bnx : n ∈ N) is
uniformly distributed modulo 1. In that sense, we can consider the discrepancy of
this sequence DBx(N) as a function of N , and use this function as a measure of the
speed at which x “converges to normality.”

Theorem 3.1.21 ([434]). Let X be a sequence of real numbers. Then there is

a positive constant c such that for infinitely many N , we have DX(N) ≥ c logN
N .

The strongest possible result on computable normal numbers, then, would be

the construction of a real number x such that DBx(N) = O
(

logN
N

)
. The best

result currently known is the following.

Theorem 3.1.22 ([334]). There is a computable number which is normal to

base b with discrepancy O
(

log logN
N

)
.

From the perspective of convergence to normality, Theorem 3.1.13 can be made
more specific.

Theorem 3.1.23 ([206]). For almost every x ∈ R, for every integer b > 1, the

sequence Bx has discrepancy O

(√
log logN

N

)
.
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The problem of an optimal construction remains open. A survey of the recent
results can be found in [430].

Problem 3.1.24. Does there exist a computable normal number x withDBx(N) =

O
(

logN
N

)
?

3.2. Martin-Löf Randomness

3.2.1. Kolmogorov Complexity. We begin our study of the more tradition-
ally considered forms of algorithmic randomness with the idea of compressibility.
This compressibility is in some ways similar to that of the previous section, but uses
Turing machines instead of finite state transducers. We define a N-valued function
C on strings, and several variants.

Definition 3.2.1. Denote by 2<ω the finite binary strings.

(1) For any f : 2<ω → 2<ω, we define Cf : 2<ω → N by

Cf (σ) := min {|τ | : f(τ) = η(σ)} .
(2) Let U be a universal Turing machine. Then CU = Cf where f is the

function computed by U .

We note that for any partial computable function f , the quantity CU (σ) is
bounded by Cf (σ) + kf , where kf is a constant depending on f but not on σ. In
that sense, a universal quantity C(σ) can be defined up to an additive constant by
defining C = CU for some universal machine U . This quantity is sometimes called
the plain Kolmogorov complexity, to distinguish it from the prefix-free Kolmogorov
complexity we describe later. We can similarly define a conditional version of plain
Kolmogorov complexity.

Definition 3.2.2. Let f : (2<ω)
2 → 2<ω. Then we define

Cf (σ|η) = min {|τ | : f(η, τ) = σ} .

The definitive reference on Kolmogorov complexity is [336]. We will frequently
describe an infinite binary sequence (equivalently, a real number), and will consider
C(X �n) as a function of n. Since this quantity is well-defined only up to an
additive constant (corresponding to the choice of universal machine), essentially
all formulas involving Kolmogorov complexity will include a term of ±O(1). We
can also see that C(X �n) ≤ n − O(1), since it suffices to simply list the elements
X(0), . . . , X(n− 1).

In the spirit of the deficiency concept of the previous section, we also have a
notion of deficiency here.

Definition 3.2.3. The randomness deficiency of σ relative to A is defined by

δ(σ|A) = `(A)− C(σ|A)

where `(A) is the length of the cardinality of A.

An important property of randomness deficiency is that there are few strings
with high deficiency.

Theorem 3.2.4. Let A ⊆ N. Then for any k ∈ N,

|{x : δ(x|A) ≥ k}| ≤ |A|
2k−1

.
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Proof. Consider the set E1 := {τ ∈ 2<ω : |τ | ≤ λ}. Of course, |E| ≤ 2λ+1.
Consequently, we can bound, for a fixed A, the number of strings σ with C(σ|A) ≤ λ
by 2λ+1.

To have `(A)−C(σ|A) ≥ k, then, we must have C(σ|A) ≤ `(A)−k. The set of

all such strings must have cardinality at most 2`(A)−k+1 = 2`(A)2−(k−1) = |A|
2k−1 . �

Computable sequences σ ∈ 2N are an important benchmark case. Since the
(finite) index for a Turing machine computing σ constitutes a description of σ �n
for all n ∈ N, we have C(σ �n� n−O(1) for sufficiently large n.

At the level of intuition, Kolmogorov complexity has significant similarity to
Shannon’s entropy. This measure was introduced in [441], as a measure of the
information content of a string, and is well-attested in the literature. A good
modern reference is [78].

Definition 3.2.5. Let σ be a finite string of elements from {1, . . . ,m}. We
define the entropy of σ by

Hm(σ) =

m∑
i=1

pi log2 pi,

where pi is the frequency of occurrance in σ of the element i.

A more complete discussion of entropy in its many forms — including a deriva-
tion of the form of this definition from reasonable hypotheses — can be found in
Section 6.1.3. Indeed, there is a strong quantitative relationship between the two
properties.

Theorem 3.2.6. Let σ ∈ 2<ω be a concatenation τ1τ2 · · · τk where each τi is
a string of length n, so that σ can be interpreted as a string of natural numbers

τ̂i =
n∑
j=0

τi(j)2
j. We then have

C(σ) ≤ k
(
Hm(σ) +

2n+1 log2(m)

m

)
+O(1)

.

Proof. Each of the quantities sj = pjm imposes a constraint on the set of
possible strings σ. Given the list of all strings satisfying these constraints, σ can
be uniquely determined by selecting one of them, a choice from among

(
m

s1,...,s2n

)
possibilities. Moreover, each of the quantities sj can be expressed using at most
log2(m) bits, since sj ≤ m. Consequently, we have

C(σ) ≤ 2n+1 log2(m) + log2

(
m

s1, . . . , s2n

)
.

The result follows from Stirling’s approximation. �

We can, using Kolmogorov complexity, formulate a notion of mutual informa-
tion parallel to Shannon’s. Intuitively, the quantity defined here should represent
the information about σ contained in τ .

Definition 3.2.7. The algorithmic information of σ from τ , denoted IC(σ : τ)
is defined by C(σ)− C(σ|τ).
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An important feature of mutual information in Shannon’s theory is its sym-
metry: I(τ : σ) = I(σ : τ). This is, of course, too much to ask for a notion like
IC , which is defined only up to an additive constant. Indeed, the symmetry of
information from a Kolmogorov complexity perspective is weaker even than that.

Proposition 3.2.8. Let σ, τ be strings. Then

|IC(τ : σ)− IC(σ : τ)| = O (logC(στ)) .

On the other hand, there are strings σ, τ witnessing that this bound is sharp.

A very strong statement of incompressibility, then, would be to say that real
number X has the property that C(X �n) ≥ n − O(1). However, we have the
following result.

Proposition 3.2.9 (Martin-Löf). For any real number X, we have C(X �n) �
n−O(1).

Proof. We will show that for n large enough, there is an initial segment σ of
X �n with C(σ) < |σ| − k.

Indeed, let τ be a finite initial segment of X, and let j be the serial number for
τ in an enumeration of 2<ω. Now let ρ consist of the unique set of j bits such that
τρ is an initial segment of X. We set σ = τρ.

To see that σ has the desired property, we observe that to determine σ, we
need only know ρ, since the length of ρ encodes τ . Then C(σ) ≤ |ρ| −O(1), and if
n = |σ|, then C(X �n) ≤ |ρ| + O(1) � n − O(1). Since τ was of arbitrary length,
the result follows. �

For this reason, there can be no real number with the incompressibility property
we first stated. Instead, we slightly modify the definition of Kolmogorov Complex-
ity.

Definition 3.2.10. Let C denote plain Kolmogorov complexity.

(1) A partial recursive prefix-free function is a partial recursive function φ :
2<ω → N such that if φ(p) ↓ and φ(q) ↓ with p 6= q, then p is not a prefix
of q.

(2) Let ψ̂ be a partial recursive prefix-free function which is universal in the
sense that for any recursive prefix-free function f , there is ρf such that

ψ̂(ρfσ) = f(σ). Then we define the prefix-free Kolmogorov complexity

K(σ) = Cψ̂(σ).

