Recent progress on distance sets in the plane

Don Stull Joint with Jacob Fiedler

University of Chicago

4 0 8

This talk

Geometric measure theory

- Quantifies the size of small/irregular sets (e.g., Cantor set, Sierpinski triangle, etc.).
- **Q** Uses fractal dimensions to measure the size of a set.
- Most prominent dimensions: Hausdorff, dim_H, and packing, dim_P.

Effective dimension

- **Studies the intrinsic randomness of** infinite objects (binary sequences, Euclidean points, etc.).
- **•** Two main measures quantifying the amount of randomness: dim and Dim.
- **Effective versions of Hausdorff and** packing dimension.

We can use effective dimension to prove (non-effective) theorems in geometric measure theory. In this talk, we show how to use effective methods to improve best known bounds for *pinned* distance sets.

Kolmogorov complexity in Euclidean space

Fix a universal TM U.

• Let $r \in \mathbb{N}$, and $x \in \mathbb{R}$. The Kolmogorov complexity of x at precision r is

 $K_r(x) =$ length of the shortest input π such that $U(\pi) = d_x$

 \approx the minimum number of bits to specify first r bits of x.

where $d_{x} = \frac{m}{2^{r}}$ $\frac{m}{2^r}$ is the closest dyadic rational at precision r to x.

- Can generalize this to \mathbb{R}^n .
- The Kolmogorov complexity of x at precision r given y at precision t is

 $K_{r,t}(x | y) =$ length of the shortest input π such that $U(\pi, d_y) = d_x$ \approx the minimum number of bits to specify first r bits of x if you know first t bits of y .

where $d_y = (\frac{m_1}{2^t}, \ldots, \frac{m_n}{2^t})$ $d_y = (\frac{m_1}{2^t}, \ldots, \frac{m_n}{2^t})$ $d_y = (\frac{m_1}{2^t}, \ldots, \frac{m_n}{2^t})$ is the closest dyadic rational at preci[sio](#page-1-0)n t [to](#page-2-0) [y](#page-3-0)[.](#page-0-0)

Kolmogorov complexity in Euclidean space

- For every $x \in \mathbb{R}^n$ and $r \in \mathbb{N}$, $0 \leq K_r(x) \leq nr + O(\log r)$.
	- If x is computable, then $K_r(x) = O(\log r)$
	- Almost every point satisfies $K_r(x) = r O(\log r)$ for every $r \in \mathbb{N}$. We call these points random.
- Symmetry of information: For every $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, and $r, t \in \mathbb{N}$,

$$
K_{r,t}(x, y) = K_t(y) + K_{r,t}(x | y) + O(\log r + \log t).
$$

We can *relativize* the definitions in the natural way to get $\mathcal{K}^A_r(x), \mathcal{K}^A_{r,t}(x \mid y), \ldots$ for any oracle $A \subseteq \mathbb{N}$.

Definition (Lutz '03, Mayordomo '03)

Let $n \in \mathbb{N}$, and $x \in \mathbb{R}^n$. The *(effective Hausdorff) dimension of* x is

 $dim(x) = lim inf_{r \to \infty}$ $K_r(x)$ $\frac{f(x)}{r}$.

Definition (Athreya et al. '07, Lutz and Mayordomo '08)

Let $n \in \mathbb{N}$, and $x \in \mathbb{R}^n$. The (effective) strong dimension of x is

$$
\mathsf{Dim}(x)=\limsup_{r\to\infty}\frac{\mathsf{K}_r(x)}{r}.
$$

The effective dimensions of a point x measure the density of algorithmic information in x.

Let $x, y \in \mathbb{R}^n$. Let $d_x := \dim(x)$ and $d_y := \dim^x(y)$.

Question: What is $d := \dim^x(|x - y|)$?

