Abstract In [1], Hjorth proved that for every countable ordinal α, there exists a complete $\mathcal{L}_{\omega_1,\omega}$-sentence ϕ_α that has models of all cardinalities less than or equal to \aleph_α, but no models of cardinality $\aleph_{\alpha+1}$. Unfortunately, his solution yields not one $\mathcal{L}_{\omega_1,\omega}$-sentence ϕ_α, but a set of $\mathcal{L}_{\omega_1,\omega}$-sentences, one of which is guaranteed to work.

The following is new: It is independent of the axioms of ZFC which of the Hjorth sentences works. More specifically, we isolate a diagonalization principle for functions from ω_1 to ω_1 which is a consequence of the *Bounded Proper Forcing Axiom* (BPFA) and then we use this principle to prove that Hjorth’s solution to characterizing \aleph_2 in models of BPFA is different than in models of CH.

This raises the question whether Hjorth’s result can be proved in an *absolute way* and what exactly this means, which we will discuss at the end of the talk.

This is joint work with Philipp Lücke.
References

Greg Hjorth.
Knight’s model, its automorphism group, and characterizing the uncountable cardinals.

Philipp Lücke, Ioannis Souldatos,
A lower bound for the hanf number for joint embedding.
(Non)-Absolute Characterizations of Cardinals

Online Logic Seminar

Yiannis Souldatos

ARISTOTLE UNIVERSITY OF THESSALONIKI
History of the Problem
 Introduction
 Hjorth’s Solution

First Hjorth Construction
 Colored Version
 The Case of \(\aleph_2 \)
 A Diagonalization Property
 Forcing
 Forcing Axioms

Absolute Characterizations
This is a joint project with Philipp Lücke.

Disclaimer: Some theorems are given without reference.
This is a joint project with Philipp Lücke.
Disclaimer: Some theorems are given without reference.
Preliminaries

\[\beth_0 = \aleph_0 \]
\[\beth_{\alpha+1} = 2^{\beth_\alpha} \]
\[\beth_\lambda = \sup\{ \beth_\alpha | \alpha < \lambda \} \text{, for limit } \lambda \]

1. $L_{\omega_1,\omega} = L_{\omega,\omega} + \text{countable conjunctions} + \text{countable disjunctions}$

2. An $L_{\omega_1,\omega}$-sentence is complete if it is \aleph_0-categorical.

3. For every countable model M there exists some complete (Scott) sentence ϕ_M with $M \models \phi_M$.

4. An $L_{\omega_1,\omega}$-sentence ϕ characterizes some cardinal κ, if ϕ has models in all cardinalities $[\aleph_0, \kappa]$ but no higher.

5. A countable model characterizes some cardinal κ, if the same is true for ϕ_M.
Preliminaries

\[\begin{align*}
\mathcal{L}_0 &= \aleph_0 \\
\mathcal{L}_{\alpha+1} &= 2^{\mathcal{L}_\alpha} \\
\mathcal{L}_\lambda &= \sup\{\mathcal{L}_\alpha | \alpha < \lambda\}, \text{for limit } \lambda
\end{align*} \]

1. \(\mathcal{L}_{\omega_1,\omega} = \mathcal{L}_{\omega,\omega} + \text{countable conjunctions} + \text{countable disjunctions} \)

2. An \(\mathcal{L}_{\omega_1,\omega} \)-sentence is complete if it is \(\aleph_0 \)-categorical.

3. For every countable model \(M \) there exists some complete (Scott) sentence \(\phi_M \) with \(M \models \phi_M \).

4. An \(\mathcal{L}_{\omega_1,\omega} \)-sentence \(\phi \) characterizes some cardinal \(\kappa \), if \(\phi \) has models in all cardinalities \([\aleph_0, \kappa] \) but no higher.

5. A countable model characterizes some cardinal \(\kappa \), if the same is true for \(\phi_M \).
Preliminaries

\[\mathfrak{d}_0 = \aleph_0 \]
\[\mathfrak{d}_{\alpha+1} = 2^{\mathfrak{d}_\alpha} \]
\[\mathfrak{d}_\lambda = \sup\{ \mathfrak{d}_\alpha | \alpha < \lambda \}, \text{for limit } \lambda \]

1. \(\mathcal{L}_{\omega_1,\omega} = \mathcal{L}_{\omega,\omega} + \text{countable conjunctions} + \text{countable disjunctions} \)

2. An \(\mathcal{L}_{\omega_1,\omega} \)-sentence is \textit{complete} if it is \(\aleph_0 \)-categorical.

3. For every countable model \(M \) there exists some complete (Scott) sentence \(\phi_M \) with \(M \models \phi_M \).

4. An \(\mathcal{L}_{\omega_1,\omega} \)-sentence \(\phi \) characterizes some cardinal \(\kappa \), if \(\phi \) has models in all cardinalities \([\aleph_0, \kappa] \) but no higher.

5. A countable model characterizes some cardinal \(\kappa \), if the same is true for \(\phi_M \).
Preliminaries

\[
\begin{align*}
\beth_0 &= \aleph_0 \\
\beth_{\alpha+1} &= 2^{\beth_{\alpha}} \\
\beth_{\lambda} &= \sup\{\beth_{\alpha} | \alpha < \lambda\}, \text{ for limit } \lambda
\end{align*}
\]

1. \(\mathcal{L}_{\omega_1,\omega} = \mathcal{L}_{\omega,\omega} + \text{countable conjunctions} + \text{countable disjunctions} \)
2. An \(\mathcal{L}_{\omega_1,\omega} \)-sentence is complete if it is \(\aleph_0 \)-categorical.
3. For every countable model \(\mathcal{M} \) there exists some complete (Scott) sentence \(\phi_{\mathcal{M}} \) with \(\mathcal{M} \vDash \phi_{\mathcal{M}} \).
4. An \(\mathcal{L}_{\omega_1,\omega} \)-sentence \(\phi \) characterizes some cardinal \(\kappa \), if \(\phi \) has models in all cardinalities \([\aleph_0, \kappa] \) but no higher.
5. A countable model characterizes some cardinal \(\kappa \), if the same is true for \(\phi_{\mathcal{M}} \).
Preliminaries

\[
\begin{align*}
\mathcal{L}_0 &= \aleph_0 \\
\mathcal{L}_{\alpha+1} &= 2^{\mathcal{L}_\alpha} \\
\mathcal{L}_\lambda &= \sup\{\mathcal{L}_\alpha | \alpha < \lambda\}, \text{ for limit } \lambda
\end{align*}
\]

1. \(\mathcal{L}_{\omega_1,\omega} = \mathcal{L}_{\omega,\omega} + \text{countable conjunctions} + \text{countable disjunctions} \)
2. An \(\mathcal{L}_{\omega_1,\omega} \)-sentence is \textit{complete} if it is \(\aleph_0 \)-categorical.
3. For every countable model \(\mathcal{M} \) there exists some complete (Scott) sentence \(\phi_\mathcal{M} \) with \(\mathcal{M} \models \phi_\mathcal{M} \).
4. An \(\mathcal{L}_{\omega_1,\omega} \)-sentence \(\phi \) \textit{characterizes} some cardinal \(\kappa \), if \(\phi \) has models in all cardinalities \([\aleph_0, \kappa] \) but no higher.
5. A countable model characterizes some cardinal \(\kappa \), if the same is true for \(\phi_\mathcal{M} \).
Preliminaries

\[\mathbb{V}_0 = \aleph_0 \]
\[\mathbb{V}_{\alpha+1} = 2^{\mathbb{V}_\alpha} \]
\[\mathbb{V}_\lambda = \sup\{\mathbb{V}_\alpha | \alpha < \lambda\}, \text{for limit } \lambda \]

1. \(\mathcal{L}_{\omega_1, \omega} = \mathcal{L}_{\omega, \omega} + \) countable conjunctions + countable disjunctions
2. An \(\mathcal{L}_{\omega_1, \omega} \)-sentence is \textit{complete} if it is \(\aleph_0 \)-categorical.
3. For every countable model \(\mathcal{M} \) there exists some complete (Scott) sentence \(\phi_M \) with \(\mathcal{M} \models \phi_M \).
4. An \(\mathcal{L}_{\omega_1, \omega} \)-sentence \(\phi \) characterizes some cardinal \(\kappa \), if \(\phi \) has models in all cardinalities \([\aleph_0, \kappa]\) but no higher.
5. A countable model characterizes some cardinal \(\kappa \), if the same is true for \(\phi_M \).
History of the Problem

1. In 1965 Morley proved that for each \(\alpha < \omega_1 \), there exists an \(\mathcal{L}_{\omega_1, \omega} \)-sentence \(\psi_\alpha \) that characterizes \(\beth_\alpha \).