This definition raises two technical points. It is not hard to see that a universal
prefix-free function exists. Moreover, the defintion of K is given, as usual, only up
to an additive constant.

This avoids the difficulty of Proposition 3.2.9, intuitively because a prefix-free
machine cannot use both ρ and |ρ|. We now have a viable standard of incom-
pressibility. The following definition was sketched in the concluding sentences of
[320], where the complexity definition was introduced, and later made precise in
[333, 111].

Definition 3.2.11. We say that X ∈ R is 1-random if and only if, for all n,
we have K(X �n) ≥ n−O(1).
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We can see, by a counting argument, that the number of sequences σ of length
n with K(σ) ≥ n − c is at least (1 − 2c)2n, so that almost all real numbers are
1-random. We will soon see that every 1-random is absolutely normal, but we
defer the proof of this statement until after stating some equivalent definitions and
proving their equivalence.

3.2.2. Martin-Löf Characterization by measures. Martin-Löf, in the 1960s,
was aware of Kolmogorov’s earlier work, and showed that it satisfied certain intu-
itive properties that should be associated with randomness. His first example was
that a random number — whatever that was, should be simply normal to base 2
[359].

To show that in the binary expansion of X =
∞∑
i=1

xi2
−i, the proportion of ones

is 1
2 , we could run a series of tests of increasing precision. For each n, we could

calculate

En =

∣∣∣∣∣2
(

n∑
i=1

xi

)
− n

∣∣∣∣∣ .
If X is simply normal to base 2, of course, En(X) will tend toward zero. We can
construct a computable function f : N × N × 2<ω → N in such a way that the
sequence

Cn := {X : En ≤ f(m,n,X �n)}
satisfies λCn ≤ 2−m, where λ represents Lebesgue measure. Martin-Löf’s goal was
to show that 1-random reals must pass all such tests — for instance, En → 0.

The definition of Martin-Löf randomness is often stated in terms of Lebesgue
measure, but Martin-Löf himself suggested the use of arbitrary measures, and the
use of measures other than Lebesgue measure has become more important in the
recent literature. In any case, it is no addition to the difficulty of the definition
to define Martin-Löf randomness in the context of an arbitrary measure. By way
of motivation, though, we will see that for Lebesgue measure λ, the λ-Martin Löf
random reals are exactly the 1-random reals.

Definition 3.2.12. Let µ be a measure.

(1) A Σ0
1 class of elements of 2ω is a set C of the form {A : ∃n R(A �n)} for

some computable relation R.
(2) A µ-Martin-Löf test is a sequence (Un : n ∈ N) of uniformly Σ0

1 classes
such that for any n ∈ N, we have µUn ≤ 2−n.

(3) A set C ⊆ R is said to be µ-Martin-Löf null if and only if C ⊆
⋂
n∈N

Un for

some µ-Martin-Löf test (Un : n ∈ N).
(4) A real X is said to be µ-Martin-Löf random if and only if the singleton
{X} is not Martin-Löf null.

Theorem 3.2.13 (Schnorr). A real X is Martin-Löf random with respect to
Lebesgue measure if and only if it is 1-random.

Proof. Let X be Martin-Löf random, and let Un = {Y : ∃k K(Y �k) ≤ k−n}.
By the discussion following Definition 3.2.11, this set will have measure at most 2−n.
Now X /∈

⋂
n∈N

Un, so that X is 1-random.
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On the other hand, suppose that X is not Martin-Löf random. Then a test
(Un : n ∈ N) with X ∈

⋂
n∈N

Un can be transformed into a witness to K(X �n) �

n+O(1). �

An advantage that Martin-Löf pointed out to the approach by measures is the
concept of a universal test. A Martin-Löf test (Un : n ∈ N) is said to be universal
if and only if for any other test (Vn : n ∈ N), we have

⋂
n∈N

Vn ⊆
⋂
n∈N

Un. The test

constructed in the previous proof to show that a Martin-Löf random is 1-random
is an example of such a test. This consideration already gives us the following
observation.

Proposition 3.2.14 ([359]). The set of 1-random reals in the unit interval has
measure 1.

Proof. Consider the universal test (Un : n ∈ N) already constructed. Since⋂
n∈N

Un has measure zero, its complement, consisting of exactly the 1-random reals,

has measure 1. �

A much more striking proof of this proposition arises from the consideration of
dynamical systems. A complete discussion of ergodicity will come later, in Section
6.1.2, but we observe here that for a probability space (Ω,M, P ) and a measure-
preserving function f : Ω → Ω, we say that the system (f,Ω, P ) is ergodic if and
only if for any S ∈M, if T−1(S) = S, then P (S) ∈ {0, 1}.

Theorem 3.2.15 (Birkhoff Ergodic Theorem). Let (Ω,M, P ) be a probability
space, and let f : Ω → Ω be a measure-preserving transformation. Let A ∈ M.
Then for almost every x ∈ Ω, then the limit

lim
n→∞

1

n

 n∑
j=1

χA
(
f j(x)

)
exists. Moreover, if (f,Ω, P ) is ergodic, then the limit is equal to P (A).

The claim to be advanced is that the full-measure set of x for which the con-
clusion of the theorem holds coincides exactly (under approriate provisos) with the
P -Martin-Löf random elements of Ω. We say that a point x ∈ Ω is Birkhoff for a
set B and a measure-preserving function f if and only if

lim
n→∞

1

n

 n∑
j=1

χA
(
f j−1(x)

) = P (B).

Theorem 3.2.16 ([70, 191]). Let (Ω,M, P ) be a probability space, and x ∈ Ω.
Then the following are equivalent.

(1) x is P -Martin-Löf random.
(2) x is Birkhoff for every Σ0

1 class U ⊆ Ω for every measure-preserving,
ergodic, computable f : Ω→ Ω.

Proof. We first suppose that x is P -Martin-Löf random. Let U be a Σ0
1 class

of Ω. We define

gn(x) =
1

n

 n∑
j=1

χA
(
f j−1(x)

) ,
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and will show that lim sup gn(x) ≤ P (U) and lim inf gn(x) ≥ P (U). For each
rational r > P (U), we set

GN = {x : ∃(n ≥ N) gn(x) > r}.

This set GN is a Σ0
1 class of Ω, and form a decreasing sequence, whose intersection

has measure zero (by the Ergodic Theorem). Fix N such that P (GN ) < 1. We
can show that there is i such that f i(x) /∈ GN . Thus, lim sup gn

(
f i(x)

)
≤ r. On

the other hand, we can approximate U from below by closed sets and apply the
argument of the previous paragraph to the complement of these approximations,
proving lim inf gn(x) ≥ P (U). Similar arguments establish the converse. �

Work continues on the connection of randomness to ergodic theory. There is
a recent survey of this work in [487]. However, Theorem 3.2.16 is a natural effec-
tivization of Birkhoff’s theorem, and in conjuction with Theorem 3.2.13 and results
of the following section it does provide significant evidence that the 1-randoms are
a natural notion of randomness.

3.2.3. Characterization by Games. We return again to one of the insights
around normal numbers. In a random sequence, it should not be possible to bet
profitably on the next entry in the sequence. Of course, this must be contextualized.

Recall from Section 2.4 that a martingale is a stochastic process x(t) with σ-
algebras Ft such that for all 2 < t we have Fs ⊆ Ft, such that x(t) is Ft-measurable,
such that x(t) has finite expected value at any time, and also such that for any time
t and any s < t, we have E (x(t)|Fs) = x(s). This can be applied either in discrete
(t ∈ N), or continuous (t ∈ R) time, using one and the same definition. In the
probability literature, the term “martingale” seems to unambiguously name this
concept, and this concept is central to modern probability [284, 285, 332]. We
consider a related concept, which is often called a “martingale” in the algorithmic
randomness literature.

Definition 3.2.17. A martingale indicator is a function d : 2<ω → R≥0 such
that, for all σ ∈ 2<ω, we have

d(σ) =
d(σ0) + d(σ1)

2
.