- $0 \le d \le \min\{1, d_v\}.$
- **2** If $d_v = n$, then $d = 1$.
- ³ This is a natural (even innocuous) question. The analogous (classical) question is one of the most fundamental open problems in geometric measure theory: Falconer's distance set conjecture.

Theorem (J. Lutz and N. Lutz, '16)

For every set $E \subseteq \mathbb{R}^n$,

$$
\dim_H(E) = \min_{A \subseteq \mathbb{N}} \sup_{x \in E} \dim^A(x), \text{ and}
$$

$$
\dim_P(E) = \min_{A \subseteq \mathbb{N}} \sup_{x \in E} \text{Dim}^A(x).
$$

- The Hausdorff and packing dimension of a set is characterized by the corresponding dimension of the *points* in the set.
- Allows us to use algorithmic techniques to answer questions in geometric measure theory.

Let $E \subseteq \mathbb{R}^n$. The distance set of E is

$$
\Delta E = \{|x - y| \mid x, y \in E\}.
$$

More generally, if $x \in \mathbb{R}^n$, the pinned distance of E w.r.t. x is

$$
\Delta_x E = \{|x-y| \mid y \in E\}.
$$

 \leftarrow

意 **E K**

When E is a finite set, Erdös conjectured that $|\Delta E|$ is at least (almost) linear in terms of $|E|$.

- In a breakthrough paper, Guth and Katz proved that $|\Delta E|\gg \frac{|E|}{\log |E|}$.
- Still an important open problem for \mathbb{R}^n with $n \geq 3$.

Falconer posed an analogous question for the case that E is infinite, known as Falconer's distance set problem.

- If $E \subseteq \mathbb{R}^n$ has dim $H(E) > n/2$, then ΔE has positive measure.
- Still open in all dimensions.
- Guth, losevich, Ou and Wang proved that if $E \subseteq \mathbb{R}^2$ and $\mathsf{dim}_H(E) > 5/4$, then $\mu(\Delta E) > 0.$

Substantial progress has been made in a slightly different direction, on the Hausdorff dimension of pinned distance sets in the plane. We assume $E \subseteq \mathbb{R}^2$ is Borel (or analytic).

• (Shmerkin) If $dim_H(E) > 1$ and $dim_H(E) = dim_P(E)$, then

 $\sup_{x \in E}$ dim_H($\Delta_x E$) = 1.

(Liu) If $\dim_H(E)=d\in(1,5/4)$, then $\sup_{x\in E}\dim_H(\Delta_x E)\geq \frac{4}{3}$ $rac{4}{3}d - \frac{2}{3}$ $\frac{2}{3}$.

• (S.) If
$$
\dim_H(E) =: d > 1
$$
, then

 $\sup_{x \in E} \dim_H(\Delta_x E) \geq \frac{d}{4} + \frac{1}{2}$ 2

Our results - high dimensional case

Let $E\subseteq \mathbb{R}^2$ be analytic and $1< d <$ dim $_{{\mathcal H}}(E).$

- There is a subset $F \subseteq E$ of full dimension such that, for all $x \in F$, dim $_{{\mathcal H}}(\Delta_{\mathsf{x}}E) \ge \frac{d(4-d)}{5-d}$ 5−d
	- This improves the best known bounds when $\dim_H (E) \in (1, 1.127)$.
- For all x outside a set of dimension 1

$$
\dim_{H}(\Delta_{x}E)\geq \frac{\dim_{P}(E)+1}{2\dim_{P}(E)}.
$$

If dim $_P(E) < \frac{d(3+\sqrt{5})-1-\sqrt{5}}{2}$ $\frac{2(3-1-\sqrt{3})}{2}$, then for all x in a subset of full dimension dim $H(\Delta_{x}E)=1.$

• There is a point $x \in E$ such that

$$
\text{dim}_P(\Delta_x E) \geq \frac{12-\sqrt{2}}{8\sqrt{2}} \approx 0.9356
$$

• Improves (slightly) the Keleti-Shermkin bound for packing dimension.