2. The corresponding problem for \(\aleph_\alpha \) was probably known by then (but I did not find a reference).

3. In the mid-1960’s Morley and Lopez-Escobar proved:

 Theorem

 If \(\phi \) is an \(\mathcal{L}_{\omega_1, \omega} \)-sentence with a model of size \(\beth_{\omega_1} \), then \(\phi \) has models of any size.

4. By the mid-1970’s people were asking about characterizing cardinals by complete \(\mathcal{L}_{\omega_1, \omega} \)-sentences.

5. In 1977 Julia Knight proved that there exists a complete \(\mathcal{L}_{\omega_1, \omega} \)-sentence \(\phi_1 \) with models in \(\aleph_0 \) and \(\aleph_1 \) and no higher (\(\phi_1 \) characterizes \(\aleph_1 \)).

6. She asked if the result can generalize to larger \(\aleph_\alpha \), for \(\alpha > 1 \).
History of the Problem

1. In 1965 Morley proved that for each $\alpha < \omega_1$, there exists an $L_{\omega_1,\omega}$-sentence ψ_α that characterizes \beth_α.

2. The corresponding problem for \aleph_α was probably known by then (but I did not find a reference).

3. In the mid-1960’s Morley and Lopez-Escobar proved:

 \begin{theorem}
 If ϕ is an $L_{\omega_1,\omega}$-sentence with a model of size \beth_ω, then ϕ has models of any size.
 \end{theorem}

4. By the mid-1970’s people were asking about characterizing cardinals by complete $L_{\omega_1,\omega}$-sentences.

5. In 1977 Julia Knight proved that there exists a complete $L_{\omega_1,\omega}$-sentence ϕ_1 with models in \aleph_0 and \aleph_1 and no higher (ϕ_1 characterizes \aleph_1).

6. She asked if the result can generalize to larger \aleph_α, for $\alpha > 1$.
History of the Problem

1. In 1965 Morley proved that for each $\alpha < \omega_1$, there exists an $L_{\omega_1,\omega}$-sentence ψ_α that characterizes \beth_α.

2. The corresponding problem for \aleph_α was probably known by then (but I did not find a reference).

3. In the mid-1960’s Morley and Lopez-Escobar proved:

Theorem

If ϕ is an $L_{\omega_1,\omega}$-sentence with a model of size \beth_ω, then ϕ has models of any size.

4. By the mid-1970’s people were asking about characterizing cardinals by complete $L_{\omega_1,\omega}$-sentences.

5. In 1977 Julia Knight proved that there exists a complete $L_{\omega_1,\omega}$-sentence ϕ_1 with models in \aleph_0 and \aleph_1 and no higher (ϕ_1 characterizes \aleph_1).

6. She asked if the result can generalize to larger \aleph_α, for $\alpha > 1$.
History of the Problem

1. In 1965 Morley proved that for each $\alpha < \omega_1$, there exists an $\mathcal{L}_{\omega_1,\omega}$-sentence ψ_α that characterizes \beth_α.

2. The corresponding problem for \aleph_α was probably known by then (but I did not find a reference).

3. In the mid-1960’s Morley and Lopez-Escobar proved:

Theorem

If ϕ is an $\mathcal{L}_{\omega_1,\omega}$-sentence with a model of size \beth_ω, then ϕ has models of any size.

4. By the mid-1970’s people were asking about characterizing cardinals by complete $\mathcal{L}_{\omega_1,\omega}$-sentences.

5. In 1977 Julia Knight proved that there exists a complete $\mathcal{L}_{\omega_1,\omega}$-sentence ϕ_1 with models in \aleph_0 and \aleph_1 and no higher (ϕ_1 characterizes \aleph_1).

6. She asked if the result can generalize to larger \aleph_α, for $\alpha > 1$.
History of the Problem

1. In 1965 Morley proved that for each $\alpha < \omega_1$, there exists an $L_{\omega_1,\omega}$-sentence ψ_α that characterizes \aleph_α.

2. The corresponding problem for \aleph_α was probably known by then (but I did not find a reference).

3. In the mid-1960’s Morley and Lopez-Escobar proved:

Theorem

If ϕ is an $L_{\omega_1,\omega}$-sentence with a model of size \aleph_ω, then ϕ has models of any size.

4. By the mid-1970’s people were asking about characterizing cardinals by complete $L_{\omega_1,\omega}$-sentences.

5. In 1977 Julia Knight proved that there exists a complete $L_{\omega_1,\omega}$-sentence ϕ_1 with models in \aleph_0 and \aleph_1 and no higher (ϕ_1 characterizes \aleph_1).

6. She asked if the result can generalize to larger \aleph_α, for $\alpha > 1$.
History of the Problem

1. In 1965 Morley proved that for each $\alpha < \omega_1$, there exists an $\mathcal{L}_{\omega_1,\omega}$-sentence ψ_α that characterizes \beth_α.

2. The corresponding problem for \aleph_α was probably known by then (but I did not find a reference).

3. In the mid-1960’s Morley and Lopez-Escobar proved:

 Theorem

 If ϕ is an $\mathcal{L}_{\omega_1,\omega}$-sentence with a model of size \beth_ω, then ϕ has models of any size.

4. By the mid-1970’s people were asking about characterizing cardinals by complete $\mathcal{L}_{\omega_1,\omega}$-sentences.

5. In 1977 Julia Knight proved that there exists a complete $\mathcal{L}_{\omega_1,\omega}$-sentence ϕ_1 with models in \aleph_0 and \aleph_1 and no higher (ϕ_1 characterizes \aleph_1).

6. She asked if the result can generalize to larger \aleph_α, for $\alpha > 1$.

History of the Problem

1. In 1965 Morley proved that for each $\alpha < \omega_1$, there exists an $L_{\omega_1,\omega}$-sentence ψ_α that characterizes \beth_α.

2. The corresponding problem for \aleph_α was probably known by then (but I did not find a reference).

3. In the mid-1960's Morley and Lopez-Escobar proved:

 Theorem

 If ϕ is an $L_{\omega_1,\omega}$-sentence with a model of size \beth_{ω_1}, then ϕ has models of any size.

4. By the mid-1970's people were asking about characterizing cardinals by complete $L_{\omega_1,\omega}$-sentences.

5. In 1977 Julia Knight proved that there exists a complete $L_{\omega_1,\omega}$-sentence ϕ_1 with models in \aleph_0 and \aleph_1 and no higher (ϕ_1 characterizes \aleph_1).

6. She asked if the result can generalize to larger \aleph_α, for $\alpha > 1$.
History of the Problem

1. In 1965 Morley proved that for each $\alpha < \omega_1$, there exists an $\mathcal{L}_{\omega_1,\omega}$-sentence ψ_α that characterizes \beth_α.

2. The corresponding problem for \aleph_α was probably known by then (but I did not find a reference).

3. In the mid-1960’s Morley and Lopez-Escobar proved:

Theorem

If ϕ is an $\mathcal{L}_{\omega_1,\omega}$-sentence with a model of size \beth_{ω_1}, then ϕ has models of any size.

4. By the mid-1970’s people were asking about characterizing cardinals by complete $\mathcal{L}_{\omega_1,\omega}$-sentences.

5. In 1977 Julia Knight proved that there exists a complete $\mathcal{L}_{\omega_1,\omega}$-sentence ϕ_1 with models in \aleph_0 and \aleph_1 and no higher (ϕ_1 characterizes \aleph_1).

6. She asked if the result can generalize to larger \aleph_α, for $\alpha > 1$.
Theorem
For all $\alpha < \omega_1$, there exists some complete $\mathcal{L}_{\omega_1, \omega}$-sentence ϕ_α which has models in all cardinalities $[\aleph_0, \aleph_\alpha]$ but no higher (ϕ_α characterizes \aleph_α).

Some remarks:

1. Hjorth’s result is in ZFC.
2. Under GCH, \aleph_α can be characterized by an $\mathcal{L}_{\omega_1, \omega}$-sentence iff $\alpha < \omega_1$.
3. So, Hjorth’s result is optimal in ZFC(with no extra assumptions).
4. Since Hjorth there have been similar results, e.g. characterizing \aleph_n, for $n \in \omega$.
5. However, Hjorth’s construction is the only one known to work all \aleph_α’s, $\alpha < \omega_1$.
History of the Problem II

In 2002, Hjorth answered the question in the affirmative:

Theorem

For all $\alpha < \omega_1$, there exists some complete $\mathcal{L}_{\omega_1,\omega}$-sentence ϕ_α which has models in all cardinalities $[\aleph_0, \aleph_\alpha]$ but no higher (ϕ_α characterizes \aleph_α).