The relation of these functions to martingales is explored in detail in [259].
We can, of course, take a martingale indicator to represent a discrete-time stochas-
tic process in R by defining Xd,n(X) = d(X �n) for each X ∈ 2ω. Now certainly
Xd,n has finite expectation for each n, and if we take Fn to be the family gener-
ated by the basic open sets in 2ω defined by initial sequences of length n, we have
E (Xd,n+1|Fn) = Xd,n. On the other hand, not every discrete-time martingale
occurs in this form: the σ-algebras Fn need not be this particular sequence. Hitch-
cock and Lutz describe this as a distinction between the “bit history” (the case for
martingale indicators) and the “capital history” (the case for general martingales)
[259].

This distinction of “bit history” and “capital history” refers to a specific inter-
pretation to which we will need to refer again. We can view a martingale indicator
as a betting system. It prescribes a payoff for the next bit, allowing the gambler
to condition on knowledge of the previous bets. Then if |σ| = n, the quantity
d(σ1) represents the total capital held by the gambler after the (n + 1)st bit is
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revealed to be a 1. At issue in randomness is whether there is a computable mar-
tingale indicator d that can reliably win — that is, can reliably increase the capital.
This should not be possible for a random sequence. The Dutch book condition,

d(σ) = d(σ0)+d(σ1)
2 , says, in this case, that the bet placed on the next bit is a fair

one.
We say formally that a martingale indicator d succeeds on a sequence X ∈ 2ω if

and only if lim sup
n→∞

d(X �n) =∞. We define the success set of a martingale indicator

to be the set of sequences X such that d succeeds on X.
The following concept was proposed by Hitchcock and Lutz to explain the

boundary between martingales and martingale indicators.

Definition 3.2.18. Let d : 2<ω → R. We define a discrete stochastic process
Xd,n : 2ω → R by Xd,n(X ∈ 2ω) := d(X �n), as before.

(1) For each n, we denote by cX,n the value d(X �n).
(2) For each n, let FX,n be the σ-algebra generated by the set of all strings σ

such that Xd,n(X ∈ 2ω) = cX,n.
(3) We say that d is a martingale process if and only if for every n, we have

E(Xd,n|FX,n−1) = Xd,n

For resource-bounded notions of randomness, this distinction is important.
Hitchcock and Lutz showed that for every computable nonnegative martingale pro-
cess, there is a polynomial-time exactly computable nonnegative martingale process
with the same success set. In the definition of randomness that is equivalent to 1-
randomness, though, there is no difference, as we will see.

Theorem 3.2.19 ([259, 367, 435, 436]). Let X ∈ 2ω. The following are
equivalent:

(1) X is 1-random.
(2) No computably enumerable martingale process succeeds on X.
(3) No computably enumerable martingale indicator succeeds on X.

Proof. Let d be a martingale indicator. Then we can determine a Martin-
Löf test by Un = {σ : d(σ) ≥ 2n}. Thus, if X is in the success set of d, there
is a Martin-Löf test containing X, so that if a computably enumerable martingale
indicator succeeds on X, then it is not 1-random. On the other hand, for any
Martin-Löf test (Vn : n ∈ N), we can define a computably enumerable martingale
indicator d such that d succeeds on X if and only if X ∈

⋂
n∈N

Vn.

Now let d be a computably enumerable martingale process, and assume without
loss of generality that d(∅) = 1. For each natural number k, we define

Ak =
{
σ ∈ 2<ω : max

i
d(σ �i) < 2k ≤ d(σ)

}
.

Each of these sets includes has the property that if σ ∈ Ak and for all i we have
d(τ �i) = d(σ �i), then τ ∈ Ak. We can show that

∑
σ∈Ak

≤ 2−k. We can then define,

for each k, the function

d′k(σ) =

{
1 if σ extends an element of Ak∑
τ

2|σ|−|τ | otherwise ,
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where the sum is taken over all extensions τ of σ with τ ∈ Ak. Setting d′ =
∑
k∈N

d′k,

we have a martingale indicator d′. All of this may be done effectively. The success
set of d′ will match that of d. In this way, it follows that if a computably enumer-
able martingale process succeeds on X, then a computably enumerable martingale
indicator succeeds on X.

We have now established that conditions 1 and 3 are equivalent, and that 3
implies 2. We conclude by showing that 2 implies 1.

Let (Un : n ∈ N) be a Martin-Löf test. We will construct a computably
enumerable martingale process that succeeds on

⋂
n∈N

Un.

To this end, we first identify, for each string σ, the set Vσ, the set of τ extending
σ whose extensions are all in U|σ|+1. We also identify the set V −σ = {τ : στ ∈ Vσ}.
Using the effectiveness of these sets, we can define, for each k and each σ, a mar-
tingale process dσ,k that, with dσ,k(∅) = 2k achieves dσ,k(τ) = 2k+1 for all τ ∈ V −σ .
We refine this process by setting

d′σ,k(τ) =

{
dσ,k(η) if τ = ση
2kif τ does not extend σ

.

We now define a martingale process δ, not depending on σ or k, that will
succeed on

⋂
n∈N

Un. We start with σ0 = ∅, and δ0(∅) = d′∅,0. At stage s + 1, we

find σ such that δs(σ) = 2δs−1(σs−1), and set σs+1 = σ and δs+1 = d′σs+1,s+1. The
limit δ = lim

s→∞
δs is a computably enumerable martingale process, and succeeds on⋂

n∈N
Un. �

The approach to Martin-Löf randomness by martingales gives us easy access
to a result generalizing some of the initial properties sought in normality.

Proposition 3.2.20. Let σ ∈ 2ω be Martin-Löf random, and let f : ω → ωk be
a computable injection. Then for any w ∈ 2k there are infinitely many i such that
σ �{i,i+1,...,i+k−1}= w.

Proof. If there were only finitely many i such that σ �{i,i+1,...,i+k−1}= w, then
we coud create a computable martingale betting that the sequence would never be
completed, which would almost always win. �

It may be objected that the form of betting strategy represented by martingales
is too rigid. Real gamblers certainly randomize their bets, in addition to facing the
probabilistic nature of the environment. They also sometimes decline to take a bet
in any direction at some points. Buss and Minnes explored the randomness notions
that arise from weaker forms of betting strategies.

Definition 3.2.21. Denote by Dn the set of pairs of binary strings of length
n, and by D the disjoint union

⋃
n∈N

Dn. A probabilistic strategy A = (pA, qA), with

pA : D → Q ∩ [0, 1] and qA : D → Q ∩ [0, 2].

We define the action of a probabilistic strategy in the following way. At each
stage, the strategy will determine, based on its own history and the current initial
segment of the sequence, whether to bet on the next bit, and, if so, how much.
For both pA and qA, the first input coordinate reflects the history of decisions on
whether to bet or not, and the second input reflects the current initial segment.
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In particular, at stage n, having placed bets on the values of {xi : i ∈ In}, where
In ⊆ {0, . . . , n − 1}, and having seen Xn = (x0, . . . , xn−1), the gambler will, with
probability pA(χIn �n,Xn) place a bet of size qA(χIn �n,Xn) that xn will have the
value 1, and with probability 1− pA(χIn �n,Xn) does nothing.

To formally compute the winnings of such a strategy, we first compute the
probabilities of achieving particular sets In of bets. We set PA(π, σ) to be the
probability that, running on a string X with initial segment σ, we have χIn �n= π.
We can compute this quantity inductively. We can also compute inductively the
cumulative winnings CA(π, σ) if A is running on a string X with initial segment σ
and χIn �n= π. We can then define the expected winnings after n rounds, EA(X, n)
as follows:

EA(X, n) =
∑

π ∈ 2nPA(π,X �n)CA(π,X �n).

Finally, we give a success criterion.

Definition 3.2.22. We say that a probabilisitc strategy A succeeds on X in
expectation if and only if

lim
n→∞

EX
A(n) =∞.

