QUANTALE-VALUED MODEL THEORY AND SET THEORY

Pedro H. Zambrano Universidad Nacional de Colombia at Bogotá.

> ONLINE LOGIC SEMINAR March 27th, 2025.

Topological motivation – 1/25

- Quantales: Lattices introduced to deal with locales (lattices which generalize the ideal of open sets of a topological space) and multiplicative lattices of ideals from Ring Theory and Functional Analysis (e.g., C*-algebras and von Neumann algebras).
- Flagg (1997): Topological spaces as pseudo metric spaces, distances with values in a suitable quantale built from the topology.

<u>Model-Theoretic motivation</u> - 2/25

- Shelah Stern (105): Banach Spaces behavior similar to a 2nd order logic of binary relations.
- Chang-Keisler (60s), Henson-Iovino (90s), Ben-Yaacov and others (2000s): Continuous Logic.
- Hirvonen-Hyttinen, Villaveces-Z., Boney-Z. (2000s-2010s): Metric AECs.
- Flum-Ziegler, Kucera, Pillay (805): Model Theory for Topological algebraic structures. Leaded to Model Theory for Modules.
- Lawvere (10s): Framework in Category Theory for a logic with generalized truth values to study metric spaces.
- V-AECs (Lieberman-Rosický-Z.): Generalization of MAECs to distances with values in a co-quantale (Flagg quantale).

<u> Set—Theoretic motivation — 3/25</u>

- Fitting: Models of Intuitionistic Set Theory generalizing both the universes of von Neumann and of Gödel using Intuitionistic Kripke models.
- . Lano: Residuated Kripke models of Set Theory.

KEY IDEA: To consider a quantale as a set of truth values (or the range of a generalized distance to the "truth", as in Continuous Logic). Quantale-valued Model Theory (joint with D. Reyes) - 4/25

Definition. Let (V, \leq) be a complete lattice. Given $\alpha, \beta \in V$, α is said to be totally below β ($\alpha < \beta$) if for every $S \subseteq V$, if $\beta \leq \bigvee S$ then $\alpha \leq \gamma$ for some $\gamma \in S$.

Definition. A commutative, unital quantale consists of $\mathbb{V} := (V, \star, \eta, \leqslant)$, where (V, \leqslant) is a complete lattice, (V, \star, η) is a commutative monoid and \star distributes over arbitrary joins.

Definition. $\mathbb{V} := (V, +, 0, \leq)$ is said to be a *co-quantale* if $(V, \star, \eta, \leq)^{op} := (V, \star, \eta, \geq)$ is a commutative, unital quantale, where $\eta := 0 = \bot_{\leq}$ and $\star := +$.

Value co-quantales - 5/25

Definition. A co-quantale $\mathbb{V} := (V, +, 0, \leq)$ is said to be constructively completely distributive if for every $a \in V$

 $a = \bigwedge \{b \in V : a < b\}.$

A value co-quantale is a constructively completely distributive co-quantale V provided that

- ► $0 = \bot \prec \top$
- if $\delta, \delta' \in V$ satisfy $0 < \delta$ and $0 < \delta'$, then $0 < \delta \land \delta'$.

Examples - 6/25

- The 2-valued Boolean algebra $2 := \{0, 1\}$, where 0 < 1.
- The unit interval I = [0, 1].

• Free locales: \mathcal{R} a set. $\downarrow (X) = \{Y \in \mathcal{P}_{fin}(\mathcal{R}) : Y \subseteq X\}$ $(X \in \mathcal{P}_{fin}(\mathcal{R}))$. $\Omega(\mathcal{R}) = \{P \in \mathcal{P}(\mathcal{P}_{fin}(\mathcal{R})) : X \in P \text{ implies } \downarrow (X) \subseteq P\}$ $(\Omega(\mathcal{R}), \cap, \mathcal{P}_{fin}(\mathcal{R}), \supseteq) \text{ is a value co-quantale.}$ $\mathcal{R} := \tau, (X, \tau) \text{ a topological space.}$

Definition. Given \mathbb{V} a co-quantale and $a, b \in V$, define $a \div b := \bigwedge \{r \in V : r + b \ge a\}$.

