Fragments of the theory of the enumeration degrees

Mariya I. Soskova University of Wisconsin–Madison

Online Logic Seminar 2020, April 23

Joint work with S. Lempp and T. Slaman

Supported by the NSF Grant No. DMS-1762648

Degree structures

Reducibilities between sets of natural numbers are used to compare the relative effective content between sets of natural numbers:

Definition

We use $A \leq B$ to denote that a set A is reducible to a set B:

- $A \leq_m B$ means that there is a computable function f such that $x \in A$ if and only if $f(x) \in B$.
- **2** $A \leq_T B$ means that one can compute the members of A using an oracle Turing machine with oracle B.
- **3** $A \leq_e B$ means that one can (effectively) enumerate the members of A given any enumeration of the members of B.
- **4** $A \leq_a B$ if A can be defined arithmetically with parameter B.

We say that $A \equiv B$ if $A \leqslant B$ and $B \leqslant A$.

The equivalence class of A is the $degree \deg(A)$ of A.

The degree structure \mathcal{D} is the induced partial order on degrees.

The theory of a degree structure

Given a degree structure \mathcal{D} we ask the following natural questions:

Question

- Is the theory of the structure in the language of partial orders decidable?
- How complicated is the theory?
- How many quantifiers does it take to break decidability?

Degree structure	Complexity of $Th(\mathcal{D})$	$\exists orall \exists \neg Th(\mathcal{D})$	$orall \exists -Th(\mathcal{D})$
\mathcal{D}_T	Simpson 77	Lerman-	Shore 78;
		Schmerl 83	Lerman 83
$\mathcal{D}_T(\leqslant 0')$	Shore 81	Lerman-	Lerman-
		Schmerl 83	Shore 88
\mathcal{R}	Slaman-	Lempp-	Open
	Harrington 80s	Nies-Slaman 98	
\mathcal{D}_e	Slaman-	Open	Open
	Woodin 97		
$\mathcal{D}_e (\leqslant \mathbf{0'})$	Ganchev-	Kent 06	Open
	Soskova 12		

Translating the questions in terms of structure

To understand what existential sentences are true \mathcal{D} we need to understand what finite partial orders can be embedded into \mathcal{D} ;

Theorem (Sacks 1964)

Every countable partial order can be embedded densely in the c.e. degrees.

The existential theory of \mathcal{R} , $\mathcal{D}_T(\leq \mathbf{0}')$, \mathcal{D}_T , $\mathcal{D}_e(\leq \mathbf{0}')$, \mathcal{D}_e is decidable because all of these structures contain an isomorphic copy of \mathcal{R} .

Extension of embeddings

At the next level of complexity is the extension of embeddings problem:

Problem

We are given a finite partial order P and a finite partial order $Q \supseteq P$. Does every embedding of P extend to an embedding of Q?

To understand what $\forall \exists$ -sentences are true in \mathcal{D} we need to solve a slightly more complicated problem:

Problem

We are given a finite partial order P and finite partial orders $Q_0, \ldots Q_n \supseteq P$. Does every embedding of P extend to an embedding of one of the Q_i ?

The Turing degrees and initial segment embeddings

Theorem (Lerman 71)

Every finite lattice can be embedded into \mathcal{D}_T as an initial segment.

- Suppose that P is a finite partial order and $Q \supseteq P$ is a finite partial order extending P.
- We can extend P to a lattice by adding extra points for joins when necessary.
- The initial segment embedding of the lattice P can be extended to an embedding of Q only if new elements in $Q \setminus P$ are compatible with joins in P:
 - ① If $q \in Q \setminus P$ is bounded by some element in P then q is one of the added joins.
 - $\textbf{2} \quad \text{If } x \in Q \smallsetminus P \text{ and } u,v \in P \text{ and } x \geqslant u,v \text{ then } x \geqslant u \vee v.$

Theorem (Shore 78; Lerman 83)

That is the only obstacle.

A characterization

Let U be an upper semilattice.