Some remarks:

1. Hjorth's result is in ZFC.
2. Under GCH, \aleph_α can be characterized by an $\mathcal{L}_{\omega_1,\omega}$-sentence iff $\alpha < \omega_1$.
3. So, Hjorth's result is optimal in ZFC (with no extra assumptions).
4. Since Hjorth there have been similar results, e.g. characterizing \aleph_n, for $n \in \omega$.
5. However, Hjorth's construction is the only one known to work all \aleph_α's, $\alpha < \omega_1$.
History of the Problem II

In 2002, Hjorth answered the question in the affirmative:

Theorem

For all $\alpha < \omega_1$, there exists some complete $L_{\omega_1,\omega}$-sentence ϕ_α which has models in all cardinalities $[\aleph_0, \aleph_\alpha]$ but no higher (ϕ_α characterizes \aleph_α).

Some remarks:

1. Hjorth's result is in ZFC.
2. Under GCH, \aleph_α can be characterized by an $L_{\omega_1,\omega}$-sentence iff $\alpha < \omega_1$.
3. So, Hjorth's result is optimal in ZFC(with no extra assumptions).
4. Since Hjorth there have been similar results, e.g. characterizing \aleph_n, for $n \in \omega$.
5. However, Hjorth's construction is the only one known to work all \aleph_α's, $\alpha < \omega_1$.
History of the Problem II

In 2002, Hjorth answered the question in the affirmative:

Theorem

For all $\alpha < \omega_1$, there exists some complete $\mathcal{L}_{\omega_1, \omega}$-sentence ϕ_α which has models in all cardinalities $[\aleph_0, \aleph_\alpha]$ but no higher (ϕ_α characterizes \aleph_α).

Some remarks:

1. Hjorth’s result is in ZFC.
2. Under GCH, \aleph_α can be characterized by an $\mathcal{L}_{\omega_1, \omega}$-sentence iff $\alpha < \omega_1$.
3. So, Hjorth’s result is optimal in ZFC(with no extra assumptions).
4. Since Hjorth there have been similar results, e.g. characterizing \aleph_n, for $n \in \omega$.
5. However, Hjorth’s construction is the only one known to work all \aleph_α’s, $\alpha < \omega_1$.
History of the Problem II

In 2002, Hjorth answered the question in the affirmative:

Theorem

For all $\alpha < \omega_1$, *there exists some complete* $L_{\omega_1,\omega}$-*sentence* ϕ_α *which has models in all cardinalities* $[\aleph_0, \aleph_\alpha]$ *but no higher* (ϕ_α *characterizes* \aleph_α).

Some remarks:

1. Hjorth’s result is in ZFC.
2. Under GCH, \aleph_α can be characterized by an $L_{\omega_1,\omega}$-sentence iff $\alpha < \omega_1$.
3. So, Hjorth’s result is optimal in ZFC (with no extra assumptions).
4. Since Hjorth there have been similar results, e.g. characterizing \aleph_n, for $n \in \omega$.
5. However, Hjorth’s construction is the only one known to work all \aleph_α’s, $\alpha < \omega_1$.
History of the Problem II

In 2002, Hjorth answered the question in the affirmative:

Theorem

For all $\alpha < \omega_1$, *there exists some complete* $L_{\omega_1,\omega}$ - *sentence* ϕ_α *which has models in all cardinalities* $[\aleph_0, \aleph_\alpha]$ *but no higher* (ϕ_α *characterizes* \aleph_α).

Some remarks:

1. Hjorth’s result is in ZFC.
2. Under GCH, \aleph_α can be characterized by an $L_{\omega_1,\omega}$ - sentence iff $\alpha < \omega_1$.
3. So, Hjorth’s result is optimal in ZFC (with no extra assumptions).
4. Since Hjorth there have been similar results, e.g. characterizing \aleph_n, for $n \in \omega$.
5. However, Hjorth’s construction is the only one known to work all \aleph_α’s, $\alpha < \omega_1$.
History of the Problem II

In 2002, Hjorth answered the question in the affirmative:

Theorem

For all \(\alpha < \omega_1 \), *there exists some complete* \(\mathcal{L}_{\omega_1, \omega} \)-*sentence* \(\phi_\alpha \) *which has models in all cardinalities* \([\aleph_0, \aleph_\alpha] \) *but no higher* (\(\phi_\alpha \) *characterizes* \(\aleph_\alpha \)).

Some remarks:

1. Hjorth’s result is in ZFC.
2. Under GCH, \(\aleph_\alpha \) can be characterized by an \(\mathcal{L}_{\omega_1, \omega} \)-sentence iff \(\alpha < \omega_1 \).
3. So, Hjorth’s result is optimal in ZFC(with no extra assumptions).
4. Since Hjorth there have been similar results, e.g. characterizing \(\aleph_n \), for \(n \in \omega \).
5. However, Hjorth’s construction is the only one known to work all \(\aleph_\alpha \)'s, \(\alpha < \omega_1 \).
History of the Problem II

In 2002, Hjorth answered the question in the affirmative:

Theorem

For all $\alpha < \omega_1$, there exists some complete $\mathcal{L}_{\omega_1,\omega}$-sentence ϕ_α which has models in all cardinalities $[\aleph_0, \aleph_\alpha]$ but no higher (ϕ_α characterizes \aleph_α).

Some remarks:

1. Hjorth’s result is in ZFC.
2. Under GCH, \aleph_α can be characterized by an $\mathcal{L}_{\omega_1,\omega}$-sentence iff $\alpha < \omega_1$.
3. So, Hjorth’s result is optimal in ZFC(with no extra assumptions).
4. Since Hjorth there have been similar results, e.g. characterizing \aleph_n, for $n \in \omega$.
5. However, Hjorth’s construction is the only one known to work all \aleph_α’s, $\alpha < \omega_1$.
Hjorth’s Solution

- Unfortunately, Hjorth describes not one, but two constructions in his paper.
- Given some complete sentence ϕ which characterizes \aleph_α, Hjorth’s first construction yields a complete sentence which characterizes either \aleph_α or $\aleph_\alpha + 1$.
- If the latter is the case, we are done.
- If not, then Hjorth introduces his second construction.
- If Hjorth’s first construction characterizes \aleph_α, then Hjorth’s second construction characterizes $\aleph_\alpha + 1$.
- Notice here that the failure of the first construction to characterize $\aleph_\alpha + 1$ is used to prove that the second Hjorth construction does indeed characterize $\aleph_\alpha + 1$.
- In either case, there exists some $L_{\omega_1,\omega}$-sentence that characterizes $\aleph_\alpha + 1$ and the induction step is complete.
- For limit stages take the disjoint union of models that characterize all the previous cardinals.
Hjorth’s Solution

- Unfortunately, Hjorth describes not one, but two constructions in his paper.
- Given some complete sentence ϕ which characterizes \aleph_α, Hjorth’s first construction yields a complete sentence which characterizes either \aleph_α or $\aleph_\alpha + 1$.
- If the latter is the case, we are done.
- If not, then Hjorth introduces his second construction.
- If Hjorth’s first construction characterizes \aleph_α, then Hjorth’s second construction characterizes $\aleph_\alpha + 1$.
- Notice here that the failure of the first construction to characterize $\aleph_\alpha + 1$ is used to prove that the second Hjorth construction does indeed characterize $\aleph_\alpha + 1$.
- In either case, there exists some $\mathcal{L}_{\omega_1, \omega}$-sentence that characterizes $\aleph_\alpha + 1$ and the induction step is complete.
- For limit stages take the disjoint union of models that characterize all the previous cardinals.
Hjorth’s Solution

- Unfortunately, Hjorth describes not one, but two constructions in his paper.
- Given some complete sentence ϕ which characterizes \aleph_α, Hjorth’s first construction yields a complete sentence which characterizes either \aleph_α or $\aleph_{\alpha+1}$.
- If the latter is the case, we are done.
- If not, then Hjorth introduces his second construction.
- If Hjorth’s first construction characterizes \aleph_α, then Hjorth’s second construction characterizes $\aleph_{\alpha+1}$.
- Notice here that the failure of the first construction to characterize $\aleph_{\alpha+1}$ is used to prove that the second Hjorth construction does indeed characterize $\aleph_{\alpha+1}$.
- In either case, there exists some $\mathcal{L}_{\omega_1,\omega}$-sentence that characterizes $\aleph_{\alpha+1}$ and the induction step is complete.
- For limit stages take the disjoint union of models that characterize all the previous cardinals.
Hjorth’s Solution

- Unfortunately, Hjorth describes not one, but two constructions in his paper.