<u>Some extra conditions</u> - 1/25

Definition. Co-divisibility (substractibility): For all $a, b \in V$, $a \le b$ implies that there exists $c \in V$ such that b = a + c.

Definition. Dualizing element: $d \in V$ such that for all $a \in V$ we have that a = d - (d - a).

Definition. co-Girard: There is a dualizing element.

Continuity spaces - 8/25

Definition. $X \neq \emptyset$ a set, \mathbb{V} a value co-quantale, $d: X \times X \rightarrow V$ (X, d) is a \mathbb{V} -continuity space iff:

- (reflexivity) for all $x \in X$, d(x, x) = 0, and
- (transitivity) for any $x, y, z \in X$, $d(x, y) \leq d(x, z) + d(z, y)$.

Definition. (X, d) a \mathbb{V} -continuity space, $\epsilon \in \mathbb{V}^+$, $x \in X$ $B_{\epsilon}(x) := \{y \in X : d(x, y) < \epsilon\}$.

Definition. τ_d : Topology induced by (X, d).

Definition. V-domain: V-continuity space (X, d) which is T_0 and (X, τ_d^s) is compact.

Why value co-quantales? - 9/25

Theorem (Flagg, 1997). Any topological space (X, τ) is topologically equivalent to the $\Omega(\tau)$ -continuity space (X, d), where $d: X \times X \to \Omega(\tau)$ is defined by

 $d(a,b) := \{A \in \mathcal{P}_{finite}(\tau) : \text{ for all } U \in A, a \in U \text{ implies } b \in U\}.$

Continuous structures in this setting. -10/25

 (M, d_M) : V-continuity space with diameter $p \in V$.

Continuous structure: $\mathcal{M} = ((\mathcal{M}, d_{\mathcal{M}}), (\mathcal{R}_i)_{i \in J}, (f_j)_{j \in J}, (c_k)_{k \in K})$, where:

- $R_i: M^n \rightarrow V$: uniformly continuous mapping, with modulus of uniform continuity $\Delta_{R_i}: V^+ \rightarrow V^+$. $n_i < \omega$: arity of R_i .
- $f_j: M^{m_j} \rightarrow M$: uniformly continuous mapping with modulus of uniform continuity $\Delta_{f_i}: \mathbf{V}^+ \rightarrow \mathbf{V}^+$.
 - $m_j < \omega$: arity of F_j .
- c_k is an element of M.

<u>Some basic definitions</u> - 11/25

L-terms and L-formulas: Defined recursively. Connectives: $u: V^n \to V$ $(1 \le n < \omega)$ a uniformly continuous mapping. Quantifiers: \bigvee_{\times} (universal quantifier), \bigwedge_{\times} (existential quantifier). Definition. $\mathcal{M} \le \mathcal{N}$: $\mathcal{M} \subseteq_L \mathcal{N}$ such that any L-formula $\varphi(x_1, ..., x_n)$ satisfies $\varphi^{\mathcal{M}}(a_1, ..., a_n) = \varphi^{\mathcal{N}}(a_1, ..., a_n)$ $(a_1, ..., a_n \in M)$.

Tarski-Vaught test - 12/25

Theorem (Reyes-Z., 2021). Assume that \mathbb{V} is a co-Girard value co-quantale. Let \mathcal{M} , \mathcal{N} be L-structures such that $\mathcal{M} \subseteq_L \mathcal{N}$. The following are equivalent:

- $\mathcal{M} \leq \mathcal{N}$.
- For any L-formula $\varphi(x, x_1, ..., x_n)$ and $a_1, ..., a_n \in M$, we have that

 $\bigwedge \{\varphi^{\mathcal{M}}(c, a_1, ..., a_n) : c \in \mathcal{M}\} = \bigwedge \{\varphi^{\mathcal{N}}(c, a_1, ..., a_n) : c \in \mathcal{N}\}.$

Elementary chain property holds.