Definition

We say that U exhibits end-extensions if for every pair of a finite lattice P and partial order $Q \supseteq P$ such that if $x \in Q \setminus P$ then x is never below any element of P and x respects least upper bounds, every embedding of P into U extends to an embedding of Q into U.

Theorem (Lempp, Slaman, Soskova)

Let φ be a Π_2 -sentence in the language of partial orders. The sentence φ is true in \mathcal{D}_T if and only if φ is true in every upper semilattice U with least element that exhibits end-extensions.

A characterization

Theorem (Lempp, Slaman, Soskova)

Let φ be a Π_2 -sentence in the language of partial orders. The sentence φ is true in \mathcal{D}_T if and only if φ is true in every upper semilattice U with least element that exhibits end-extensions.

Proof.

If φ is true in every upper semilattice U with least element that exhibits end-extensions then it is true in \mathcal{D}_T because \mathcal{D}_T is one of these.

Suppose that φ , given by $P \subseteq Q_1, \ldots Q_n$, is not true in some fixed upper semilattice U. So there is an embedding of P into U that does not extend to an embedding of any Q_i . Let P^* be the upper semilattice generated by this embedding, taking least upper bounds as in U and adding the least element.

Embed P^* into \mathcal{D}_T as an initial segment. If this embedding of P^* extended to an embedding of Q_i for some i then by the fact that U exhibits end-extensions we can argue that we would be able to pull it back to an embedding of Q_i in U extending the one we started with.

The theory of a degree structure Lets take a look at the table again:

Question

- Both \mathcal{R} and $\mathcal{D}_e(\leq \mathbf{0}')$ are dense structures.
- But what is the case of \mathcal{D}_e ?

Degree structure	Complexity of $Th(\mathcal{D})$	$\exists orall \exists \neg Th(\mathcal{D})$	$orall \exists ext{-} Th(\mathcal{D})$
\mathcal{D}_T	Simpson 77	Lerman-	Shore 78;
		Schmerl 83	Lerman 83
$\mathcal{D}_T(\leqslant 0)$	Shore 81	Lerman-	Lerman-
		Schmerl 83	Shore 88
\mathcal{R}	Slaman-	Lempp-	Open
	Harrington 80s	Nies-Slaman 98	
\mathcal{D}_e	Slaman-	Open	Open
	Woodin 97		
$\mathcal{D}_e (\leqslant 0')$	Ganchev-	Kent 06	Open
	Soskova 12		

The enumeration degrees

Theorem (Gutteridge 71)

The enumeration degrees are downwards dense.

A degree ${\bf b}$ is a *minimal cover* of a degree ${\bf a}$ if ${\bf a}<{\bf b}$ and the interval $({\bf a},{\bf b})$ is empty.

Theorem (Slaman, Calhoun 96)

There are degrees $\mathbf{a} < \mathbf{b}$ such that \mathbf{b} is a minimal cover of \mathbf{a} .

A degree **b** is a *strong minimal cover* of a degree **a** if $\mathbf{a} < \mathbf{b}$ and for every degree $\mathbf{x} < \mathbf{b}$ we have that $\mathbf{x} \leq \mathbf{a}$.

Theorem (Kent, Lewis-Pye, Sorbi 12)

There are degrees \mathbf{a} and \mathbf{b} such that \mathbf{b} is a strong minimal cover of \mathbf{a}

The simplest lattice

Consider the lattice $\mathcal{P} = \{a < b\}$. What properties should possible extensions $Q_0, Q_1 \dots Q_n$ have so that every embedding of \mathcal{P} extends to Q_i for some i:

- We can embed \mathcal{P} as degrees $\mathbf{a} < \mathbf{b}$ such that \mathbf{b} is a strong minimal cover of \mathbf{a} , blocking extensions to Q_i with new x in the interval [a, b].
- **②** We can embed \mathcal{P} as degrees $\mathbf{0}_e < \mathbf{b}$, blocking extensions to Q_i with new x < a.