- Given some complete sentence ϕ which characterizes \mathfrak{N}_α, Hjorth’s first construction yields a complete sentence which characterizes either \mathfrak{N}_α or $\mathfrak{N}_{\alpha+1}$.

- If the latter is the case, we are done.

- If not, then Hjorth introduces his second construction.

- If Hjorth’s first construction characterizes \mathfrak{N}_α, then Hjorth’s second construction characterizes $\mathfrak{N}_{\alpha+1}$.

- Notice here that the failure of the first construction to characterize $\mathfrak{N}_{\alpha+1}$ is used to prove that the second Hjorth construction does indeed characterize $\mathfrak{N}_{\alpha+1}$.

- In either case, there exists some $\mathcal{L}_{\omega_1,\omega}$-sentence that characterizes $\mathfrak{N}_{\alpha+1}$ and the induction step is complete.

- For limit stages take the disjoint union of models that characterize all the previous cardinals.
Hjorth’s Solution

- Unfortunately, Hjorth describes not one, but two constructions in his paper.
- Given some complete sentence ϕ which characterizes \mathcal{H}_α, Hjorth’s first construction yields a complete sentence which characterizes either \mathcal{H}_α or $\mathcal{H}_{\alpha+1}$.
- If the latter is the case, we are done.
- If not, then Hjorth introduces his second construction.
- If Hjorth’s first construction characterizes \mathcal{H}_α, then Hjorth’s second construction characterizes $\mathcal{H}_{\alpha+1}$.
- Notice here that the failure of the first construction to characterize $\mathcal{H}_{\alpha+1}$ is used to prove that the second Hjorth construction does indeed characterize $\mathcal{H}_{\alpha+1}$.
- In either case, there exists some $\mathcal{L}_{\omega_1,\omega}$-sentence that characterizes $\mathcal{H}_{\alpha+1}$ and the induction step is complete.
- For limit stages take the disjoint union of models that characterize all the previous cardinals.
Hjorth’s Solution

- Unfortunately, Hjorth describes not one, but two constructions in his paper.
- Given some complete sentence ϕ which characterizes \aleph_α, Hjorth’s first construction yields a complete sentence which characterizes either \aleph_α or $\aleph_\alpha + 1$.
- If the latter is the case, we are done.
- If not, then Hjorth introduces his second construction.
- If Hjorth’s first construction characterizes \aleph_α, then Hjorth’s second construction characterizes $\aleph_\alpha + 1$.
- Notice here that the failure of the first construction to characterize $\aleph_\alpha + 1$ is used to prove that the second Hjorth construction does indeed characterize $\aleph_\alpha + 1$.
- In either case, there exists some $L_{\omega_1, \omega}$-sentence that characterizes $\aleph_\alpha + 1$ and the induction step is complete.
- For limit stages take the disjoint union of models that characterize all the previous cardinals.
Hjorth’s Solution

- Unfortunately, Hjorth describes not one, but two constructions in his paper.
- Given some complete sentence ϕ which characterizes \aleph_α, Hjorth’s first construction yields a complete sentence which characterizes either \aleph_α or $\aleph_\alpha + 1$.
- If the latter is the case, we are done.
- If not, then Hjorth introduces his second construction.
- If Hjorth’s first construction characterizes \aleph_α, then Hjorth’s second construction characterizes $\aleph_\alpha + 1$.
- Notice here that the failure of the first construction to characterize $\aleph_\alpha + 1$ is used to prove that the second Hjorth construction does indeed characterize $\aleph_\alpha + 1$.
- In either case, there exists some $\mathcal{L}_{\omega_1, \omega}$-sentence that characterizes $\aleph_\alpha + 1$ and the induction step is complete.
- For limit stages take the disjoint union of models that characterize all the previous cardinals.
Hjorth’s Solution

- Unfortunately, Hjorth describes not one, but two constructions in his paper.
- Given some complete sentence ϕ which characterizes \aleph_α, Hjorth’s first construction yields a complete sentence which characterizes either \aleph_α or $\aleph_\alpha + 1$.
- If the latter is the case, we are done.
- If not, then Hjorth introduces his second construction.
- If Hjorth’s first construction characterizes \aleph_α, then Hjorth’s second construction characterizes $\aleph_\alpha + 1$.
- Notice here that the failure of the first construction to characterize $\aleph_\alpha + 1$ is used to prove that the second Hjorth construction does indeed characterize $\aleph_\alpha + 1$.
- In either case, there exists some $\mathcal{L}_{\omega_1, \omega}$-sentence that characterizes $\aleph_\alpha + 1$ and the induction step is complete.
- For limit stages take the disjoint union of models that characterize all the previous cardinals.
Therefore, Hjorth’s solution does not yield a single $L_{\omega_1,\omega}$-sentence ϕ_α, but a set of $L_{\omega_1,\omega}$-sentences S_α, one of which is guaranteed to characterize \aleph_α.

- S_0 and S_1 are singletons.
- S_α is finite for finite α.
- For $\alpha = \omega$, iterating the first construction ω-many times will yield a sentence that characterizes \aleph_ω, regardless of what cardinal each iteration characterizes.
- So, S_ω is also a singleton.
- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all $\alpha < \omega_1$.
- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes \aleph_α.
- New result: The conjecture is true.
Hjorth’s Solution II

- Therefore, Hjorth’s solution does not yield a single $\mathcal{L}_{\omega_1,\omega}$-sentence ϕ_α, but a set of $\mathcal{L}_{\omega_1,\omega}$-sentences S_α, one of which is guaranteed to characterize \aleph_α.

- S_0 and S_1 are singletons.

- S_α is finite for finite α.

- For $\alpha = \omega$, iterating the first construction ω-many times will yield a sentence that characterizes \aleph_ω, regardless of what cardinal each iteration characterizes.

- So, S_ω is also a singleton.

- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all $\alpha < \omega_1$.

- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes \aleph_α.

- New result: The conjecture is true.
Hjorth’s Solution II

Therefore, Hjorth’s solution does not yield a single $\mathcal{L}_{\omega_1,\omega}$-sentence ϕ_α, but a set of $\mathcal{L}_{\omega_1,\omega}$-sentences S_α, one of which is guaranteed to characterize \aleph_α.

- S_0 and S_1 are singletons.
- S_α is finite for finite α.
- For $\alpha = \omega$, iterating the first construction ω-many times will yield a sentence that characterizes \aleph_ω, regardless of what cardinal each iteration characterizes.
- So, S_ω is also a singleton.
- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all $\alpha < \omega_1$.
- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes \aleph_α.
- New result: The conjecture is true.
Hjorth’s Solution II

- Therefore, Hjorth’s solution does not yield a single $L_{\omega_1,\omega}$-sentence ϕ_α, but a set of $L_{\omega_1,\omega}$-sentences S_α, one of which is guaranteed to characterize \aleph_α.

- S_0 and S_1 are singletons.

- S_α is finite for finite α.

- For $\alpha = \omega$, iterating the first construction ω-many times will yield a sentence that characterizes \aleph_ω, regardless of what cardinal each iteration characterizes.

- So, S_ω is also a singleton.

- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all $\alpha < \omega_1$.

- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes \aleph_α.

- New result: The conjecture is true.
Hjorth’s Solution II

- Therefore, Hjorth’s solution does not yield a single $L_{\omega_1,\omega}$-sentence ϕ_α, but a set of $L_{\omega_1,\omega}$-sentences S_α, one of which is guaranteed to characterize \aleph_α.
- S_0 and S_1 are singletons.
- S_α is finite for finite α.
- For $\alpha = \omega$, iterating the first construction ω-many times will yield a sentence that characterizes \aleph_ω, regardless of what cardinal each iteration characterizes.
- So, S_ω is also a singleton.
- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all $\alpha < \omega_1$.
- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes \aleph_α.
- New result: The conjecture is true.
Hjorth’s Solution II

Therefore, Hjorth’s solution does not yield a single $\mathcal{L}_{\omega_1,\omega}$-sentence ϕ_α, but a set of $\mathcal{L}_{\omega_1,\omega}$-sentences S_α, one of which is guaranteed to characterize \aleph_α.