We now consider the "low" dimensional case, when $\dim_H(E)\leq 1.$ We assume $E\subseteq \mathbb{R}^2$ is Borel (or analytic).

• (Shmerkin and Wang) If $\dim_H(E) =: d \leq 1$ and $\dim_H(E) = \dim_P(E)$, then

 $\sup_{x \in E}$ dim_H($\Delta_x E$) = d.

- (Shmerkin and Wang) If $\dim_H(E) =: d \leq 1$, then $\mathsf{sup}_{x \in E} \mathsf{dim}_{H}(\Delta_{x} E) \geq \frac{d}{2} - \frac{d^2}{2(2+\sqrt{d^2+4})}.$
- (Du, Ou, Ren and Zhang) If $dim_H(E) = d \leq 1$, then sup $_{\mathsf{x}\in E}$ dim $_{\mathsf{H}}(\Delta_{\mathsf{x}}E)\geq \frac{5}{3}$ $rac{5}{3}d-1$

K □ ▶ K @ ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

Theorem (Fiedler and S.)

Suppose $E\subseteq \mathbb{R}^2$ is analytic set, $d:=\dim_H(E)\leq 1$ and $D:=\dim_P(E).$ Then,

$$
\sup_{x\in E} \text{dim}_{H}(\Delta_{x}(E)) \geq d\left(1-\frac{\alpha D-d(D+\alpha-d)}{(d+1)(\alpha D-d^2)-d^2(\alpha+D-2d)}\right),
$$

where $\alpha = \min\{1+d, D\}$.

Corollary

Suppose $E \subseteq \mathbb{R}^2$ is analytic set and $d := \dim_H(E) \leq 1$. Then,

$$
\sup_{x\in E} \text{dim}_H(\Delta_x(E)) \geq d \left(1 - \tfrac{2-d}{2(1+2d-d^2)}\right).
$$

We can generalize the problem, by considering a *pinned set X*, and a test set Y, and investigating

 $\sup_{x\in X}$ dim $H(\Delta_x Y)$.

Let $X\subseteq \mathbb{R}^2$, and let $\mathcal C$ be a class of subsets of \mathbb{R}^2 e.g. Borel sets, analytic sets, or weakly regular sets. We say that X is *universal for pinned distances* for C if, for every $Y \in C$ there exists some $x \in X$ such that

$$
\dim_H(\Delta_\mathsf{x}(Y)) = \min\{\dim_H(Y), 1\} \tag{1}
$$

Question: Are there "small" universal sets for the class of Borel subsets of \mathbb{R}^2 ?

Theorem (Fiedler and S.)

Let $X\subseteq \mathbb{R}^2$ be a compact, Ahlfors-David regular set such that $\dim_H(X)>1.$ Then X is universal for pinned distances for the class of Borel sets $Y \subseteq \mathbb{R}^2$.

In particular, if $X\subseteq \mathbb{R}^2$ is a four-corner Cantor set with $\mathsf{dim}_H(X)>1$, then, *for every* Borel $Y \subseteq \mathbb{R}^2$, there is a point $x \in X$ such that

 $\dim_H(\Delta_x Y) = \min\{\dim_H(Y), 1\}.$

We can slightly weaken the assumption that X is AD-regular.

Theorem (Fiedler and S.)

Suppose $E\subseteq \mathbb{R}^2$ is analytic set, $d:=\dim_H(E)\leq 1$ and $D:=\dim_P(E).$ Then,

$$
\sup_{x\in E} \text{dim}_{H}(\Delta_{x}(E)) \geq d\left(1-\frac{\alpha D-d(D+\alpha-d)}{(d+1)(\alpha D-d^2)-d^2(\alpha+D-2d)}\right),
$$

where $\alpha = \min\{1+d, D\}$.