D-products and Łoś Theorem - 13/25V: substractible, V-domain value co-quantale provided with its symmetric topology. Notice that (V, τ^s) is compact and Hausdorff. *D*-product of $(M_i, d_M)_{i \in I}$ (V-continuity spaces and D an ultraproduct

on I): $(M_{\mathcal{D}}, d_{M_{\mathcal{D}}}) := (\prod_{i \in I} M_i, d_{\mathcal{D}})$, where $d_{\mathcal{D}}((x_i)_{i \in I}, (y_i)_{i \in I}) := \lim_{i, \mathcal{D}} d_{M_i}(x_i, y_i)$.

Theorem (Reyes-Z., 2021). For any L-formula $\phi(x_1, ..., x_n)$ and any tuple $((a_i^1)_{i \in I}, ..., (a_i^n)_{i \in I}) \in (\prod_{i \in I} M_i)^n$,

 $\phi^{\mathcal{M}_{\mathcal{D}}}((a_i^1)_{i\in I},...,(a_i^n)_{i\in I}) = \lim_{i,\mathcal{D}} \phi^{\mathcal{M}_i}(a_i^1,...,a_i^n).$

Compactness holds for this logic.

Corollary.

Relation with Continuous Logic - 14/25

Theorem (Jovino, 2001). There is no logic for analytic structures that extends properly "Continuous Logic" and satisfies both the compactness theorem and the elementary chain property.

Notice that $\mathbb{V} := ([0,1],+,0,\leqslant)$ satisfies all the required conditions in our previous setting.

Also, in this way we obtain a new approach for Continuous Logic.

Quantale-valued Set Theory (joint with J. Moncayo) - 15/25

Definition. We say that $\mathbb{Q} = (\mathbb{Q}, \wedge, \vee, \cdot, \rightarrow, 1, 0)$ is a commutative integral Quantale (or equivalently a complete residuated lattice) if:

- $(Q, \land, \lor, 1, 0)$ is a complete bounded lattice with 1 as top element and 0 as bottom element.
- $(\mathbb{Q}, \cdot, 1)$ is a commutative monoid.
- For all $x, y_i \in \mathbb{Q}$ with $i \in I$, $x \cdot \bigvee y_i = \bigvee (x \cdot y_i)$

and \rightarrow is defined as $x \rightarrow y := \bigvee \{z \in \mathbb{Q} : x \cdot z \leq y\}$.

Modal Residuated Logic – 16/25

We consider two types of conjunctions: weak conjunction (\land) - strong conjunction (&).

- $\blacktriangleright \varphi \equiv \psi := (\varphi \to \psi) \& (\psi \to \varphi),$
- $\blacktriangleright \sim \varphi := \varphi \to \bot,$
- \blacktriangleright $\top := \sim \bot$.

Residuated formulas (R-formulas): By recursion.

Modal Residuated formulas: Same symbols as in Residuated Logic together with an unary connective of possibility <>.

Idea: To interpret \diamond by using a quantic nucleus.

MR - L-formulas: By recursion.

<u>Quantic nucleus</u> — 17/25

Closure operator: $\gamma: \mathbb{Q} \to \mathbb{Q}$ such that for every $x, y \in \mathbb{Q}$:

- (Expansivity) $x \leq \gamma(x)$.
- (Idempotency with respect to \circ) $\gamma(\gamma(\mathbf{x})) = \gamma(\mathbf{x})$.
- (Monotonicity) If $x \leq y$, then $\gamma(x) \leq \gamma(y)$.

Quantic nucleus: for every $x, y \in \mathbb{Q}$ $\gamma(x) \cdot \gamma(y) \leq \gamma(x \cdot y)$.

Respection of implications: $\gamma(x \rightarrow y) = 1$ if and only if $\gamma(x) \rightarrow \gamma(y) = 1$.