- S_0 and S_1 are singletons.
- S_α is finite for finite α.
- For $\alpha = \omega$, iterating the first construction ω-many times will yield a sentence that characterizes \aleph_ω, regardless of what cardinal each iteration characterizes.
- So, S_ω is also a singleton.
- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all $\alpha < \omega_1$.
- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes \aleph_α.
- New result: The conjecture is true.
Hjorth’s Solution II

Therefore, Hjorth’s solution does not yield a single \(L_{\omega_1,\omega} \)-sentence \(\phi_\alpha \), but a set of \(L_{\omega_1,\omega} \)-sentences \(S_\alpha \), one of which is guaranteed to characterize \(\aleph_\alpha \).

\(S_0 \) and \(S_1 \) are singletons.

\(S_\alpha \) is finite for finite \(\alpha \).

For \(\alpha = \omega \), iterating the first construction \(\omega \)-many times will yield a sentence that characterizes \(\aleph_\omega \), regardless of what cardinal each iteration characterizes.

So, \(S_\omega \) is also a singleton.

Similarly, \(S_\lambda \) is a singleton for all limit \(\lambda \) and \(S_\alpha \) is finite for all \(\alpha < \omega_1 \).

It was conjectured that it is independent of the axioms of ZFC which of the sentences in \(S_\alpha \) characterizes \(\aleph_\alpha \).

New result: The conjecture is true.
Therefore, Hjorth’s solution does not yield a single $L_{\omega_1,\omega}$-sentence ϕ_α, but a set of $L_{\omega_1,\omega}$-sentences S_α, one of which is guaranteed to characterize \aleph_α.

- S_0 and S_1 are singletons.
- S_α is finite for finite α.
- For $\alpha = \omega$, iterating the first construction ω-many times will yield a sentence that characterizes \aleph_ω, regardless of what cardinal each iteration characterizes.
- So, S_ω is also a singleton.
- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all $\alpha < \omega_1$.
- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes \aleph_α.
- New result: The conjecture is true.
First Hjorth Construction

We briefly describe the first Hjorth construction.

Given: A countable model \mathcal{M} which characterizes \aleph_α.

Definition

1. Consider \mathcal{C} the collection of all complete finite graphs G with edges colored by elements of \mathcal{M}.
2. $C(a, b) = C(b, a)$ is the color assigned to (a, b).
3. For $a, b \in G$, let $A^G(a, b) = \{ c \in G | C(a, c) = C(b, c) \}$ (the set of agreements).
4. $G_1 \subseteq G_2$ if G_1, G_2 agree on the edge colors on $|G_1|^2$ and G_2 introduces no new agreements, i.e., $A^{G_1}(a, b) = A^{G_2}(a, b)$ for all $a, b \in V(G_1)$.

First Hjorth Construction

We briefly describe the first Hjorth construction. Given: A countable model \mathcal{M} which characterizes \aleph_α.

Definition

- Consider \mathcal{C} the collection of all complete finite graphs G with edges colored by elements of \mathcal{M}.
- $C(a,b) = C(b,a)$ is the color assigned to (a,b).
- For $a,b \in G$, let $A^G(a,b) = \{c \in G | C(a,c) = C(b,c)\}$ (the set of agreements).
- $G_1 \subseteq G_2$ if G_1, G_2 agree on the edge-colors on $[G_1]^2$ and G_2 introduces no new agreements, i.e. $A^{G_1}(a,b) = A^{G_2}(a,b)$ for all $a,b \in V(G_1)$.
First Hjorth Construction

We briefly describe the first Hjorth construction. Given: A countable model \mathcal{M} which characterizes \aleph_α.

Definition

- Consider \mathcal{C} the collection of all complete finite graphs G with edges colored by elements of \mathcal{M}.
- $C(a,b) = C(b,a)$ is the color assigned to (a,b).
- For $a, b \in G$, let $A^G(a,b) = \{ c \in G | C(a,c) = C(b,c) \}$ (the set of agreements).
- $G_1 \subseteq G_2$ if G_1, G_2 agree on the edge-colors on $[G_1]^2$ and G_2 introduces no new agreements, i.e. $A^{G_1}(a,b) = A^{G_2}(a,b)$ for all $a, b \in V(G_1)$.
First Hjorth Construction

We briefly describe the first Hjorth construction.
Given: A countable model \mathcal{M} which characterizes \aleph_α.

Definition

- Consider \mathcal{C} the collection of all complete finite graphs G with edges colored by elements of \mathcal{M}.
- $C(a, b) = C(b, a)$ is the color assigned to (a, b).
- For $a, b \in G$, let $A^G(a, b) = \{ c \in G | C(a, c) = C(b, c) \}$ (the set of agreements).
- $G_1 \subseteq G_2$ if G_1, G_2 agree on the edge-colors on $[G_1]^2$ and G_2 introduces no new agreements, i.e. $A^{G_1}(a, b) = A^{G_2}(a, b)$ for all $a, b \in V(G_1)$.
First Hjorth Construction

We briefly describe the first Hjorth construction.

Given: A countable model \mathcal{M} which characterizes \aleph_α.

Definition

- Consider \mathcal{C} the collection of all complete finite graphs G with edges colored by elements of \mathcal{M}.
- $C(a, b) = C(b, a)$ is the color assigned to (a, b).
- For $a, b \in G$, let $A^G(a, b) = \{ c \in G | C(a, c) = C(b, c) \}$ (the set of agreements).
- $G_1 \subseteq G_2$ if G_1, G_2 agree on the edge-colors on $[G_1]^2$ and G_2 introduces no new agreements, i.e. $A^{G_1}(a, b) = A^{G_2}(a, b)$ for all $a, b \in V(G_1)$.
First Hjorth Construction

We briefly describe the first Hjorth construction.
Given: A countable model \mathcal{M} which characterizes \aleph_α.

Definition

- Consider \mathcal{C} the collection of all complete finite graphs G with edges colored by elements of \mathcal{M}.
- $C(a, b) = C(b, a)$ is the color assigned to (a, b).
- For $a, b \in G$, let $A_G(a, b) = \{ c \in G | C(a, c) = C(b, c) \}$ (the set of agreements).
- $G_1 \subseteq G_2$ if G_1, G_2 agree on the edge-colors on $[G_1]^2$ and G_2 introduces no new agreements, i.e. $A_{G_1}(a, b) = A_{G_2}(a, b)$ for all $a, b \in V(G_1)$.
Theorem (Hjorth)

\((C, \subseteq)\) satisfies the (disjoint) Amalgamation and Joint Embedding Properties (AP & JEP).

Proof...

Corollary

The collection \((C, \subseteq)\) has a “Fraissé limit”. I.e. there exists a countable structure \(F\) with the following properties:

1. \(F\) contains a countable graph \(G\) and (a copy of) \(M\).
2. (Finite Agreement) For all \(a, b \in G\), the set \(A^G_{a, b}\) is finite.
3. (Finite Closure) For every finite subset of \(G\) there exists some finite \(G_0, X \subseteq G_0\) and \(G_0 \subseteq G\). In particular, \(G_0\) is closed under \(A^G\).
4. (Finite Extension) If \(G_0, G_1\) are finite graphs with \(G_0 \subseteq G\) and \(G_0 \subseteq G_1\), then there exists an injection \(i : G_1 \hookrightarrow G\) with \(i \upharpoonright G_0 = id_{G_0}\) and \(C^G_1(a, b) = C^G(i(a), i(b))\) for all \(a, b \in G_1\).
Theorem (Hjorth)

\((C, \subseteq)\) satisfies the (disjoint) Amalgamation and Joint Embedding Properties (AP & JEP).

Proof...

Corollary

The collection \((C, \subseteq)\) has a “Fraisse limit”. I.e. there exists a countable structure \(F\) with the following properties:

1. \(F\) contains a countable graph \(G\) and (a copy of) \(M\).
2. \((\text{Finite Agreement})\) For all \(a, b \in G\), the set \(A_{a,b}^G\) is finite.
3. \((\text{Finite Closure})\) For every \(X\) finite subset of \(G\) there exists some finite \(G_0, X \subset G_0\) and \(G_0 \subseteq G\). In particular, \(G_0\) is closed under \(A^G\).
4. \((\text{Finite Extension})\) If \(G_0, G_1\) are finite graphs with \(G_0 \subseteq G\) and \(G_0 \subseteq G_1\), then there exists an injection \(i : G_1 \hookrightarrow G\) with \(i \upharpoonright G_0 = \text{id}_{G_0}\) and \(C_{G_1}(a, b) = C_{G}(i(a), i(b))\) for all \(a, b \in G_1\).
Theorem (Hjorth)

\((C, \subseteq)\) satisfies the (disjoint) Amalgamation and Joint Embedding Properties (AP & JEP).