A sequence X ∈ 2ω is said to be Ex-random if and only if no computable probabilistic
strategy succeeds on X in expectation.

The sequences which are random with respect to expected winnings of prob-
abilistic betting strategies are precisely those which are random with respect to
martingales.

Theorem 3.2.23 ([91]). The following properties of a sequence X are equiva-
lent:

(1) X is 1-random
(2) There is no computable probabilistic strategy that succeeds on X in expec-

tation.

Proof. If A is a probabilistic strategy with lim
n
EX
A(n) =∞, then we define a

Martin-Löf test (Un : n ∈ N) such that X ∈
⋂
n∈N

Un. In particular, we define Un to

be the sequences Y such that ∃i
(
EY
A(i) ≥ 2n

)
. Consequently, X is not 1-random.

Now suppose that there is a Martin-Löf test (Un : n ∈ N) such that X ∈
⋂
n∈N

Un.

We define a probabilistic strategy A that will succeed on X in expectation. As each
string σn,j is enumerated into Un, we set bn,j = 2n−|σn,j |. We define pA and qA
inductively. Let π be the least string from which pA(π, σ), qA(π, σ) are not yet
defined, and let n =

∑
i

π(i). We then define pA by, for each j, the condition

pA

(
π0j , σ

j∏
i=0

(
1− pA(π0i, σ

))
= bn+1,j .

Moreover, for each j and for each k with 1 ≤ k < |σn+1,j |−n, we set pA(π0j1k, σ) =
1. Finally, we set

qA(π0j1k, σ) =

{
0 if σn+1,j(n+ k) = 1
2 if σn+1,j(n+ k) = 0

.
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If X ∈
⋂
n∈N

Un, then lim sup
n

EX
A(n) = ∞. This probabilistic strategy A can be

modified into a probabilistic strategy A′ that succeeds on X in expectation. �

3.3. Other Notions of Algorithmic Randomness

At this point, it is natural to summarize our results as follows.

Theorem 3.3.1. Let X ∈ 2ω. The following conditions are equivalent.

(1) K(X �n) ≥ n−O(1)
(2) For any Martin-Löf test (Un : n ∈ N), we have X /∈

⋂
n∈N

Un.

(3) X is Birkhoff for every Σ0
1 class U ⊆ Ω in every measure-preserving,

ergodic, computable f : Ω→ Ω.
(4) No computably enumerable martingale process succeeds on X.
(5) No computably enumerable martingale indicator succeeds on X.
(6) No computable probabilistic strategy succeeds on X in expectation.

Even without reference to any of the other known equivalent statements, this
list might suggest to us a situation not unlike Church’s Thesis: If we have defined
the same thing in six ways and come up with equivalent definitions, we must have
the right definition. Indeed, there is much to recommend this philosophy. However,
it suffers significantly from selection bias. There are other definitions that we could
have made that are not equivalent to 1-randomness.

A full survey of all randomness conditions now in the literature is a major study
in itself, and far beyond the scope of this book. A starting place to appreciate the
complexity of such a study would be the “Randomness Zoo” of Antoine Taveneaux,
which describes the relative implications of thirty-two pairwise non-equivalent defi-
nitions of randomness, plus at least one proper infinite chain of randomness notions
[477]. We point here to a few definitions not equivalent to 1-randomness, mostly
to avoid the impression that 1-randomness (perhaps on account of being frequently
studied) is unequivocally the correct definition, or even unequivocally the most
interesting.

3.3.1. n-Randomness. One natural way to modify the definition of 1-randomness
is to weaken the effectiveness conditions on Martin-Löf tests or the notion of Kol-
mogorov complexity. There are several ways in which this could be done.

Theorem 3.3.2 ([295]). The following conditions on a sequence X are equiv-
alent:

(1) Let KA(σ) be defined by analogy to Kolmogorov complexity, but giving the
universal machine access to an oracle for A. Then

K∅
(n−1)

(X �n) ≥ n−O(1).

(2) For any sequence (Un : n ∈ N) of uniformly Σ0
n classes with λUn ≤ 2−n,

we have X /∈
⋂
n∈N

Un.

(3) For any sequence (Un : n ∈ N) of open uniformly Σ0
n classes λUn ≤ 2−n,

we have X /∈
⋂
n∈N

Un.

(4) No Σ0
n martingale indicator succeeds on X.
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Proof. Certainly 2 implies 3. Moreover, since relativized Kolmogorov com-
plexity corresponds to relativized Martin-Löf tests (all of which are open), we have
3 implies 1.

Suppose there is a sequence (Un : n ∈ N) of uniformly Σ0
n classes with λUn ≤

2−n. We can use this sequence to construct a Martin-Löf test relative to ∅(n−1),

which, in turn, gives rise to a computation that K∅
(n−1)

(X �n) ≥ n−O(1).
The equivalence of the martingale indicator definition is analogous to the 1-

random case. �

This equivalence gives rise to a definition.

Definition 3.3.3. A sequence X is said to be n-random if and only if it satisfies
any of the equivalent conditions of Theorem 3.3.2.

Obviously, for n = 1 this definition matches the earlier definition of 1-randomness.
The first natural question is whether this hierarchy is strict.

Proposition 3.3.4. For any n ∈ N, if X is (n + 1)-random, then X is n-
random. On the other hand, for any n, there are n-random sequences which are
not (n+ 1)-random.

Proof. For any n, every ∆0
n set is non-n-random. On the other hand, there

are ∆0
n + 1 sets which are n-random. �

We sometimes speak of weak n-randomness, as well.

Definition 3.3.5. We say that X is weakly n-random if and only if it is a
member of all Σ0

n classes of measure 1.

Weak n-randomness does not coincide with weak 1-randomness relative to
∅(n−1).

3.3.2. Shnorr Randomness. Another possible direction in which the notion
of 1-randomness can be strengthened is to require additional effectiveness in the
tests.

Theorem 3.3.6 ([436, 157]). The following conditions on a sequence X ∈ 2ω

are equivalent.

(1) Let (Un : n ∈ N) be a Martin-Löf test with µ(Un) computable, uniformly
in n. Then X /∈

⋂
n∈N

Un.

(2) For any nondecreasing function h : N→ N and any computable martingale
indicator d, we have

lim sup
n

d(X �n)

h(n)
<∞.

(3) For any prefix-free machine M such that the measure of the domain of M
is computable, we have KM (X �n) ≥ n−O(1).

Proof. To show 1 implies 2, let (Un : n ∈ N) be as described in condition 1.
For each n, let Rn be a uniformly computable prefix-free set of strings such that Un
is the set of paths through Rn, and Rn,k ⊆ Rn the set of elements of Rn of length
at least k, and Vn,k the set of paths through Rn,k. We then find a computable

non-decreasing function h0 : N→ N such that
∑
n∈N

µ(Vn) ≤ 2−2h0(k).
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There is, then, a computable non-decreasing function h1 : N→ N with∑
n∈N

 ∑
σ∈Rn,h1(k)

2h0(k)−|σ|

 < 2−k.

We define dn,k in the following way. If σ ∈ Rn,h1(k) and τ extends σ, add 2h0(k)

to the value of dn,k(τ). Further, for each i ≤ |σ|, add 2h0(k)−|σ|+i to the value of
dn,k(σ �i). Finally, we set d(τ) =

∑
n,k∈N

dn,k(tau).

Now if X ∈
⋂
n∈N

Un, then we can show that

lim sup
n

d(X �n)

h(n)
<∞.

To see that 2 implies 1, suppose that d is a computable martingale indicator
and h : N→ N nondecreasing. Letting JσK represent the set of paths through σ, we
define

Ui =
⋃

d(σ)>h(σ)>2i

JσK.

This constitutes a Martin-Löf test with uniformly computable measures, as re-

quired, so that lim sup
n

d(X�n)
h(n) =∞ if and only if X ∈

⋂
n∈N

Un.

