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Throughout the talk, one can safely think of varieties/curves as
defined by polynomial equations in projective/affine spaces working
in an ambient algebraically closed field, and Zariski open subsets of
varieties are varieties.
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A brief history of model theory of fields

A majority of conjectures/questions in model theory of fields
concern the relationship between model-theoretic “tameness” and
algebraic properties.

Omitting certain combinatorial configurations.
(stable/NIP/simple/NSOP, etc.)
Admitting certain structural descriptions of definable sets.
(strongly minimal, o-minimal, C-minimal, etc.)
Quantifier elimination/model completeness in a reasonable
language. (E.g. ACF, RCF, ACVF, pCF, pseudofinite fields.)

Typically, the first 2 conditions follow from the last condition.
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A brief history of model theory of fields

Conjecture
An infinite stable field is separably closed.

Conjecture
An infinite simple field is bounded PAC.

Conjecture
An infinite NIP field is henselian.
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A brief history of model theory of fields

Definition 1
We say a field is model complete if its theory in the language of
rings is model complete.

Quantifier elimination implies model completeness. Quantifier
elimination in the language of rings implies algebraically
closedness.
C,R,Qp are all model complete. But the last 2 do not have
quantifier elimination in the language of rings.
Pseudofinite fields are model complete after a slight expansion
of the language of rings.
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Large fields

Definition 2
A field K is large if for any integral positive dimensional variety V
over K and V has a smooth K-point, then V has a Zariski dense set
of K-points. Equivalently, K is existentially closed in K((t)).

C,R,Qp are large. Any field that can be equipped with a
t-Henselian topology is large.
Pseudofinite fields are large. Actually, any PAC field is large.
Recall that PAC says that any geometrically integral variety
over K has a K-point.
In the above axiomatizations of largeness and PAC, it suffices
to mention only curves.
Empirically, all the fields that are “tame” are large.
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Large fields and model theory

On the other hand, there are fields that are extremely wild in the
sense of model theory that are still large, e.g. C((t1, t2)).

Several longstanding conjectures in model theory of fields have
something to do with largeness as well.

Theorem 3 (Johnson-Tran-Walsberg-Y.)
Large stable fields are separably closed.

Theorem 4 (Pillay-Walsberg)
Large simple fields are bounded with projective Galois groups.

Conjecture
All the above conjectures are true assuming largeness.
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Large fields and model theory

Definition 5
A field K has small Galois group if for each n ∈ N, there are only
finitely many separable extensions of K of degree n.

Conjecture (Junker-Koenigsmann)
Having small Galois groups + infinite imply large.

Question (Macintyre)
If K is model complete, does K have small Galois group?

Question (Junker-Koenigsmann)
If K is model complete and infinite, is K large?

We will talk about counterexamples to the questions in joint work
with Will Johnson and some generalizations with Michał
Szachniewicz.
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A crash course on model companion

Definition 6
Let T be a theory.

T is inductive if it is axiomatized by ∀∃-formulas. It is
equivalent to a union of a chain of models is a model.
M ⊧ T is existentially closed (e.c.) if any existential formula
over M that holds in N ⊧ T extending M holds in M.

The theory of fields is inductive. The existentially closed
models are exactly the algebraically closed fields.
Existentially closed models of formally real fields are the real
closed fields.
Existentially closed models of fields with a valuation are the
algebraically closed valued fields.
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A crash course on model companion

For an inductive theory T, we have the following:
Any model of T embeds into an e.c. model.
If the class of existentially closed models is an elementary
class, axiomatized by T′, then T′ is model complete (in the
language of T). In this case, we say that T has a model
companion, and T′ is the model companion of T.

In the previous slide: The model companion of the theory of fields
is the theory of algebraically closed fields; The model companion of
the theory of formally real fields is the theory of real closed fields.
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Curve-excluding fields

Theorem 7 (Fermat)
x4 + y4 = 1 has only 4 solutions in Q.

Consider T0 to be the theory of fields of characteristic 0 and
x4 + y4 = 1 has only 4 solutions.
Note that T0 is inductive.

Theorem 8 (Johnson-Y.)
T0 has a model companion T1.

Corollary 9
There is a non-large model complete field.
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Curve-excluding fields

In general, for K0 with Char(K0) = 0, take any curve C over K0 of
genus ≥ 2 with only finitely many K0-points.

Theorem 10 (Johnson-Y.)
The theory of fields K extending K0 (naming K0 as constants) with
the C(K) = C(K0) has a model companion.