Proof...

Corollary

The collection \((C, \subseteq)\) has a “Fraisse limit”. I.e. there exists a countable structure \(F\) with the following properties:

1. \(F\) contains a countable graph \(G\) and (a copy of) \(M\).
2. (Finite Agreement) For all \(a, b \in G\), the set \(A^G_{a,b}\) is finite.
3. (Finite Closure) For every \(X\) finite subset of \(G\) there exists some finite \(G_0, X \subset G_0\) and \(G_0 \subseteq G\). In particular, \(G_0\) is closed under \(A^G\).
4. (Finite Extension) If \(G_0, G_1\) are finite graphs with \(G_0 \subseteq G\) and \(G_0 \subseteq G_1\), then there exists an injection \(i : G_1 \hookrightarrow G\) with \(i \upharpoonright G_0 = id_{G_0}\) and \(C^{G_1}(a, b) = C^G(i(a), i(b))\) for all \(a, b \in G_1\).
Theorem (Hjorth)

\((C, \subseteq)\) satisfies the (disjoint) Amalgamation and Joint Embedding Properties (AP & JEP).

Proof...

Corollary

The collection \((C, \subseteq)\) has a “Fraissé limit”. I.e. there exists a countable structure \(F\) with the following properties:

1. \(F\) contains a countable graph \(G\) and (a copy of) \(M\).
2. (Finite Agreement) For all \(a, b \in G\), the set \(A^G_{a,b}\) is finite.
3. (Finite Closure) For every finite subset of \(G\) there exists some finite \(G_0, X \subseteq G_0\) and \(G_0 \subseteq G\). In particular, \(G_0\) is closed under \(A^G\).
4. (Finite Extension) If \(G_0, G_1\) are finite graphs with \(G_0 \subseteq G\) and \(G_0 \subseteq G_1\), then there exists an injection \(i : G_1 \to G\) with \(i \upharpoonright G_0 = id_{G_0}\) and \(C^G_{G_1}(a, b) = C^G(i(a), i(b))\) for all \(a, b \in G_1\).
Theorem (Hjorth)

\((C, \subseteq)\) satisfies the (disjoint) Amalgamation and Joint Embedding Properties (AP & JEP).

Proof...

Corollary

The collection \((C, \subseteq)\) has a “Fraisse limit”. I.e. there exists a countable structure \(F\) with the following properties:

1. \(F\) contains a countable graph \(G\) and (a copy of) \(M\).
2. (Finite Agreement) For all \(a, b \in G\), the set \(A^G_{a,b}\) is finite.
3. (Finite Closure) For every \(X\) finite subset of \(G\) there exists some finite \(G_0\), \(X \subset G_0\) and \(G_0 \subseteq G\). In particular, \(G_0\) is closed under \(A^G\).
4. (Finite Extension) If \(G_0, G_1\) are finite graphs with \(G_0 \subseteq G\) and \(G_0 \subseteq G_1\), then there exists an injection \(i : G_1 \rightharpoonup G\) with \(i \upharpoonright G_0 = id_{G_0}\) and
 \(C^{G_1}(a, b) = C^G(i(a), i(b))\) for all \(a, b \in G_1\).
Theorem (Hjorth)

\((C, \subseteq)\) satisfies the (disjoint) Amalgamation and Joint Embedding Properties (AP & JEP).

Proof...

Corollary

The collection \((C, \subseteq)\) has a “Fraïssé limit”. I.e. there exists a countable structure \(F\) with the following properties:

1. \(F\) contains a countable graph \(G\) and (a copy of) \(M\).
2. (Finite Agreement) For all \(a, b \in G\), the set \(A^G_{a,b}\) is finite.
3. (Finite Closure) For every finite subset of \(G\) there exists some finite \(G_0, X \subset G_0\) and \(G_0 \subseteq G\). In particular, \(G_0\) is closed under \(A^G\).
4. (Finite Extension) If \(G_0, G_1\) are finite graphs with \(G_0 \subseteq G\) and \(G_0 \subseteq G_1\), then there exists an injection \(i : G_1 \hookrightarrow G\) with \(i \upharpoonright G_0 = id_{G_0}\) and \(C^G_{G_1}(a, b) = C^G(i(a), i(b))\) for all \(a, b \in G_1\).
Remark

The set M of colors is countable when we take the Fraisse limit, but may increase in other models (up to size \aleph_α).

Theorem (Hjorth)

The Scott sentence of F

1. has a model of size \aleph_α
2. every model of size $\aleph_{\alpha+1}$ (if any) is maximal and
3. therefore it has no models of size $\aleph_{\alpha+2}$.

Proof...
Remark
The set M of colors is countable when we take the Fraisse limit, but may increase in other models (up to size \aleph_α).

Theorem (Hjorth)
The Scott sentence of F
1. has a model of size \aleph_α
2. every model of size $\aleph_{\alpha+1}$ (if any) is maximal and
3. therefore it has no models of size $\aleph_{\alpha+2}$.

Proof...
Remark

The set M of colors is countable when we take the Fraisse limit, but may increase in other models (up to size \aleph_α).

Theorem (Hjorth)

The Scott sentence of F

1. has a model of size \aleph_α
2. every model of size $\aleph_{\alpha+1}$ (if any) is maximal and
3. therefore it has no models of size $\aleph_{\alpha+2}$.

Proof...
Remark

The set M of colors is countable when we take the Fraisse limit, but may increase in other models (up to size \aleph_α).

Theorem (Hjorth)

The Scott sentence of F

1. has a model of size \aleph_α
2. every model of size $\aleph_\alpha+1$ (if any) is maximal and
3. therefore it has no models of size $\aleph_\alpha+2$.

Proof...
Remark

The set M of colors is countable when we take the Fraïssé limit, but may increase in other models (up to size \aleph_α).

Theorem (Hjorth)

The Scott sentence of F

1. has a model of size \aleph_α
2. every model of size $\aleph_{\alpha+1}$ (if any) is maximal and
3. therefore it has no models of size $\aleph_{\alpha+2}$.

Proof...
Colored Version

1. Hjorth’s first construction can be modified to include vertex-colors (new elements not in M).
2. Amalgamation and Joint Embedding still hold.
3. The “Fraïssé limit” satisfies Finite Agreement, Finite Closure and a colored version of Finite Extension where G_0, G_1 are vertex-colored.
4. We will call this the colored version of Hjorth’s construction.
Colored Version

1. Hjorth’s first construction can be modified to include vertex-colors (new elements not in M).
2. Amalgamation and Joint Embedding still hold.
3. The “Fraïssé limit” satisfies Finite Agreement, Finite Closure and a colored version of Finite Extension where G_0, G_1 are vertex-colored.
4. We will call this the colored version of Hjorth’s construction.
1. Hjorth’s first construction can be modified to include vertex-colors (new elements not in M).
2. Amalgamation and Joint Embedding still hold.
3. The “Fraisse limit” satisfies Finite Agreement, Finite Closure and a colored version of Finite Extension where G_0, G_1 are vertex-colored.
4. We will call this the colored version of Hjorth’s construction.
Colored Version

1. Hjorth’s first construction can be modified to include vertex-colors (new elements not in M).
2. Amalgamation and Joint Embedding still hold.
3. The “Fraisse limit” satisfies Finite Agreement, Finite Closure and a colored version of Finite Extension where G_0, G_1 are vertex-colored.
4. We will call this the colored version of Hjorth’s construction.
Definition
Let F^c be the Fraisse limit of Hjorth’s colored construction, M the set of edge-colors and N the set of vertex-colors. Hjorth calls any structure that satisfies the Scott sentence of F^c an (M, N)-full structure.
Definition

Let F^c be the Fraisse limit of Hjorth’s colored construction, M the set of edge-colors and N the set of vertex-colors. Hjorth calls any structure that satisfies the Scott sentence of F^c an (M, N)-full structure.
Definition

Let F^c be the Fraisse limit of Hjorth’s colored construction, M the set of edge-colors and N the set of vertex-colors. Hjorth calls any structure that satisfies the Scott sentence of F^c an (M, N)-full structure.
Absolute Indiscernibles

Definition
Let M be a model and X a (definable) subset of M. X is a set of absolute indiscernibles (for M) if every permutation of X extends to an automorphism of M.

Theorem
If F^c is the (unique) countable (M, N)-full structure, then N is a set of absolute indiscernibles.

Theorem (Hjorth)
No countable model with absolute indiscernibles can characterize \aleph_0.

Proof...