To show that 3 implies 1, we similarly assume that (Un : n ∈ N) is a Martin-Löf
test as in condition 1, with X ∈

⋂
n∈N

Un. Again, we take a uniformly computable

sequence of prefix-free sets Rn as before, and consider the set of pairs (|σ − k|, σ)
where k ≥ 1 and σ ∈ R2k. A technical result known as the Kraft-Chaitin Theorem
allows us to produce from this a machine M whose domain has computable measure
witnessing KM (σ) ≤ |σ| − k, so that K(X �n) < n−O(1).

The proof that 3 implies 1 is similar to the proof for the analogous Martin-Löf
random situation. �

This result gives rise to a definition.

Definition 3.3.7. We say that a sequence X is Schnorr random if and only if
it satisfies either of the equivalent conditions of Theorem 3.3.6.

It is immediate from the definition that every 1-random is Schnorr random.
The implication is strict.

While the combinatorics of Schnorr randoms are less accommodating than the
situation with 1-randoms (e.g. there is no universal Schnorr test), Jason Rute has
made a case that Schnorr randomness is the appropriate notion of randomness for
applications involving analysis. In support of this thesis, he offers the following
data.

Theorem 3.3.8 (Various authors; see [426]). For a real number x ∈ [0, 1], the
following are equivalent.

(1) x is Schnorr random.
(2) For every increasing computable sequence of continuous functions gn :

[0, 1] → [0,∞), if there is some computable probability measure µ such
that for any Borel set A, we have

∫
A
gn(x)dx ≤ µ(A), then sup

n
gn(x) is

finite.
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(3) If f : [0, 1] → R is a function of bounded variation with effectively inte-
grable derivative f , then f is differentiable at x.

(4) For every effectively integrable function f , the averages 1
2r

∫ x+r

x−r f(y)dy
converge as r → 0.

(5) For every computable martingale Xn with sup
n
||fn||L1 < ∞, the sequence

fn(x) converges.

3.3.3. Stochasticity. Neither martingale indicators nor martingale processes
nor martingales is the most intuitive way to formalize the idea of computably
betting on future bits of a binary sequence. Perhaps the most intuitive approach is
something closer to the idea of a normal sequence: to have a computable function
that tries to predict places at which the sequence will take value 1. Two notions
termed stochasticity formalize this.

Definition 3.3.9. For any function f : 2<ω → {0, 1}, we define f̃ : 2ω×N→ N
by letting

f̃(σ, n) = |{i < n : σ(i) = f(σ �i) = 1}| .
(1) We say that X is von Mises-Wald-Church stochastic if and only if for any

partial computable function f : 2<ω → {0, 1} with f(i) = 1 on infinitely
many i, we have

lim
n→∞

f̃(X �n, n)

n
=

1

2
.

(2) We say that X is Church stochastic if and only if for any total computable
function f : 2<ω → {0, 1} with f(i) = 1 on infinitely many i, we have

lim
n→∞

f̃(X �n, n)

n
=

1

2
.

It is clear from the definition that if X is von Mises-Wald-Church stochastic,
then X is Church stochastic. The following result relates these concepts to 1-
randomness.

Theorem 3.3.10. If X is 1-random then X is von Mises-Wald-Church stochas-
tic.

Proof. Suppose X is not von Mises-Wald-Church stochastic. In particular,
suppose that f is a partial computable function with f(i) = 1 on infinitely many i
and

lim
n→∞

f̃(X �n, n)

n
=

1

2
.

We produce a computably enumerable martingale indicator that succeeds on X
by reading f ’s predictions about the next bit at each stage. We begin by defining a
pair of sequences of martingale indicators (di,k : i ∈ {0, 1}, k ∈ N). We define these
inductively, with di,k(∅) = 1 for all (i, k).

If di,k(σ) has been defined, we consider f(σ), and define di,k(σj) for each j ∈
{0, 1}. It is helpful to remember that di,k need only be computably enumerable.
If f(σ) ↑, then we set di,k(σj) = 0. If f(σ) = 1, then we “bet on i” by setting
di,k(σi) =

(
1 + 2−k

)
di,k(σ). If f(σ) = 0, then we decline to place a new bet by

setting di,k(σ0) = di,k(σ1) = di,k(σ). We then compose d by∑
k∈ω

2−k (d0,k + d1,k) .
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Now d will succeed on X. �

In each case, the implication is proper. There are Church stochastic sequences
that are not von Mises-Wald-Church stochastic, and there are von Mises-Wald-
Church stochastics which are not 1-random.

An additional notion of stochasticity was introduced by Loveland. He pointed
out that in many real models of probability, observations need not be sequential.
For instance, in a quality inspection problem, the testing of items produced later
might be used to predict the quality of items produced earlier [340].

To formalize this, we indicate by the term non-monotonic selection rule a par-
tial function f : (N× {0, 1})<ω → N with f(σ) /∈ π1(σ). We interpret such a
function intuitively as examining a sequence i0, . . . , ik of places in a sequence X,
and if X(ij) = `j for each j, then f predicts that X (f ((i0, `0), . . . , (ik, `k))) = 1.

In particular, by analogy with the previous case, we define f̃ : 2<ω → N by

f̃(σ) = |{i < |σ| : ∃τ [(π1(τ) ⊆ |σ) ∧ (σ (f(τ)) = 1)]}| .

Definition 3.3.11. We say that X ∈ 2ω is Kolmogorov-Loveland stochastic if
and only if for any computable non-monotonic selection rule f , we have

lim
n→∞

f̃(X �n)

n
=

1

2
.

Certainly any Kolmogorov-Loveland stochastic sequence is von Mises-Wald-
Church stochastic, but Loveland showed that the reverse is not true. A separate
proof that Kolmogorov-Loveland stochasticity does not imply 1-randomness is given
in [447]. A nonmonotonic construction analogous to martingale indicators was
introduced in [383] and used to describe yet another notion of randomness, called
Kolmogorov-Loveland randomness. Its equivalence to 1-randomness appears to be
unknown at the time of this writing. These results are further described in [367].

Bienvenu, contextualizing a result of Shen, describes a family of measures
that he calls the generalized Bernoulli measures. Each has a sequence parame-
ter p̄ = (pi : i ∈ N), where each pi ∈ [0, 1]. The p̄-generalized Bernoulli measure
on 2ω is the measure corresponding to the ith bit having value 1 independently
with probability pi, so that the standard Bernoulli measure with parameter p is a
generalized Bernoulli measure with pi = p for all i. In particular, Lebesgue measure
on 2ω is a generalized Bernoulli measure with pi = 1

2 for all i.

Theorem 3.3.12 ([447]). Let p̄ = (pi : i ∈ N) such that lim
i→∞

pi = 1
2 . Let µ

be a strongly positive generalized p̄-Bernoulli measure. Then every µ-Martin-Löf
random is Kolmogorov-Loveland stochastic.

Proof. The exposition of this proof owes much to [69]. Let µ be as hypothe-
sized, and let f be a computable non-monotonic selection rule. We pick a sequence
X at random with distribution given by µ, and let I = {i0, i1, . . . } be the positions
of X selected by f .

We define random variables (Yn : n ∈ N) by setting Zn equal to the number of

zeros in the subsequence (xi0 , . . . , xin) and then Yn = Zn −
n∑
k=0

pik . These random

variables are determined by µ through their dependence on X. If Yn
n does not

tend to zero, then we can create a µ-Martin-Löf test demonstrating that X is not
µ-Martin-Löf random.
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If X is µ-Martin-Löf random, then, since pi → 1
2 , we must have

lim
n→∞

Zn
n

=
1

2
,

so that

lim
n→∞

f̃(X �n)

n
=

1

2
.

