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This talk

Geometric measure theory

Quantifies the size of small/irregular
sets (e.g., Cantor set, Sierpinski
triangle, etc.).

Uses fractal dimensions to measure
the size of a set.

Most prominent dimensions:
Hausdorff, dimH , and packing, dimP .

Effective dimension

Studies the intrinsic randomness of
infinite objects (binary sequences,
Euclidean points, etc.).

Two main measures quantifying the
amount of randomness: dim and
Dim.

Effective versions of Hausdorff and
packing dimension.

We can use effective dimension to prove (non-effective) theorems in geometric measure theory.
In this talk, we show how to use effective methods to improve best known bounds for pinned
distance sets.
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Kolmogorov complexity in Euclidean space

Fix a universal TM U.

Let r ∈ N, and x ∈ R. The Kolmogorov complexity of x at precision r is

Kr (x) = length of the shortest input π such that U(π) = dx

≈ the minimum number of bits to specify first r bits of x .

where dx = m
2r is the closest dyadic rational at precision r to x .

Can generalize this to Rn.

The Kolmogorov complexity of x at precision r given y at precision t is

Kr ,t(x | y) = length of the shortest input π such that U(π, dy ) = dx

≈ the minimum number of bits to specify first r bits of x if you know

first t bits of y .

where dy = (m1
2t , . . . ,

mn
2t ) is the closest dyadic rational at precision t to y .
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Kolmogorov complexity in Euclidean space

For every x ∈ Rn and r ∈ N, 0 ≤ Kr (x) ≤ nr + O(log r).

If x is computable, then Kr (x) = O(log r)
Almost every point satisfies Kr (x) = r − O(log r) for every r ∈ N. We call these points
random.

Symmetry of information: For every x ∈ Rn, y ∈ Rm, and r , t ∈ N,

Kr ,t(x , y) = Kt(y) + Kr ,t(x | y) + O(log r + log t).

We can relativize the definitions in the natural way to get KA
r (x),KA

r ,t(x | y), . . . for any
oracle A ⊆ N.
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Effective dimensions of points

Definition (Lutz ’03, Mayordomo ’03)

Let n ∈ N, and x ∈ Rn. The (effective Hausdorff) dimension of x is

dim(x) = lim inf
r→∞

Kr (x)
r .

Definition (Athreya et al. ’07, Lutz and Mayordomo ’08)

Let n ∈ N, and x ∈ Rn. The (effective) strong dimension of x is

Dim(x) = lim sup
r→∞

Kr (x)
r .

The effective dimensions of a point x measure the density of algorithmic information in x .
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Dimension of distances

Let x , y ∈ Rn. Let dx := dim(x) and dy := dimx(y).

Question: What is d := dimx(|x − y |)?

1 0 ≤ d ≤ min{1, dy}.
2 If dy = n, then d = 1.

3 This is a natural (even innocuous) question. The analogous (classical) question is one of
the most fundamental open problems in geometric measure theory: Falconer’s distance
set conjecture.
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The point-to-set principle

Theorem (J. Lutz and N. Lutz, ’16)

For every set E ⊆ Rn,

dimH(E ) = min
A⊆N

sup
x∈E

dimA(x), and

dimP(E ) = min
A⊆N

sup
x∈E

DimA(x).

The Hausdorff and packing dimension of a set is characterized by the corresponding
dimension of the points in the set.

Allows us to use algorithmic techniques to answer questions in geometric measure theory.
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Distance sets

Let E ⊆ Rn. The distance set of E is

∆E = {|x − y | | x , y ∈ E}.

More generally, if x ∈ Rn, the pinned distance of E w.r.t. x is

∆xE = {|x − y | | y ∈ E}.
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Distance sets

When E is a finite set, Erdös conjectured that |∆E | is at least (almost) linear in terms of |E |.
In a breakthrough paper, Guth and Katz proved that |∆E | � |E |

log |E | .