The proof for the general case works exactly the same way when
we work with the language of rings expanded by constants for K0.
From now on, we remove the finite number of K0 rational points of
C.
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Characterization of existentially closed models

Let T0 denote the theory of fields K with characteristic 0 and
C(K) = ∅.

Theorem 11 (Johnson-Y.)
K ⊧ T0 is e.c. iff the following two conditions hold:
(1) For any finite proper extension L/K, C(L) ≠ ∅
(2) If X is a geometrically integral variety over K, either there is a

non-constant morphism X⇢ C over K or X(K) ≠ ∅.

Proof of ⇒.
If K is e.c and L is a proper finite extension, then K /⪯∃ L. It means
that L /⊧ T0. Thus (1) is satisfied.
For X a geometrically integral variety over K, if there is no
non-constant morphism X⇢ C over K, it means that C(K(X)) = ∅.
Thus K ⪯∃ K(X), so X(K) ≠ ∅. Thus we have verified (2).
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Characterization of existentially closed models
Note that (2) is equivalent to (2’).
(2’) If X is a geometrically integral variety over K, either there is a

non-constant morphism X⇢ C over K or X(K) is Zariski
dense in X.

We also need the following fact.
Fact
Suppose that X is an integral K-variety. Then K ⪯∃ K(X) if and
only if X(K) is Zariski dense in X.

Proof of ⇐.
Let L/K and L ⊧ T0. We need to show K ⪯∃ L. WLOG, L is finitely
generated over K. So L = K(X) for some integral variety X/K. If X
is not geometrically integral, then L contains a proper algebraic
extension of K. A contradiction to (1).
L ⊧ T0 means there is no non-constant morphism X⇢ C, so (2′)
and the fact complete the proof.
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L ⊧ T0 means there is no non-constant morphism X⇢ C, so (2′)
and the fact complete the proof.
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Characterization of e.c. models in higher dimensional case

Note that in general, let Ṽ be a geometrically integral projective
variety over K0 such that there is a subvariety V0 ≠ V over K0 with
Ṽ(K0) = V0(K0). For the class of fields K such that
Ṽ(K) = V0(K), the existentially closed ones can be characterized
similarly by replacing C with V = Ṽ ∖V0.
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Axioms of existentially closed models

The above characterization requires quantifying over rational
functions and finite extensions, why is it first-order?

(1) is first-order, this follows from the fact that extensions of
degree n are uniformly definable.
(2) requires quantifying over the set of morphisms X⇢ V.

Note that the set of functions between two definable sets is not a
definable set in general. For example, VarK(An,A1) is
K[X1, . . . ,Xn]. This can be seen as a union of definable sets
indexed by the total degree in N.
We need some bounds on the complexity of such functions. In the
curve case, this is where the genus of C is ≥ 2 comes in.
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Bounding complexity for curves

We need the following: For a family of varieties X, there is another
definable family W such that one can identify non-constant
morphism Xa ⇢ C with Wa.

If X is a family of curves, using Riemann-Hurwitz, we have that for
any f ∶ Xa ⇢ C,

deg(f) ≤ g(Xa) − 1
g(C) − 1 .

This allows us to bound the complexity of a representation of f
using quotients of polynomials, which makes it definable.
In general, using sufficiently general hyperplane intersections, one
can bound the complexity of the graph of f ∶ X⇢ C in terms of the
genus of C and the (projective) degree of X and C (considering
everything as embedded in Pn).
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Hyperbolicity for varieties

In the general case, let L denote an algebraically closed field of
characteristic 0, and X is an integral projective variety over L. We
say X is

1 bounded if, for every normal integral projective scheme Y
over L, the scheme HomL(Y,X) is of finite type over L (in
particular it is definable in ACF0 over L);

2 1-bounded if, for every smooth projective curve C over L, the
scheme HomL(C,X) is of finite type over L;

3 groupless if, for any connected finite type algebraic group G
over L, there are no non-constant maps G→ X;

4 pure (over L) if, for any smooth variety T over L, any rational
map T⇢ X extends to a regular map T→ X.
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Hyperbolicity for varieties

It is not hard to see that (1)⇒ (2)⇒ (3)⇒ (4). Actually (1) is
equivalent to (2) by Javanpekar and Kamenova. An elliptic curve
is pure but not groupless. It is conjectured that groupless implies
algebraic hyperbolicity (Part of Green-Griffiths-Lang).