�

3.4. Effective Dimension

3.4.1. Effective Hausdorff Dimension. Smooth manifolds admit induced
measures and integration theory through their charts, which gives an intrinsic way
to measure the size, for instance, of certain n-dimensional subsets of (n + k)-
dimensional Euclidean spaces. The unit 2-sphere, for instance, when considered
from the perspective of the measure induced by a set of charts, has positive finite
measure from the perspective of 2-dimensional Lebesgue measure, infinite measure
from the perspective of 1-dimensional Lebesgue measure, and measure zero from
the perspective of 3-dimensional Lebesgue measure. In this sense, dimension 2 is
really the natural place in which to measure it, independent of any prejudice we
might have from its charts.

To extend this way of approaching dimensionality to contexts that do not admit
such a geometric structure, Hausdorff proposed a parameterized set of measures,
derived from Carathéodory’s definition of measures [251, 105].

Definition 3.4.1. Let Ω be a metric space. We define the r-dimensional Haus-
dorff outer measure on subsets of Ω by, for any set E, setting Hr(E) = lim

ε→0
Sr,ε(E),

where Sr,ε(E) is the infimum of
∞∑
i=1

δ(Ei)
r over all collections (Ei : i ∈ I) where

E ⊆
∞⋃
i=1

Ei and δ(Ei) is the diameter of Ei.

It is a standard result that for any set E, there exists a critical value r0 such
that for r > r0, we have Hr(E) = 0 and for r < r0 we have Hr(E) =∞. We define
the Hausdorff dimension of E, denoted dimH(E) to be this value r0.

Example 3.4.2. Let C =
⋂
k∈N

Ck be the standard middle-thirds Cantor set in

R, with C0 = [0, 1] and Cn+1 the result of removing the middle third from each
interval in Cn. We compute dimH(C) as follows. In this case, open intervals are
as good as any other choice of Ei. Certainly Ck (hence also C can be covered
by 2k open intervals, each of diameter 3−k. Consequently, for each r, we have

Hr(C) ≤ 2k

3rk
. As k increases, this quantity approaches zero if and only if r > log 2

log 3 ,

so dimH(C) = r > log 2
log 3 , strictly between the dimension of a discrete set of points

and that of an interval.

Example 3.4.3. Let S be the Sierpiński carpet, the result of starting with the
unit square and then, at each stage, dividing each component square into a 3 × 3
grid and removing the middle of the nine resulting squares. By an argument similar
to the previous example, dimH(S) = log 8

log 3 , strictly between that of a line segment

and that of the unit square.
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Example 3.4.4. We next consider a much more complicated example from
[346], one in the spirit of Chapter 6. We let (L,A1, . . . , AL) be a random vector
where L is a N-valued random variable, and for each i we have Ai ∈ (0, 1]. We
let (Li,n : i, n ∈ N) be independent copies of L. Then we construct a tree T in the
following way. At level 0, we have a root. At level n, the ith vertex at level n will
have Li,n offspring at level (n+ 1).

We then add edge capacities according to the Ai, in the following way. For
each vertex σ in the tree, we generate independent identically distributed random
variables

(
Lσ, Aτ1 , . . . , AτLσ

)
, where the τi are the offspring of σ. We now, for each

σ in the tree, set the capacity of the edge joining x to its parent equal to
∏
η�σ

Aη.

Such a structure is called a Galton-Watson process.
We now assign a subset IT of Rn to T in the following way. For a set S we

let cl(S) and int(S) denote the closure and interior of S, respectively, and δ(S) the
diameter. We also denote, for each σ ∈ T , the predecessor of σ by p(σ). For each
σ ∈ T , we assign a compact nonempty set Iσ satisfying the following conditions.

(1) Iσ = cl (int(Iσ))
(2) For any non-root σ, we have Iσ ⊆ Ip(σ)

(3) If σ1, σ2 are distinct vertices with the same predecessor, then int(σ1) and
int(σ2) have empty intersection.

(4) inf
σ∈T

µ(Iσ)
δ(Iσ)n > 0, where µ is the n-dimensional Lebesgue measure.

(5) δ(Iσ)
δ(I∅)

is the capacity of the edge linking σ to its predecessor.

Denote by T ′ the subnetwork of T in which every vertex extends to an infinite path,
and set IT ′ =

⋃
P

⋂
σ∈P

Iσ, where P ranges over all infinite paths through T ′. Then

dimH(IT ′) = min

{
r : E

(
L∑
i=1

Ari

)
≤ 1

}
.

This result is nontrivial, and a proof may be found in [346].

Introductions to this classical notion of Hausdorff dimension can be found in
[166] and [184]. Deeper treatments, including applications of this dimension to
dynamical systems and connections to classical box dimension, can be found in
[47, 400].

Lutz gave an alternate characterization of Hausdorff dimension, which provides
the gateway to effective Hausdorff dimension and its connection to algorithmic
randomness.

Theorem 3.4.5 ([344]). For any X ⊆ 2ω, we define G(X, s) to be the set of

martingale indicators d such that lim sup
n

d(X�n)
2(1−s)n =∞. Then

dimH(X) = inf {s ∈ Q : ∃d ∈ G(X, s)} .

Proof. Let s > dimH(X). Now for each k ∈ N, there exists a prefix-free set
Uk ∈ 2<ω such that X is contained in the set of paths through Uk and

∑
σ∈Uk

2s|σ| ≤
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2−k. Now for each σ ∈ 2<ω, we set Uk,σ = {τ ∈ Uk : σ � τ}, and then

dk(σ) =


2|σ|

∑
τ∈Uk,σ

2−s|τ | if Uk,σ 6= ∅

2(1−s)m if σ �m∈ Uk
0 otherwise

We compose d by adding the dk, as usual, and note that it is a martingale indicator
with the necessary growth properties.

On the other hand, if d ∈ G(X, s), we can define a cover of X by arbitrarily
small sets as follows. We set

Vk =

{
σ :

d(σ)

2(1−s)|σ| ≥ 2k
}
,

and Uk a refinement of Vk to a prefix-free set. Then we have Hs(Uk) ≤ 2−k, so
that Hr(X) = 0. �

While it is not obvious how to effectivize the standard definition of Hausdorff
dimension, Theorem 3.4.5 gives a version that can be effectivized in a more straight-
forward way.

Definition 3.4.6. Let X ⊆ 2ω. The effective Hausdorff dimension of X,
denoted dime(X), is given by

inf
{
s ∈ Q : ∃d ∈ G(X, s) ∩ Σ0

1

}
.

It is common to refer to the effective Hausdorff dimension of a single element
X ∈ 2ω, meaning the effective Hausdorff dimension of the singleton.

Proposition 3.4.7. Every 1-random has effective Hausdorff dimension 1.

Proof. Let X be 1-random, and let s < 1, with d ∈ G(X, s) computably
enumerable. Then d succeeds on X, a contradiction. �

The converse is false — Kolmogorov-Loveland stochastics have effective Haus-
dorff dimension 1, by work of [367] — but we will see a partial converse in a later
chapter as Theorem 4.5.14.

Effective Hausdorff dimension also stands in close relationship with the other
quantitative measures of sequence complexity.

Theorem 3.4.8 ([366]). For any X ∈ 2ω, we have

dime(X) = lim inf
n→∞

K(X �n)

n
.

Proof. The difficult side is to show that

dime(X) ≤ lim inf
n→∞

K(X �n)

n
.

To this end, we take

s > t > lim inf
n→∞

K(X �n)

n
,

with s, t ∈ Q, and consider the (computably enumerable) set B of all strings σ with
K(σ) ≤ t|σ|. Write B =

⋃
n∈N

Bn, where all elements of Bn have length n, so that
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for some constant c, a standard counting argument gives us |Bn| ≤ 2tn−K(n)+c. In
that case, from

d̃(σ) = 2(s−t)|σ|

∑
στ∈B

2−t|τ | +
∑
τ∈B
τ�σ

2(t−1)(|σ|−|τ |)


we can find d ∈ G(X, s). �

From the perspective of entropy, Staiger notes that a formulation naturally
arising in effective fractal dimensions closely matches Shannon’s formulation for
entropy.