Still an important open problem for Rn with n ≥ 3.

Falconer posed an analogous question for the case that E is infinite, known as Falconer’s
distance set problem.

If E ⊆ Rn has dimH(E ) > n/2, then ∆E has positive measure.

Still open in all dimensions.

Guth, Iosevich, Ou and Wang proved that if E ⊆ R2 and dimH(E ) > 5/4, then
µ(∆E ) > 0.
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Known bounds - high dimensional case

Substantial progress has been made in a slightly different direction, on the Hausdorff
dimension of pinned distance sets in the plane. We assume E ⊆ R2 is Borel (or analytic).

(Shmerkin) If dimH(E ) > 1 and dimH(E ) = dimP(E ), then

supx∈E dimH(∆xE ) = 1.

(Liu) If dimH(E ) = d ∈ (1, 5/4), then supx∈E dimH(∆xE ) ≥ 4
3d −

2
3 .

(S.) If dimH(E ) =: d > 1, then

supx∈E dimH(∆xE ) ≥ d
4 + 1

2
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Our results - high dimensional case

Let E ⊆ R2 be analytic and 1 < d < dimH(E ).

There is a subset F ⊆ E of full dimension such that, for all x ∈ F ,

dimH(∆xE ) ≥ d(4−d)
5−d

This improves the best known bounds when dimH(E ) ∈ (1, 1.127).

For all x outside a set of dimension 1

dimH(∆xE ) ≥ dimP(E)+1
2 dimP(E) .

If dimP(E ) < d(3+
√
5)−1−

√
5

2 , then for all x in a subset of full dimension dimH(∆xE ) = 1.

There is a point x ∈ E such that

dimP(∆xE ) ≥ 12−
√
2

8
√
2
≈ 0.9356

Improves (slightly) the Keleti-Shermkin bound for packing dimension.
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Known bounds - low dimensional case

We now consider the “low” dimensional case, when dimH(E ) ≤ 1. We assume E ⊆ R2 is Borel
(or analytic).

(Shmerkin and Wang) If dimH(E ) =: d ≤ 1 and dimH(E ) = dimP(E ), then

supx∈E dimH(∆xE ) = d .

(Shmerkin and Wang) If dimH(E ) =: d ≤ 1, then

supx∈E dimH(∆xE ) ≥ d
2 −

d2

2(2+
√
d2+4)

.

(Du, Ou, Ren and Zhang) If dimH(E ) = d ≤ 1, then

supx∈E dimH(∆xE ) ≥ 5
3d − 1
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Our results - low dimensional case

Theorem (Fiedler and S.)

Suppose E ⊆ R2 is analytic set, d := dimH(E ) ≤ 1 and D := dimP(E ). Then,

sup
x∈E

dimH(∆x(E )) ≥ d
(

1− αD−d(D+α−d)
(d+1)(αD−d2)−d2(α+D−2d)

)
,

where α = min{1 + d ,D}.

Corollary

Suppose E ⊆ R2 is analytic set and d := dimH(E ) ≤ 1. Then,

sup
x∈E

dimH(∆x(E )) ≥ d
(

1− 2−d
2(1+2d−d2)

)
.
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Universal sets

We can generalize the problem, by considering a pinned set X , and a test set Y , and
investigating

supx∈X dimH(∆xY ).

Let X ⊆ R2, and let C be a class of subsets of R2 e.g. Borel sets, analytic sets, or weakly
regular sets. We say that X is universal for pinned distances for C if, for every Y ∈ C there
exists some x ∈ X such that

dimH(∆x(Y )) = min{dimH(Y ), 1} (1)

Question: Are there “small” universal sets for the class of Borel subsets
of R2?
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Universal sets

Theorem (Fiedler and S.)

Let X ⊆ R2 be a compact, Ahlfors-David regular set such that dimH(X ) > 1. Then X is
universal for pinned distances for the class of Borel sets Y ⊆ R2.