Corollary
If M characterizes \aleph_0, then the countable (M, N)-full structure characterizes \aleph_1 (in all models of ZFC).
Absolute Indiscernibles

Definition
Let M be a model and X a (definable) subset of M. X is a set of absolute indiscernibles (for M) if every permutation of X extends to an automorphism of M.

Theorem
If F^c is the (unique) countable (M, N)-full structure, then N is a set of absolute indiscernibles.

Theorem (Hjorth)
No countable model with absolute indiscernibles can characterize \aleph_0.

Proof...

Corollary
If M characterizes \aleph_0, then the countable (M, N)-full structure characterizes \aleph_1 (in all models of ZFC).
Absolute Indiscernibles

Definition
Let M be a model and X a (definable) subset of M. X is a set of *absolute indiscernibles* (for M) if every permutation of X extends to an automorphism of M.

Theorem
If F^c *is the (unique) countable* (M, N)-*full structure, then* N *is a set of absolute indiscernibles.*

Theorem (Hjorth)
No countable model with absolute indiscernibles can characterize \aleph_0.

Proof...

Corollary
If M *characterizes* \aleph_0, *then the countable* (M, N)-*full structure characterizes* \aleph_1 *(in all models of ZFC).*
Absolute Indiscernibles

Definition
Let M be a model and X a (definable) subset of M. X is a set of absolute indiscernibles (for M) if every permutation of X extends to an automorphism of M.

Theorem
If F^c is the (unique) countable (M, N)-full structure, then N is a set of absolute indiscernibles.

Theorem (Hjorth)
No countable model with absolute indiscernibles can characterize \aleph_0.

Proof...

Corollary
If M characterizes \aleph_0, then the countable (M, N)-full structure characterizes \aleph_1 (in all models of ZFC).
The Case of \(\aleph_2 \)

So, the first place where set theory may play a role in Hjorth’s construction is at \(\aleph_2 \).

Lemma

If CH holds and \(M \) characterizes \(\aleph_1 \), then the \((M, N)\)-full structure also characterizes \(\aleph_1 \).

Proof...

We show that there exists a model of \(\text{ZFC}(+ \text{¬CH}) \) where the \((M, N)\)-full structure characterizes \(\aleph_2 \).

Hence, it is independent of \(\text{ZFC} \) which of Hjorth’s constructions (the first or the second) characterizes \(\aleph_2 \).
The Case of \aleph_2

So, the first place where set theory may play a role in Hjorth’s construction is at \aleph_2.

Lemma

If CH holds and M characterizes \aleph_1, then the (M, N)-full structure also characterizes \aleph_1.

Proof...

We show that there exists a model of ZFC($+\neg$CH) where the (M, N)-full structure characterizes \aleph_2.

Hence, it is independent of ZFC which of Hjorth’s constructions (the first or the second) characterizes \aleph_2.
The Case of \aleph_2

So, the first place where set theory may play a role in Hjorth’s construction is at \aleph_2.

Lemma

*If CH holds and M characterizes \aleph_1, then the (M, N)-full structure also characterizes \aleph_1.***

Proof...

We show that there exists a model of $\text{ZFC}(+ \neg \text{CH})$ where the (M, N)-full structure characterizes \aleph_2.

Hence, it is independent of ZFC which of Hjorth’s constructions (the first or the second) characterizes \aleph_2.
The Case of \aleph_2

So, the first place where set theory may play a role in Hjorth’s construction is at \aleph_2.

Lemma

*If CH holds and M characterizes \aleph_1, then the (M, N)-full structure also characterizes \aleph_1.***

Proof...

We show that there exists a model of ZFC($+\neg$CH) where the (M, N)-full structure characterizes \aleph_2.

Hence, it is independent of ZFC which of Hjorth’s constructions (the first or the second) characterizes \aleph_2.
The Case of \aleph_2

So, the first place where set theory may play a role in Hjorth’s construction is at \aleph_2.

Lemma

*If CH holds and M characterizes \aleph_1, then the (M, N)-full structure also characterizes \aleph_1.***

Proof...

We show that there exists a model of $\text{ZFC}(+ \neg \text{CH})$ where the (M, N)-full structure characterizes \aleph_2.

Hence, it is independent of ZFC which of Hjorth’s constructions (the first or the second) characterizes \aleph_2.
Property (\(\triangle\))

We isolated a diagonalization property that we called (\(\triangle\)).

Definition

1. Given a set \(X\), we say that a map \(m : [X]<\omega \mapsto [X]<\omega\) is **monotone** if \(a \subseteq m(a)\) holds for every finite subset \(a\) of \(X\).

2. (\(\triangle\)) denotes the statement:

 for every sequence \((f_\alpha : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)\) and every monotone function \(m : [\omega_1]<\omega \mapsto [\omega_1]<\omega\), there exists a function \(g : \omega_1 \mapsto \omega_1\) such that for every \(a \in [\omega_1]<\omega\), there exists \(a \subseteq b \in [\omega_1]<\omega\) with the property that

 \[
 \{ \beta < \omega_1 | f_\alpha(\beta) = g(\beta) \} \subseteq m(b)
 \]

holds for all \(\alpha \in m(b)\).

In addition, given some finite \(F \subset \omega_1\), we require that

\[
F \cap \text{range}(g) = \emptyset.
\]
Property (\(\triangle\))

We isolated a diagonalization property that we called (\(\triangle\)).

Definition

1. Given a set \(X\), we say that a map \(m : [X]^{<\omega} \mapsto [X]^{<\omega}\) is monotone if \(a \subseteq m(a)\) holds for every finite subset \(a\) of \(X\).

2. (\(\triangle\)) denotes the statement:

 - for every sequence \((f_\alpha : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)\) and every monotone function \(m : [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}\), there exists a function \(g : \omega_1 \mapsto \omega_1\) such that for every \(a \in [\omega_1]^{<\omega}\), there exists \(a \subseteq b \in [\omega_1]^{<\omega}\) with the property that

 \[
 \{ \beta < \omega_1 | f_\alpha(\beta) = g(\beta) \} \subseteq m(b)
 \]

 holds for all \(\alpha \in m(b)\).

 - In addition, given some finite \(F \subseteq \omega_1\), we require that

 \[
 F \cap \text{range}(g) = \emptyset.
 \]
Property (\triangle)

We isolated a diagonalization property that we called (\triangle).

Definition

1. Given a set X, we say that a map $m : [X]^{<\omega} \mapsto [X]^{<\omega}$ is **monotone** if $a \subseteq m(a)$ holds for every finite subset a of X.

2. (\triangle) denotes the statement:

 for every sequence $(f_\alpha : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$ and every monotone function $m : [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$, there exists a function $g : \omega_1 \mapsto \omega_1$ such that for every $a \in [\omega_1]^{<\omega}$, there exists $a \subseteq b \in [\omega_1]^{<\omega}$ with the property that

 \[\{ \beta < \omega_1 | f_\alpha(\beta) = g(\beta) \} \subseteq m(b) \]

 holds for all $\alpha \in m(b)$.

In addition, given some finite $F \subset \omega_1$, we require that

\[F \cap \text{range}(g) = \emptyset. \]
Property (△)

We isolated a diagonalization property that we called (△).

Definition

1. Given a set \(X \), we say that a map \(m : [X]^\omega \to [X]^\omega \) is \textit{monotone} if \(a \subseteq m(a) \) holds for every finite subset \(a \) of \(X \).

2. (△) denotes the statement:

 for every sequence \((f_\alpha : \omega_1 \to \omega_1 | \alpha < \omega_1) \) and every monotone function \(m : [\omega_1]^\omega \to [\omega_1]^\omega \), there exists a function \(g : \omega_1 \to \omega_1 \) such that for every \(a \in [\omega_1]^\omega \), there exists \(a \subseteq b \in [\omega_1]^\omega \) with the property that

 \[\{ \beta < \omega_1 | f_\alpha(\beta) = g(\beta) \} \subseteq m(b) \]

 holds for all \(\alpha \in m(b) \).

In addition, given some finite \(F \subset \omega_1 \), we require that

\[F \cap \text{range}(g) = \emptyset. \]
Property (⋄)

We isolated a diagonalization property that we called (⋄).

Definition

1. Given a set X, we say that a map $m : [X]<\omega \mapsto [X]<\omega$ is monotone if $a \subseteq m(a)$ holds for every finite subset a of X.