Definition 12
Let X, L be as before,X is algebraically hyperbolic if there exists
a,b ∈ R≥0 and an ample line bundle L on X such that for every
smooth curve C over L and a finite map f ∶ C→ X we have

∫C
c1(f∗L) ≤ a ⋅ g(C) + b,

where g(C) is the genus of C.

19 / 34



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Hyperbolicity for varieties

It is not hard to see that (1)⇒ (2)⇒ (3)⇒ (4). Actually (1) is
equivalent to (2) by Javanpekar and Kamenova. An elliptic curve
is pure but not groupless. It is conjectured that groupless implies
algebraic hyperbolicity (Part of Green-Griffiths-Lang).

Definition 12
Let X, L be as before,X is algebraically hyperbolic if there exists
a,b ∈ R≥0 and an ample line bundle L on X such that for every
smooth curve C over L and a finite map f ∶ C→ X we have

∫C
c1(f∗L) ≤ a ⋅ g(C) + b,

where g(C) is the genus of C.

19 / 34



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Model companion for hyperbolic varieties

Let K0 be a field of characteristic 0. Let Ṽ be a smooth
geometrically integral projective variety over K0 with a proper
closed subvariety V0/K0 such that Ṽ(K0) = V0(K0), let V = Ṽ ∖V0.

Theorem 13 (Szachniewicz-Y.)
The class of fields K such that V(K) = ∅ has a model companion if
Ṽ is assumed to be 1-bounded.

The idea of the proof is similar to the proof of the case when Ṽ is
a curve. Here the bound in the complexity requires some
inequalities in intersection theory by Khovanskii-Teissier. The
argument also recovers that 1-bounded implies bounded.
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Some questions and remarks

Question 1
Is there a characterization/criterion of the non-existence of the
model companion?

A substantial part of the existence of model companion can be
formulated using Morley rank and degree. Here is a meta-question.

Question 2

What is a model-theoretic characterization of the definability of
Mor(−,X) in the ω-stable/strongly minimal setting?

Concluding remark before we move on, VXF can be large. For
example, it is the case when V is a smooth projective variety and
V(K0) = ∅.
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Indecomposability

When C is a geometrically integral curve over K of genus ≥ 2, we
have the following.

Lemma 14

Let V,W be two geometrically integral varieties over K and
f ∶ V ×W⇢ C be a rational map, then it factors over V or W
generically.

Proof.
Assume f does not factor through V. Note that there are only
finitely many non-constant rational maps W⇢ C (De Franchis’s
theorem), then f(x,−) can be chosen to be independent of x after
shrinking V.
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Indecomposablity

We say that X is indecomposable if Lemma 14 holds when C is
replaced by X.

Theorem 15 (Kobayashi, Lazarsfeld)
If X is a smooth variety with ample cotangent bundle, then X is
algebraically hyperbolic and indecomposable.

Algebraically hyperbolicity does not imply indecomposable: Let C
be a genus 2 curve, C × C is algebraically hyperbolic but not
indecomposable. However, indecomposability implies groupless.
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Completions of VXF

From now on, V = Ṽ ∖V0 in our setup such that Ṽ is 1-bounded
and indecomposable. We gather some facts needed in order to
characterize the completions of VXF. Recall that
Abs(K) = K ∩Qalg. Note that a field K ⊧ VXF∀ iff V(K) = ∅.

Lemma 16

Let K1,K2 ⊧ VXF and K be a common relatively algebraically
closed subfield of both Ki’s, then the map id ∶ K→ K is a partial
elementary map between Ki’s.

Proof Sketch.
For finitely generated K1,K2, we can amalgamate K1,K2 over K
into K1 ⊗K K2 ⊧ VXF∀. We can further embed into L ⊧ VXF.
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Completions of VXF

Corollary 17 (Johnson-Y., Szachniewicz-Y.)
Let K1,K2 ⊧ VXF, then K1 ≡ K2 iff Abs(K1) ≅ Abs(K2).

We characterize all the completions of VXF.

Theorem 18 (Johnson-Y., Szachniewicz-Y.)

Assuming V is indecomposable, for any F ⊧ VXF∀, there is a
regular extension K/F such that K ⊧ VXF.
Particularly, for any F ⊆ Qalg with F ⊧ VXF∀, there is K ⊧ VXF
with Abs(K) ≅ F.
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Decidability and recursive axiomatizability

In the case of a curve of genus at least 2, we have the following:

Corollary 19 (Johnson-Y.)
The theory axiomtized by CXF and Abs(M) = Q is complete and
decidable. Particularly, there is a decidable non-large field.