Theorem (Slaman, Sorbi 14)

Every countable partial order can be embedded below any nonzero enumeration degree.

So these are the only obstacles.

Consider
$$P = \{a < b\}, Q_0 = \{a < x < b\} \text{ and } Q_1 = \{x < a < b\}.$$

A wild conjecture

Let U be an upper semilattice.

Definition

U exhibits strong downward density if every finite partial order can be embedded below any nonzero element of U.

Conjecture (Lempp, Slaman, Soskova)

A Π_2 sentence φ is true in \mathcal{D}_e if and only if φ is true in every upper semilattice U with least element that exhibits end-extensions and strong downward density.

- ullet This would imply a decision procedure for the two quantifier theory of \mathcal{D}_e .
- This would imply that we can extend the existence of strong minimal covers significantly:

Strong interval embeddings

Definition

Let \mathcal{L} be a lattice. We say that \mathcal{L} strongly embeds as an interval in \mathcal{D}_e if there are degrees $\mathbf{a} < \mathbf{b}$ and a bijection $f : \mathcal{L} \to [\mathbf{a}, \mathbf{b}]$ such that for every $\mathbf{x} \leq \mathbf{b}$ we have that $\mathbf{x} \in [\mathbf{a}, \mathbf{b}]$ or else $\mathbf{x} < \mathbf{a}$.

- A strong minimal cover induces a strong interval embedding of the 2-element lattice.
- The conjecture implies that every finite lattice has a strong interval embedding in \mathcal{D}_e .

A small victory

Theorem (Lempp, Slaman, Soskova)

Every finite distributive lattice has a strong interval embedding.

Proof.

Fix a finite distributive lattice \mathcal{L} with join irreducible elements $a_0, a_1, \ldots a_n$. Every element of the lattice has a unique representation as $a_F = \bigvee_{i \in F} a_i$, where F is downwards closed.

We build Π_2^0 sets $X_0, \dots X_n$ so that $A_F = \bigoplus_{j \in F} X_j$ represents a_F .

- \mathcal{T}_e^i : $X_i \neq \Phi_e(A_{F_i})$, where $F_i = \{j \mid a_i \leqslant_{\mathcal{L}} a_j\};$
- $\mathcal{M}_e^{G,F}$: Fix $F \subseteq G$ such that a_G is minimal above a_F . Note that $G = F \cup \{i\}$ for some fixed number i. Denote by $G \setminus F = \{j \in G \mid a_i \leq_{\mathcal{L}} a_i\}$. We

asks that there is a reduction Γ

such that $\Psi_e(A_G) = \Gamma(A_F)$ or else $A_{G \setminus F} \leq_e \Psi_e(A_G)$.

The Nies Transfer Lemma

Definition

Let \mathcal{C} be a class of structures in a finite relational language $L = \{R_1, \ldots, R_n\}$. We say that \mathcal{C} is Σ_k -elementarily definable with parameters in \mathcal{D}_e if there are Σ_k -formulas φ_U, φ_{R_i} , and $\varphi_{\neg R_i}$ for $i \leq n$ such that for every $C \in \mathcal{C}$, there are parameters $\vec{\mathbf{p}} \in \mathcal{D}_e$ that make the structure with universe

 $U = \{\mathbf{x} | \mathcal{D}_e \models \varphi_U(\mathbf{x}, \vec{\mathbf{p}})\}$ and relations defined by $\varphi_{R_i}/\varphi_{\neg R_i}$ isomorphic to C.

Lemma (Nies 1996)

Let $r \ge 2$ and $k \ge 1$. If a class of models \mathcal{C} is Σ_k -elementarily definable in \mathcal{D}_e with parameters and the Π_{r+1} -theory of \mathcal{C} is (hereditarily) undecidable, then the Π_{r+k} -theory of \mathcal{D}_e is (hereditarily) undecidable.

The three quantifier theory of \mathcal{D}_e

Corollary (Lempp, Slaman, Soskova)

The class of finite distributive lattices is Σ_1^0 -elementary definable with parameters in \mathcal{D}_e .