Definition 3.4.9 ([461, 462]). Let C ⊆ 2<ω. Then the entropy rate of C is
given by

HC = lim sup
n→∞

log2 |C ∩ 2n|
n

.

Staiger proved in [461] that

HC = inf

{
s :
∑
σ

∈ C2−s|σ| <∞

}
.

This led Hitchcock to effectivize the notion of entropy rate.

Definition 3.4.10 ([258]). Let C ⊆ 2<ω, and X ⊆ 2ω.

(1) We define

Cδ := {X ∈ 2ω : (∃∞n)X �n∈ C} .
(2) We define the computably enumerable entropy rate (sometimes called the

constructive entropy rate) by

inf
{
HC :

(
C ∈ Σ0

1

)
∧X ⊆ Cδ

}
.

This leads to Hitchcock’s key result, which has relevance for other approaches
to effective dimension.

Theorem 3.4.11 ([258]). For any X ⊆ 2ω, we have

dime(X) = inf
{
HC :

(
C ∈ Σ0

1

)
∧X ⊆ Aδ

}
.

Proof. For any C ∈ Σ0
1, and for any t > s > HC , we can, in a way that

is by now familiar, construct a computably enumerable martingale indicator of
appropriate s-growth on Cδ to show that

dime(X) ≤ inf
{
HC :

(
C ∈ Σ0

1

)
∧X ⊆ Aδ

}
.

On the other hand, if d is a martingale indicator of appropriate s-growth on
X, we set C = {σ : d(σ) > 1}. This set is computably enumerable, and HC < s, so
that

inf
{
HC :

(
C ∈ Σ0

1

)
∧X ⊆ Aδ

}
≤ dime(X).

�

We mention an observation that will be straightforward for the reader at this
point, although it may not feel so obvious when we use it later in the proof of
Theorem 4.5.14.
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Proposition 3.4.12 (Lemma 1.5 of [231]). Let X ∈ 2ω and suppose that
dime(X) = 1. Then

lim
m→∞

K
(
X �[2m,2m+1) |X �2m

)
2m

= 1.

Recent work has suggested an equivalent formulation of effective Hausdorff
dimension that seems in some ways more natural and is certainly more transparently
a strengthening of the condition of normality from Section 3.1.2.

Theorem 3.4.13 ([99]). The following conditions on X ∈ 2ω are equivalent:

(1) dime X = 1
(2) For every total computable function f : {0, . . . , b}∗ → Q, for every ε > 0,

and for sufficiently large n, we have

min
({
|σ| : f(σ)− x| < b−n

}
∪ {n− 1}

)
≥ n(1− ε).

If we were only to require Condition 2 to hold where f is the function encoding
the usual b-ary representation of rationals, we would have exactly a characterization
of normality to base b found in [437], and (of course) if we require Condition 2 to
hold of the b-ary representation functions for all b, we have a characterization of
absolute normality.

One feature of effective Hausdorff dimension that may have struck the reader is
how much of the theory of this dimension is carried out in the world of singletons.
Another exciting recent area of advance in the theory of effective Hausdorff dimen-
sion is the point-to-set principle demonstrated by Lutz and Lutz. This principle
relates the effective dimension of a single point in a set E to the classical Hausdorff
dimension of E.

Theorem 3.4.14 ([345]). For every set E ⊆ Rn, we have

dimH(E) = min
A⊆N

(
sup
x∈E

dimA
e (x)

)
,

where dimA
e denotes the effective dimension relative to an oracle for A.

Lutz and Lutz initially used this result to give a novel proof of the previously
known two-dimensional case of the Kakeya conjecture. Further applications are
emerging rapidly.

3.4.2. Packing Dimension. An alternative approach to classical fractal di-
mensions arises by replacing coverings with packings in the definition of Hausdorff
measure. To be precise, we obtain the packing measure π∆,s(X) by taking the
supremum of

∑
i∈N

δ(Bi), where (Bi : i ∈ N) is a disjoint sequence of closed balls with

centers in X and diameters bounded by ∆. We then set πs(X) = inf
∆>0

π∆,s(X).

Since πs is not subadditive, we instead construct a measure by

Πs(X) = inf

{∑
i∈N

πs(Ai) : X =
⋃
i∈N

Ai

}
.

We can again define a dimension dimp(X) by the infimum of the set of dimensions
s for which Πs(X) = 0. This dimension is bounded from below by the Hausdorff
dimension, and coincides with it on both the Cantor set and the Sierpinski carpet.
More on the classical packing dimension can be found in [166, 362].
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This packing dimension has also been effectivized, along a similar argument to
that for Hausdorff dimension.

Theorem 3.4.15 ([35]). Let X ⊆ 2ω. We define g(X, s) to be the set of all
martingale indicators d such that for all X ∈ X, we have

lim inf
n

d(X �n)

2(1−s)n =∞.

Then dimp(X) is the infimum of all s such that g(X, s) is nonempty.

We defer the proof of this result to the next section when we consider box dimen-
sion, but it readily lends itself to effectivization. The effective packing dimension
of X, denoted dimep(X), is the infimum of all s such that g(X, s) ∩ Σ0

1 6= ∅.

Theorem 3.4.16 ([35]). For any C ⊆ 2<ω, we denote by Cη the set

{X ∈ 2ω : X �n∈ A for all but finitely many n} .

Then for X ⊆ 2ω, we have

dimep(X) = inf
{
HC : (X ⊆ Aη) ∧

(
A ∈ Σ0

1

)}
.

The proof of this theorem is analogous to the proof of Theorem 3.4.11.

3.4.3. Box (a.k.a. “Box Counting,” or “Minkowski” Dimension). A
second straightforward modification of the Hausdorff dimension is to replace arbi-
trary coverings with small sets by using only coverings of small sets all of the same
size.

Definition 3.4.17. For X ⊆ 2ω and ε > 0, we define

N(X, ε) = min

{
k : ∃(x1, . . . , xk) X ⊆

k⋃
i=1

Bε(xi)

}
.

Let Br(x) denote the ball about x of radius r.

(1) The upper box dimension (also called the upper box counting dimension
or upper Minkowski dimension) is defined by

dimB(X) = inf

{
s : lim sup

ε→0
N(X, ε)εs = 0

}
.

(2) The lower box dimension (also called the lower box counting dimension
or lower Minkowski dimension) is defined by

dimB(X) = inf
{
s : lim inf

ε→0
N(X, ε)εs = 0

}
.

The “boxes” in the terminology arise from an equivalent definition in which
the balls of fixed radius are replaced with axis-aligned boxes (squares, cubes, etc.).
Since 2ω does not have an obvious and intrinsic analogue to this approach, we
use balls instead. Some authors call these dimensions “box counting” dimensions
because of the central role played by the number of boxes (or balls) needed to
cover X. A more detailed account of the different approaches can be found in
[166, 181, 362].
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One challenge with box dimension is that it represents some sets to be larger
than seems intuitive, based only on countable phenomena. Consider, for instance,
the set F =

{
0, 1, 1

2 ,
1
3 , . . .

}
. For any positive ε < 1

2 , we find k such that

1

(k + 1)k
≤ ε < 1

(k − 1)k
.

Now to cover F , we need k balls of diameter ε, and we can calculate dimB(F ) =
dimB(F ) = 1

2 . However, with the exception of the point 0, the set F is discrete,
suggesting an intuitive dimension of 0. The usual solution of this concern, at cost
of ruining the simplicity of box dimension, is to take the infimum over all possible
countable covers X ⊆

⋃
i∈N

Xi of the supremum over all i of the box dimension (upper

or lower) of Xi. This gives, respectively, the upper or lower modified box dimension,
denoted dimMB(X) or dimMB(X), respectively.

Definition 3.4.18 ([413]). Let X ⊆ 2ω.

(1) We say that C ⊆ 2<ω is an effective cover iff it is computably enumerable
and all elements of X restrict to an element of C.