In particular, if X ⊆ R2 is a four-corner Cantor set with dimH(X ) > 1, then, for every Borel
Y ⊆ R2, there is a point x ∈ X such that

dimH(∆xY ) = min{dimH(Y ), 1}.

We can slightly weaken the assumption that X is AD-regular.
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Our results (low dimensional case)

Theorem (Fiedler and S.)

Suppose E ⊆ R2 is analytic set, d := dimH(E ) ≤ 1 and D := dimP(E ). Then,

sup
x∈E

dimH(∆x(E )) ≥ d
(

1− αD−d(D+α−d)
(d+1)(αD−d2)−d2(α+D−2d)

)
,

where α = min{1 + d ,D}.

Corollary

Suppose E ⊆ R2 is analytic set and d := dimH(E ) ≤ 1. Then,

sup
x∈E

dimH(∆x(E )) ≥ d
(

1− 2−d
2(1+2d−d2)

)
.
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Pinned distance sets using effective dimension

Theorem (Fiedler, S.)

Suppose that x , y ∈ R2, e = y−x
|y−x | and 0 < σ < 1 satisfy the following.

(C1) dim(x), dim(y) > σ

(C2) K x
r (e) > σr − O(log r) for all r .

(C3) K x
r (y) ≥ KA

r (y)− O(log r) for all sufficiently large r .

(C4) Kt,r (e | y) > σt − O(log r) for all sufficiently large r and t ≤ r .

Then dimx(|x − y |) ≥ σ
(

1− αD−σ(D+α−σ)
(σ+1)(αD−σ2)−σ2(α+D−2σ)

)
, where D = max{Dx ,Dy} and

α = min{D, 1 + σ}.

1 Most of the work is in proving this theorem. We then use the point-to-set principle to
conclude the classical theorem on the Hausdorff dimension of pinned distance sets.

2 Note that we assume the direction from x to y is of high dimension given x or y .
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Let x , y ∈ R2. We want to lower bound dimx(|x − y |).

From the definition of dimension, it is
natural to fix a precision r ∈ N, and give a
lower bound on K x

r (|x − y |).

By the symmetry of information, this is
equivalent to prove an upper bound on

K x
r (y | |x − y |) ≈ K x

r (y)− K x
r (|x − y |).

Intuitively: Given x as an oracle, and
knowing (an approximation of) |x − y |,
how hard is it to compute (an
approximation of) y?

Enumerate rationals z such that
Kr (z) ≤ Kr (y) and
||x − y | − |x − z || < 2−r . Suffices to
bound the dyadic covering number of such
z ’s.
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Goal: Bound K x
r (y | |x − y |). Can enumerate rationals z such that Kr (z) ≤ Kr (y) and

||x − y | − |x − z || < 2−r .

For any e ∈ S1 and x ∈ R2,
pex = e · x .

1 |pe1y − pe1z | . |y − z |2

2 pe2x = pe2w

Reduce this to projections.

If there is such a z with |z − y | < 2−r/2,
then pe1y ≈ pe1z .

That is, y and z determine (an
approximation of) e1:
Kr−t(e1 | y) . Kr (z | y).

If there are many such z ’s then the
direction e1 is compressible.

But we assumed that the direction was of
high dimension.
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Goal: Bound K x
r (y | |x − y |). Can enumerate rationals z such that Kr (z) ≤ Kr (y) and

||x − y | − |x − z || < 2−r .

For any e ∈ S1 and x ∈ R2,
pex = e · x .

1 |pe1y − pe1z | . |y − z |2

2 pe2x = pe2w

If there is such a z then pe2x ≈ pe2w .

That is, y and z determine a line
containing x .

Moreover, this line has some randomness,
since it is close to e⊥1 .

Given this, we can bound Kr−t(x | y , z).

If there are many such z ’s then the point
x is compressible.

But we assumed that the pinned point x
was of high dimension.
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The End

Thank you!
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