Idempotency with respect to products: for every $x \in \mathbb{Q}$ $\gamma(x^2) = \gamma(x)$.

Modal Residuated Kripke Models (Ono) - 18/25

Residuated Kripke \mathcal{L} -model (or R-Kripke \mathcal{L} -model: $\mathcal{A} = (\mathbb{P}, \leq, \mathbb{H}, \mathcal{D})$ such that

- $\mathbb{P} = (\mathbb{P}, \leq, \land, \cdot, 1, \infty)$ is a complete SO-commutative monoid.
- Given $p_i, q \in \mathbb{P}$, with $i \in J$ and φ an atomic \mathcal{L}_A -sentence, then
 - If $\bigwedge p_i \leq q$ and for each $i \in I \ \mathcal{A} \Vdash_{p_i} \varphi$, then $\mathcal{A} \Vdash_{q} \varphi$.
 - $\mathcal{A} \Vdash_{\infty} \varphi$ for every atomic $\mathcal{R} \mathcal{L}_{\mathcal{A}}$ -sentence φ .
 - $\mathcal{A} \Vdash_{\mathcal{P}} \perp$ if and only if $\mathcal{P} = \infty$.

Modal Residuated Kripke Models (Ono) - 19/25

- ► $\mathcal{A} \Vdash_{\mathcal{P}} (\varphi \& \psi)$, if and only if, there are $q, r \in \mathbb{P}$ such that $p \ge q \cdot r$, $\mathcal{A} \Vdash_{q} \varphi$ and $\mathcal{A} \Vdash_{r} \psi$.
- ► $\mathcal{A} \Vdash_{\mathcal{P}} (\varphi \lor \psi)$, if and only if, there are $q, r \in \mathbb{P}$ such that $p \ge q \land r$, and both $(\mathcal{A} \Vdash_q \varphi \text{ or } \mathcal{A} \Vdash_q \psi)$ and $(\mathcal{A} \Vdash_r \varphi \text{ or } \mathcal{A} \Vdash_r \psi)$ hold.
- $\mathcal{A} \Vdash_{\mathcal{P}} (\varphi \land \psi)$, if and only if, $\mathcal{A} \Vdash_{\mathcal{P}} \varphi$ and $\mathcal{A} \Vdash_{\mathcal{P}} \psi$.
- $\mathcal{A} \Vdash_{\mathcal{P}} (\varphi \to \psi)$, if and only if, for all $q, r \in \mathbb{P}$ if $\mathcal{A} \Vdash_{q} \varphi$ and $p \cdot q \leq r$, then $\mathcal{A} \Vdash_{r} \psi$.
- $\mathcal{A} \Vdash_{\mathcal{P}} \exists x \varphi(x)$ if and only there exists an index set I such that for every $i \in I$, there exist $d_i \in D$ and $q_i \in \mathbb{P}$ such that $\bigwedge_{i \in I} q_i \leq P$ and $\mathcal{A} \Vdash_{q_i} \varphi(d_i)$.
- $\mathcal{A} \Vdash_{\mathcal{P}} \forall x \varphi(x)$, if and only if, for all $b \in \mathcal{D}$, $\mathcal{A} \Vdash_{\mathcal{P}} \varphi(b)$.

Conucleus: $\delta: \mathbb{P} \to \mathbb{P}$ ((\mathbb{P}, \leq, \cdot) complete SO-monoid) such that for all $p, q, p_i \in \mathbb{P}$ ($i \in I$)

- $\delta(\mathbf{p}) \leq \mathbf{p}$.
- If $p \leq q$, then $\delta(p) \leq \delta(q)$.
- $\delta(\delta(p)) = \delta(p)$.
- $\delta(\mathbf{p} \cdot \mathbf{q}) \leq \delta(\mathbf{p}) \cdot \delta(\mathbf{q})$.
- $\delta(\bigwedge_{i\in I} p_i) = \bigwedge_{i\in I} \delta(p_i)$

Complete modal SO-commutative monoid: $\mathbb{P} = (\mathbb{P}, \leq, \land, \cdot, 1, \infty, \delta)$ such that

- ▶ $(\mathbb{P}, \leq, \land, \cdot, 1, \infty)$ is a complete SO-commutative monoid.
- δ is a conucleus on $(\mathbb{P}, \leq, \cdot)$.