Theorem (Nies)

The Π_3 theory of the class of finite distributive lattices is (hereditarily) undecidable.

Applying Nies' Transfer Lemma we get:

Theorem

The $\forall \exists \forall$ -theory of \mathcal{D}_e is undecidable.

The extension of embeddings problem

Theorem (Lempp, Slaman, Soskova)

The extension of embeddings problem in \mathcal{D}_e is decidable.

Proof sketch:

- Fix partial orders $P \subseteq Q$.
- If $q \in Q \setminus P$ is a point that violates the conditions of the usual algorithm (the one for \mathcal{D}_T) then we build a specific embedding that blocks q.
- We extend P to P^* by carefully adding points to make $B(A(q)) = \{p \in P^* \mid (\forall s \in P^*)(q \leqslant s \to p \leqslant s)\}$ a distributive lattice and embed that strongly.
- We use generic extensions for the rest of P to make $\bigwedge A(q) = \bigvee B(A(q))$, where $A(q) = \{ p \in P^* \mid q .$
- This leaves $\bigvee B(A(q))$ as the only possible position for q.

The common fragment of the theories of \mathcal{D}_T and \mathcal{D}_e

Note that the theories of \mathcal{D}_e and \mathcal{D}_T differ at a Σ_2 sentence φ :

$$(\exists a)[a \neq 0 \, \land \, \forall x[x < a \rightarrow x = 0]]$$

Theorem

Let E denote the set of Π_2 -sentences in the language of a partial orders that formalize an instance of the extension of embeddings problem. Then $E \cap Th(\mathcal{D}_e) = E \cap Th(\mathcal{D}_T)$.

Proof sketch:

- One direction uses our characterization of the two quantifier theory of \mathcal{D}_T and the fact that \mathcal{D}_e is an upper semilattice that exhibits end extensions.
- The reverse direction follows from the proof of the extension of embedding theorem.

An unexpected defeat

Recall our conjecture:

Conjecture (Lempp, Slaman, Soskova)

A Π_2 sentence φ is true in \mathcal{D}_e if and only if φ is true in every upper semilattice U with least element that exhibits end-extensions and strong downward density.

It implies that there are degrees a and b such that: a and b are a minimal pair and if $x < a \lor b$ then $x \le a$ or $x \le b$.

$$egin{array}{cccc} \mathbf{a} \lor \mathbf{b} \\ \mathbf{a} & & \mathbf{b} \\ & & & \mathbf{b} \\ & & & & \mathbf{0} \end{array}$$

This is an instance of a *super minimal pair*: a minimal pair $\{a, b\}$ such that every nonzero degree $x \le a$ joins **b** above **a** and every nonzero degree $x \le b$ joins **a** above **b**.

An unexpected defeat

Theorem (Jacobsen-Grocott, Soskova)

If a and b are enumeration degrees such that every degree $x \le a \lor b$ is bounded by a or bounded by b, then $\{a,b\}$ is not a minimal pair.

Proof.

The proof is nonuniform: in the case when neither **a** nor **b** is Δ_2^0 it uses the special form of the Gutteridge operator to produce a counterexample.

In the case when one of **a** or **b** is Δ_2^0 then it uses properties of \mathcal{K} -pairs.

Theorem (Jacobsen-Grocott)

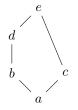
There are degrees \mathbf{a} and \mathbf{b} such that $\{\mathbf{a}, \mathbf{b}\}$ is a minimal pair and every nonzero degree $\mathbf{x} \leq \mathbf{a}$ joins \mathbf{b} above \mathbf{a} .

Questions

Question

Can we embed all finite lattices in \mathcal{D}_e as strong intervals?

Important test cases are N_5 and M_3 :



Question

Are there super minimal pairs in \mathcal{D}_e ?

Question

What property characterizes the two quantifier theory of \mathcal{D}_e ?

Be safe!

Thank you!