The decidability of the partial theory CXF admits some interesting
characterization as well.
Theorem 20 (Johnson-Y.)
The decidability of CXF is equivalent to the following problem:
Given K/K0 finite, decide whether C(K) is non-empty.
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Decidability and recursive axiomatizability

The axiomatization of VXF is not computable a priori. However, if
V is algebraically hyperbolic, then the axiomatization is indeed
computable.
For example, this is the case when V has ample cotangent bundle,
which is indeed the case when Ṽ comes from a sufficiently general
intersection of ample line bundles in projective space. In this case,
we have analogue results in terms of decidability.

However, to obtain the computable axiomatization of VXF, one
only needs a computable bound on the complexity. In theory, one
could isolate other notions of hyperbolicity by imposing bounds on
the complexity. But how interesting are they?

27 / 34



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Decidability and recursive axiomatizability

The axiomatization of VXF is not computable a priori. However, if
V is algebraically hyperbolic, then the axiomatization is indeed
computable.
For example, this is the case when V has ample cotangent bundle,
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intersection of ample line bundles in projective space. In this case,
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Algebraic closure

Lemma 21
Let K be a relatively algebraically closed subfield of L ⊧ VXF, then
K = dcl(K).

Proof.
By Lemma 16, we have an embedding:L⊗K L→ F ⊧ VXF. So for
b ∈ L/K, tpL(b/K) = tpF(1⊗ b/K) = tpF(b⊗ 1/K). So
b ∉ dcl(K).

Corollary 22
Model-theoretic and field-theoretic acl agree in VXF (after naming
K0).
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Finite extensions
A field K is Hilbertian if, for any f ∈ K[X,Y] irreducible, there are
infinitely many a ∈ K such that f(a,Y) is irreducible. Equivalently,
K(t) is relatively algebraically closed in an elementary extension K̃.

Theorem 23 (Johnson-Y., Szachniewicz-Y.)
Models of VXF are Hilbertian for indecomposable V.

Proof.
Take K ⊧ VXF. Note there is no non-constant morphism A1 → V,
so V(K(t)) = ∅. By Theorem 18, there is M/K(t) regular such
that M ⊧ VXF. And K ⪯M by Theorem 11.

Hilbertian fields do not have small Galois group.

Corollary 24
There is a model complete field that does not have small Galois
group.
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Finite extensions

Lemma 25
Let V be indecomposable, K ⊧ VXF∀, and L/K be a proper finite
extension. Suppose X is a geometrically integral variety over L.
Consider the Weil restriction of W = ResL/KX. Then there is no
non-constant rational map over W⇢ V.

Proof Sketch.
Let L = K[X]/P(X) for some irreducible polynomial P over K. Over
F = Kalg, WF is a finite product of XF’s indexed by the roots of P.
If there is a non-constant rational map defined over K, by
Lemma 14, it defines a root of P(X). There is no K-definable root
of P(X).
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Finite extensions

From the above, we get the following.

Corollary 26 (Johnson-Y., Szachniewicz-Y.)
Every proper finite extension L of K ⊧ VXF is PAC for
indecomposable V.

Proof.
Let X be a geometrically integral variety over L, by above and (2),
W(K) ≠ ∅, hence X(L) ≠ ∅.

This recovered a result by Srinivasan.

Corollary 27 (Srinivasan)
There is a virtually large yet non-large field.

Axiom (2) is sufficient to guarantee the above corollary holds, so
Axiom (1) actually follows from Axiom (2) for indecomposable V.
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Classification theory

We next study VXF in terms of classification theory in the sense of
Shelah.
For PAC fields, not having small Galois group implies TP2, and
finite separable extensions of Hilbertian fields are Hilbertian.

Theorem 28
VXF has TP2 for indecomposable V.
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NSOP4

For this page, we work in CXF only.
We say that a formula φ(x; y) has SOPn for n ≥ 3 if there is
sequence (ai)i∈N such that φ(ai; aj) holds iff i < j but the partial
type

{φ(x1; x2), . . . , φ(xn−1; xn), φ(xn; x1)}

is inconsistent.
Theorem 29
CXF is NSOP4, and there is a completion of it that is strictly
NSOP4.

Proof.
Let’s first assume the NSOP4 claim. Let C ∶= x4 + y4 + z4 = 0 and
Abs(K) = R ∩Qalg. Let φ(x; y) be saying x − y is a non-zero 4th
power. It has SOP3.
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Thank you for your attention.
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