 $\mathcal{A} \Vdash_{\mathcal{P}} \Diamond \varphi$: There exists $q \in \mathbb{P}$ such that $\mathcal{A} \Vdash_{q} \varphi$ and $\delta(q) \leq p$.

Strongly hereditary sets - 21/25

Strongly hereditariness: $\emptyset \neq A \subseteq \mathbb{P}$ such that for all $c_i \in A$ and $d \in \mathbb{P}$ for $i \in I$, if $\bigwedge_{i \in I} c_i \leq d$, then $d \in A$.

 $\mathbb{P}^* := \{A \subseteq \mathbb{P} : A \text{ is strongly hereditary}\}$

Fact (Moncayo-Z.). The operation $\gamma_{\delta}: \mathbb{P}^* \to \mathbb{P}^*$ defined as

 $\gamma_{\delta}(A) := \{ p \in \mathbb{P} : \text{there is } q \in A \text{ such that } \delta(q) \leq p \}$

is a quantic nucleus on $(\mathbb{P}^*,\subseteq,\cdot)$.

If there is no ambiguity, we denote $\gamma := \gamma_{\delta}$.

Coditying subsets - 22/25

In classical logic: $A \subseteq B$ is codified by its characteristic function $\chi_A : B \to \{0,1\}$: $a \in A$ iff $\chi_A(a) = 1$ (for all $a \in B$).

 \mathbb{P}^* —subset of \mathcal{A} : function \overline{f} such that $Dom(f) \subseteq \mathcal{D}$ and $Ran(f) \subseteq \mathbb{P}^* = \{A \subseteq \mathbb{P} : A \text{ is strongly hereditary}\}$

Extensional: $f : \mathcal{D} \to \mathbb{P}^*$ such that for each $g, h \in \mathcal{D}$ $f(g) \cdot \{ p \in \mathbb{P} : \mathcal{A} \Vdash_P (g = h) \} \subseteq f(h)$

 $(g = h) := \diamond \sim (\exists x) \sim (x \in g \to x \in h)) \& (\diamond \sim (\exists x) \sim (x \in h \leftarrow x \in g)).$ $\mathcal{P}^{\mathbb{P}^*}(\mathcal{D}):$ collection of mappings f which are γ -regular and extensional \mathbb{P}^* -subsets of \mathcal{A}

Von Neumann-like hierarchy – 23/25 $\mathcal{V}_{\alpha+1}^{\mathbb{P}^*} := (\mathbb{P}, \leq, \delta, \mathbb{H}, \mathcal{R}_{\alpha+1}^{\mathbb{P}^*})$ where $\mathcal{R}_{\alpha+1}^{\mathbb{P}^*} := \mathcal{R}_{\alpha}^{\mathbb{P}^*} \cup \mathcal{P}^{\mathbb{P}^*}(\mathcal{R}_{\alpha}^{\mathbb{P}^*})$ If $p \in \mathbb{P}$ and $f, g \in \mathcal{R}_{\alpha+1}^{\mathbb{P}^*}$, then:

- If $f, g \in \mathbb{R}^{\mathbb{P}^*}_{\alpha}$, then $\mathcal{V}^{\mathbb{P}^*}_{\alpha+1} \Vdash_{\mathcal{P}} (f \in g)$, if and only if, $\mathcal{V}^{\mathbb{P}^*}_{\alpha} \Vdash_{\mathcal{P}} (f \in g)$.
- If $f \in \mathbb{R}^{\mathbb{P}^*}_{\alpha}$ and $g \in \mathbb{R}^{\mathbb{P}^*}_{\alpha+1} \setminus \mathbb{R}^{\mathbb{P}^*}_{\alpha} = \mathcal{P}^{\mathbb{P}^*}(\mathbb{R}^{\mathbb{P}^*}_{\alpha})$, then $\mathcal{V}^{\mathbb{P}^*}_{\alpha+1} \Vdash_{\mathcal{P}} (f \in g)$, if and only if, $p \in g(f)$.
- If $f \in \mathbb{R}_{\alpha+1}^{\mathbb{P}^*} \setminus \mathbb{R}_{\alpha}^{\mathbb{P}^*} = \mathcal{P}^{\mathbb{P}^*}(\mathbb{R}_{\alpha}^{\mathbb{P}^*})$, then $\mathcal{V}_{\alpha+1}^{\mathbb{P}^*} \Vdash_{\mathcal{P}} (f \in g)$, if and only if, $p \in \bigvee_{h \in dom(g)} \mathcal{P}_h$,

where $P_h := g(h) \cdot (P_{f \subseteq h} \cdot P_{h \subseteq f})$ and

$$\begin{split} P_{f\subseteq h} &:= \bigcap_{\mathbf{x}\in \mathcal{R}^{\mathbb{P}^*}_{\alpha}} \left(f(\mathbf{x}) \to \{q \in \mathbb{P} : \mathcal{V}^{\mathbb{P}^*}_{\alpha} \Vdash_{q} \sim \sim \Diamond(\mathbf{x} \in h) \} \right) \\ P_{h\subseteq f} &:= \bigcap_{\mathbf{x}\in \mathcal{R}^{\mathbb{P}^*}_{\alpha}} \left(f(\mathbf{x}) \leftarrow \{q \in \mathbb{P} : \mathcal{V}^{\mathbb{P}^*}_{\alpha} \Vdash_{q} \sim \sim \Diamond(\mathbf{x} \in h) \} \right). \end{split}$$

The main theorem. - 24/25

 γ -dense: $x \in \mathbb{Q}$ such that $\gamma(x) = 1_{\mathbb{Q}}$.

 \mathcal{F}_{γ} : Collection of all γ -dense elements of \mathbb{P}^* .

Fact. $A \approx_{\mathcal{F}_{\gamma}} B$, if and only if, $A \to B \in \mathcal{F}_{\gamma}$ and $B \to A \in \mathcal{F}_{\gamma}$ defines an equivalence relation. Also, we have that $\mathbb{H} := \mathbb{P}^*/\mathcal{F}_{\gamma} = \mathbb{P}^*/_{\approx_{\mathcal{F}_{\gamma}}} = \{|A| : A \in \mathbb{P}^*\}$ is a complete Heyting algebra.

Theorem (Moncayo-Z.). For every ordinal α , there exist a bijection between $\mathcal{R}^{\mathbb{P}^*}_{\alpha}$ and $\mathcal{R}^{\mathbb{H}}_{\alpha}$ (where if $f \in \mathcal{R}^{\mathbb{P}^*}_{\alpha}$, f' denotes the image of f via this bijection) such that for every $MR - \mathcal{L}_{\varepsilon} - f$ ormula with no universal quantifiers $\varphi(x_1, ..., x_n)$ and every $a_1, ..., a_n \in \mathcal{R}^{\mathbb{P}^*}_{\alpha}$,

 $|\{p \in \mathbb{P} : \mathcal{V}_{\alpha}^{\mathbb{P}^*} \Vdash_{\mathcal{P}} \varphi(a_1, ..., a_n)\}| = [\![\varphi(a'_1, ..., a'_n)]\!]_{\alpha}^{\mathbb{H}} \bullet$

REFERENCES. - 25/25

- [MoZa24] Moncayo J. and Zambrano P.H., Kripke-like models of Set Theory in Modal Residuated Logic, arXiv:2405.04641. Submitted.
- [ReZa21] Reyes D. and Zambrano P.H., A characterization of Continuous Logic by using quantale-valued logics, arxiv:2102.06067. Preprint.

THANK YOU VERY MUCH!

Background designed using resources from Freepik.com