(2) For any set C ⊆ 2<ω, we define ν(C, n) = log |C∩2n|
n .

(3) We define the effective upper box dimension of X ⊆ 2ω, denoted dim
1

B(X),
as the infimum over all effective covers C ofX of the quantity lim sup

n→∞
ν(C, n).

(4) We define the effective lower box dimension of X ⊆ 2ω, denoted dim1
B(X),

as the infimum over all effective covers C ofX of the quantity lim inf
n→∞

ν(C, n).

In consideration of singletons, there is no advantage in using modified Box
dimension, so it is not standard to do so.

Proof of Theorem 3.4.15. It is a standard result (see, for instance, [181]),
that dimP (X) = dimMB(X). Let d ∈ g(X, s). We let Bn denote the set of strings
σ of length n such that d(σ) > d(∅), and Bn the set of sequences in 2ω that restrict
to elements of Bn. Now we have

X ⊆
⋃
i∈N

∞⋂
n=i

Bn.

Further, dimB

( ∞⋂
n=i

Bn

)
≤ s, so that dimMB(X) ≤ s.

On the other hand, if s > t > dimMB(X), there is some cover X =
⋃
i∈N

Xi such

that for all i we have dimB(Xi) < t. We let Bn,i be the set of restrictions to length
n of elements of Xi, and can then define d ∈ g(Xi, s), which suffices to establish
the theorem. �

3.5. An Example: Brownian Motion

Most probabilists, if asked to construct a random sequence, might first think
of Brownian motion. In this standard process, we generalize the symmetric ran-
dom walk by taking steps independently at random in either positive or negative
direction over vanishing time intervals.
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Definition 3.5.1. Let (Ω,F , P ) be a probability space, and w : [0, 1]×Ω→ Rn
a stochastic process. We then say that w is a Brownian motion (also called a Wiener
process) if and only if

(1) For each s ∈ [0, 1], the random variable w(s, x) : Ω→ Rn is Gaussian with
mean zero,

(2) For all finite partitions (ti)i≤m of I, the random variables

w(t0, x), w(t1, x)− w(t0, x), . . . w(tm, x)− w(tm−1, x)

are independent, and
(3) There is some constant σ such that for all t, r ∈ [0, 1], the random variable

w(t, x)− w(r, x) is Gaussian with mean zero and variance σ2|t− r|.
Further, we say that f ∈ C[0, 1] is a realization of a Brownian motion w if and only
if there is some a ∈ Ω such that f(x) = w(x, a).

From its early observation by botanist Robert Brown down to its present appli-
cation in modeling financial securities, such a process has a sound claim on status
as a “standard” random process. It is worth considering what the theory developed
in the present chapter tells us about Brownian motion.

Constructing a stochastic process with these properties was historically a chal-
lenge. One approach is the following one, due to Donsker, summarized in [187].

Theorem 3.5.2 ([155]). Let C[0, 1] denote the space of continuous functions on
the unit interval. Let (yn : n ∈ N) be independent identically distributed variables

with mean 0 and variance 1, and let Sn =
n∑
i=1

yn. Define

Xn(t) =
Sbntc +

(
nt− bntc)ybntc+1

)
√
n

.

Then there is a probability measure W on C[0, 1] such that for any Borel set A with
W -null boundary, we have

lim
n→∞

P (Xn ∈ A) = W (A).

Moreover, W -almost every continuous function is a realization of a Brownian mo-
tion σ = 1.

This measure W is called Wiener measure. The perspective of Wiener measure
allows us to connect Brownian motion to Kolmogorov complexity [31]. We denote
by Cn the set of continuous functions f on the unit interval such that

• f(0) = 0
• On the interval

[
i−1
n , in

]
, the function f is linear with slope ±

√
n.

Algorithmically random sequences of these functions will be seen to approxi-
mate realizaitons of Brownian motions. We define a mapping αn : Cn → 2n as
follows.

αn(f)(i) :=

{
0if f(x) is increasing on

[
i−1
n , in

]
1otherwise

This mapping allows treatment of the Kolmogorov complexity of functions in
⋃
n∈N

Cn.

We now have the approximation result.

Theorem 3.5.3 ([31]). For W -almost every function f ∈ C[0, 1], there is a
sequence (fn : n ∈ N) ⊆ C[0, 1] with the following properties:
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(1) fn ∈ Cn
(2) K(αn(fn)) ≥ n−O(1).
(3) sup

x∈[0,1]

|fn(x)− f(x)| ≤ 1
n10

We say that f is a complex oscillation if there is a sequence (fn : n ∈ N) ⊆
C[0, 1] satisfying the first two properties in the conclusion of the Theorem, but
with the weaker convergence criterion that there is some total recursive function
ν : N→ N such that if n > f(m), we have

sup
x∈[0,1]

|fn(x)− f(x)| ≤ 1

m+ 1
.

All complex oscillations are, in a certain sense, random: the Kolmogorov complexity
of αn(fn) is maximal.

Theorem 3.5.4 ([31, 187]). Let W denote the Wiener measure. Then if f
is a complex oscillation, then for any W -Martin-Löf test (Un : n ∈ N, we have
f /∈

⋂
n∈N

Un.

In this sense, the W -almost sure set of realizations of Brownian motions and the
W -almost sure set of complex oscillations intersect in a W -almost sure set, so that
we can regard these two sets (probabilistically) as identical. While the literature on
complex oscillations and effective features of Brownian motion is still expanding,
we state here a few representative results.

Theorem 3.5.5 ([17]). Let f be a complex oscillation.

(1) The set of positive zeros of f does not contain a computable real.
(2) If x > 0 with f(x) = 0, then dime(x) ≥ 1

2 .

(3) Given any computable real α > 1
2 , there is x > 0 with f(x) = 0 and

dime(x) = α.

Theorem 3.5.6 ([409]). Let (Xi : i ∈ N) and (Yi : i ∈ N) be a sequence of
independent normal random variables of mean 0 and variance 1. We then construct
a stochastic process f by

f(t) = X0t+
1√
2π

∑
n∈N

1

n
(Xn sin (2πnt) + Yn(1− cos (2πnt))) .

Then for any 1-random real X, the realization of f(t) given by evaluating all Xi

and Yi at X is a complex oscillation.
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163. M. Džamonja and I. Tomašić, Graphons arising from graphs definable over finite fields,

Colloquium Mathematicum 169 (2022), 269–305.
164. P. D. Eastman, Are you my mother?, Random House, 1960.

165. H.-D. Ebbinghaus and J. Flum, Finite model theory, 2nd ed., Springer Monographs in Math-
ematics, Springer, 2006.

166. G. Edgar, Measure, topology, and fractal geometry, second ed., Undergraduate Texts in

Mathematics, Springer, 2008.

167. H. G. Eggleston, Sets of fractional dimensions which occur in some problems of number
theory, Proceedings of the London Mathematical Society 54 (1952), 42–93.

168. K. Eickmeyer and M. Grohe, Randomisation and derandomisation in descriptive complexity
theory, Logical Methods in Computer Science 7 (2011), 1–24.

169. G. Elek and B. Szegedy, A measure-theoretica approach to the theory of dense hypergraphs,

Advances in Mathematics 231 (2012), 1731–1772.
170. R. Elwes, Asymptotic classes of finite structures, Journal of Symbolic Logic 72 (2007), 418–

438.



BIBLIOGRAPHY 275

171. H. B. Enderton, A mathematical introduction to logic, Academic Press, 1972.

172. I. Epstein, Orbit inequivalent actions of non-amenable groups, preprint, 2008.
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335. M. Li, J. Tromp, and P. Vitányi, Sharpening Occam’s razor, Information Processing Letters
85 (2003), 267–274.
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469. M. Studený, Conditional independence relations have no finite complete characterization,

preprint, 1992.
470. D. Sussillo and O. Barak, Opening the black box: Low-dimensional dynamics in high-

dimensional recurrent neural networks, Neural Computation 25 (2013), 626–649.
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