Corollary

Suppose $E \subseteq \mathbb{R}^2$ is analytic set and $d := \dim_H(E) \leq 1$. Then,

$$
\sup_{x\in E} \text{dim}_H(\Delta_x(E)) \geq d \left(1 - \frac{2-d}{2(1+2d-d^2)}\right).
$$

Theorem (Fiedler, S.)

Suppose that
$$
x, y \in \mathbb{R}^2
$$
, $e = \frac{y - x}{|y - x|}$ and $0 < \sigma < 1$ satisfy the following.
\n(C1) dim(x), dim(y) > σ
\n(C2) $K_r^x(e) > \sigma r - O(\log r)$ for all r.
\n(C3) $K_r^x(y) \ge K_r^A(y) - O(\log r)$ for all sufficiently large r.
\n(C4) $K_{t,r}(e | y) > \sigma t - O(\log r)$ for all sufficiently large r and $t \le r$.
\nThen dim^x($|x - y|$) $\ge \sigma \left(1 - \frac{\alpha D - \sigma(D + \alpha - \sigma)}{(\sigma + 1)(\alpha D - \sigma^2) - \sigma^2(\alpha + D - 2\sigma)}\right)$, where $D = \max\{D_x, D_y\}$ and $\alpha = \min\{D, 1 + \sigma\}$.

- **1** Most of the work is in proving this theorem. We then use the point-to-set principle to conclude the classical theorem on the Hausdorff dimension of pinned distance sets.
- \bullet \bullet \bullet Note that we assume the direction from x to y is of high dime[ns](#page-15-0)i[on](#page-17-0)[giv](#page-16-0)e[n](#page-0-0) [x](#page-20-0) [o](#page-20-0)[r](#page-0-0) [y](#page-20-0)[.](#page-20-0)

Let $x, y \in \mathbb{R}^2$. We want to lower bound dim^x(|x – y|).

- From the definition of dimension, it is natural to fix a precision $r \in \mathbb{N}$, and give a lower bound on $K_r^{\times}(|x-y|)$.
- By the symmetry of information, this is equivalent to prove an upper bound on

 $K_r^{\times}(y \mid |x-y|) \approx K_r^{\times}(y) - K_r^{\times}(|x-y|).$

- \bullet Intuitively: Given x as an oracle, and knowing (an approximation of) $|x - y|$, how hard is it to compute (an approximation of) y ?
- **Enumerate rationals z such that** $K_r(z) < K_r(y)$ and $||x - y| - |x - z|| < 2^{-r}$. Suffices to bound the dyadic covering number of such z's.

Goal: Bound $K_r^{\times}(y \mid |x-y|)$. Can enumerate rationals z such that $K_r(z) \le K_r(y)$ and $||x-y| - |x-z|| < 2^{-r}$.

1 | $|p_{e_1}y - p_{e_1}z|$ $\lesssim |y - z|^2$

- Reduce this to *projections*.
- If there is such a z with $|z-y| < 2^{-r/2}$, then $\rho_{e_{1}} y \approx \rho_{e_{1}} z$.
- \bullet That is, y and z determine (an approximation of) e_1 : $K_{r-t}(e_1 | v) \leq K_r(z | v)$.
- \bullet If there are many such z's then the direction e_1 is compressible.
- But we assumed that the direction was of high dimension.

Goal: Bound $K_r^{\times}(y \mid |x-y|)$. Can enumerate rationals z such that $K_r(z) \le K_r(y)$ and $||x-y| - |x-z|| < 2^{-r}$.

- If there is such a z then $p_{e_2}x \approx p_{e_2}w$.
	- That is, y and z determine a line containing x .
	- Moreover, this line has some randomness, since it is close to e_1^{\perp} .
	- \bullet Given this, we can bound $K_{r-t}(x \mid y, z)$.
	- \bullet If there are many such z's then the point x is compressible.
	- \bullet But we assumed that the pinned point x was of high dimension.

Thank you!

重

メロト メタト メミト メミト