2. (\diamond) denotes the statement:
 for every sequence $(f_\alpha : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$ and every monotone function $m : [\omega_1]<\omega \mapsto [\omega_1]<\omega$, there exists a function $g : \omega_1 \mapsto \omega_1$ such that for every $a \in [\omega_1]<\omega$, there exists $a \subseteq b \in [\omega_1]<\omega$ with the property that
 \[\{ \beta < \omega_1 | f_\alpha(\beta) = g(\beta) \} \subseteq m(b) \]
 holds for all $\alpha \in m(b)$.

In addition, given some finite $F \subset \omega_1$, we require that
\[F \cap range(g) = \emptyset. \]
Property (\triangle)

We isolated a diagonalization property that we called (\triangle).

Definition

1. Given a set X, we say that a map $m : [X]^{<\omega} \mapsto [X]^{<\omega}$ is **monotone** if $a \subseteq m(a)$ holds for every finite subset a of X.

2. (\triangle) denotes the statement:
 for every sequence $(f_\alpha : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$ and every monotone function $m : [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$, there exists a function $g : \omega_1 \mapsto \omega_1$ such that for every $a \in [\omega_1]^{<\omega}$, there exists $a \subseteq b \in [\omega_1]^{<\omega}$ with the property that
 \[
 \{ \beta < \omega_1 | f_\alpha(\beta) = g(\beta) \} \subseteq m(b)
 \]
 holds for all $\alpha \in m(b)$.

In addition, given some finite $F \subset \omega_1$, we require that
 \[
 F \cap range(g) = \emptyset.
 \]
The importance of (Δ) is apparent from the following theorem.

Theorem

Assume that (Δ) holds and let M be a countable model that characterizes \aleph_1. Then the countable (M,N)-full structure characterizes \aleph_2.
Lemma

If \((\triangle)\) holds, then \(2^{\aleph_0} > \aleph_1\).

Proof...

Lemma

If \((\triangle)\) holds, then there exists a sequence \((A_\gamma | \gamma < \omega_2)\) of unbounded subsets of \(\omega_1\) with the property that for all \(\delta < \gamma < \omega_2\), the set \(A_\gamma \cap A_\delta\) is finite.

Proof...

Theorem (Baumgartner)

If \(CH\) holds and \(G\) is Add\((\omega, \omega_2)\)-generic over \(V\), then in \(V[G]\) there is no sequence \((A_\gamma | \gamma < \omega_2)\) of unbounded subsets of \(\omega_1\) with finite intersections.
Lemma
If (△) holds, then $2^\aleph_0 > \aleph_1$.

Proof...

Lemma
If (△) holds, then there exists a sequence $(A_\gamma | \gamma < \omega_2)$ of unbounded subsets of ω_1 with the property that for all $\delta < \gamma < \omega_2$, the set $A_\gamma \cap A_\delta$ is finite.

Proof...

Theorem (Baumgartner)
If CH holds and G is Add(ω, ω_2)-generic over V, then in $V[G]$ there is no sequence $(A_\gamma | \gamma < \omega_2)$ of unbounded subsets of ω_1 with finite intersections.
Lemma

If \((\triangle)\) holds, then \(2^{\aleph_0} > \aleph_1\).

Proof...

Lemma

If \((\triangle)\) holds, then there exists a sequence \((A_\gamma|\gamma < \omega_2)\) of unbounded subsets of \(\omega_1\) with the property that for all \(\delta < \gamma < \omega_2\), the set \(A_\gamma \cap A_\delta\) is finite.

Proof...

Theorem (Baumgartner)

If CH holds and \(G\) is Add\((\omega, \omega_2)\)-generic over \(V\), then in \(V[G]\) there is no sequence \((A_\gamma|\gamma < \omega_2)\) of unbounded subsets of \(\omega_1\) with finite intersections.
Corollary

1. If CH holds and G is Add(ω, ω₂)-generic over V, then in V[G] the property (Δ) fails.
2. (Δ) is not a theorem of ZFC+¬CH

Question
Can we force (Δ)?

Answer
Yes!
Corollary

1. If CH holds and G is $\text{Add}(\omega, \omega_2)$-generic over V, then in $V[G]$ the property (Δ) fails.

2. (Δ) is not a theorem of $\text{ZFC} + \neg \text{CH}$

Question

Can we force (Δ)?

Answer

Yes!
Corollary

1. *If CH holds and G is Add(ω,ω₂)-generic over V, then in V[G] the property (Δ) fails.*

2. *(Δ) is not a theorem of ZFC + ¬CH*

Question

Can we force (Δ)?

Answer

Yes!
Corollary

1. If CH holds and G is Add(ω, ω₂)-generic over V, then in V[G] the property (∆) fails.
2. (∆) is not a theorem of ZFC + ¬CH

Question

Can we force (∆)?

Answer

Yes!
Corollary

1. If CH holds and G is $\text{Add}(\omega, \omega_2)$-generic over V, then in $V[G]$ the property (Δ) fails.

2. (Δ) is not a theorem of $\text{ZFC} + \neg \text{CH}$

Question

Can we force (Δ)?

Answer

Yes!
The following forcing notion is due to P. Larson

Definition

We let \mathbb{D} denote the partial order defined by the following clauses:

1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathcal{F}_p, \mathcal{X}_p \rangle$ such that the following statements hold:
 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1.
 1.2 \mathcal{F}_p is a finite set of functions from ω_1 to ω_1.
 1.3 \mathcal{X}_p is a finite \in-chain of countable elementary submodels of $H(\omega_2)$.
 1.4 If $X \in \mathcal{X}_p$ and $\alpha \in d_p \cap X$, then $a_p(\alpha) \in X$.
 1.5 If $X \in \mathcal{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1, then $a_p(\alpha) \neq f(\alpha)$.

2. Given conditions p and q in \mathbb{D}, we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:
 2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathcal{F}_q \subseteq \mathcal{F}_p$ and $\mathcal{X}_q \subseteq \mathcal{X}_p$.
 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathcal{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.

The following forcing notion is due to P. Larson

Definition

We let \mathbb{D} denote the partial order defined by the following clauses:

1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathcal{F}_p, \mathcal{X}_p \rangle$ such that the following statements hold:

 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1.

 1.2 \mathcal{F}_p is a finite set of functions from ω_1 to ω_1.

 1.3 \mathcal{X}_p is a finite \subseteq-chain of countable elementary submodels of $H(\omega_2)$.

 1.4 If $X \in \mathcal{X}_p$ and $\alpha \in d_p \cap X$, then $a_p(\alpha) \in X$.

 1.5 If $X \in \mathcal{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1, then $a_p(\alpha) \neq f(\alpha)$.

2. Given conditions p and q in \mathbb{D}, we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:

 2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathcal{F}_q \subseteq \mathcal{F}_p$ and $\mathcal{X}_q \subseteq \mathcal{X}_p$.

 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathcal{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.

The following forcing notion is due to P. Larson

Definition

We let \mathbb{D} denote the partial order defined by the following clauses:

1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathbb{F}_p, \mathbb{X}_p \rangle$ such that the following statements hold:
 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1.
 1.2 \mathbb{F}_p is a finite set of functions from ω_1 to ω_1.
 1.3 \mathbb{X}_p is a finite \in-chain of countable elementary submodels of $H(\omega_2)$.
 1.4 If $X \in \mathbb{X}_p$ and $\alpha \in d_p \cap X$, then $a_p(\alpha) \in X$.
 1.5 If $X \in \mathbb{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1, then $a_p(\alpha) \neq f(\alpha)$.

2. Given conditions p and q in \mathbb{D}, we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:
 2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathbb{F}_q \subseteq \mathbb{F}_p$ and $\mathbb{X}_q \subseteq \mathbb{X}_p$.
 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathbb{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.
The following forcing notion is due to P. Larson

Definition

We let \mathbb{D} denote the partial order defined by the following clauses:

1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathcal{F}_p, \mathcal{X}_p \rangle$ such that the following statements hold:
 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1.
 1.2 \mathcal{F}_p is a finite set of functions from ω_1 to ω_1.
 1.3 \mathcal{X}_p is a finite \in-chain of countable elementary submodels of $H(\omega_2)$.
 1.4 If $X \in \mathcal{X}_p$ and $\alpha \in d_p \cap X$, then $a_p(\alpha) \in X$.
 1.5 If $X \in \mathcal{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1, then $a_p(\alpha) \neq f(\alpha)$.

2. Given conditions p and q in \mathbb{D}, we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:
 2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathcal{F}_q \subseteq \mathcal{F}_p$ and $\mathcal{X}_q \subseteq \mathcal{X}_p$.
 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathcal{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.

The following forcing notion is due to P. Larson

Definition

We let \mathbb{D} denote the partial order defined by the following clauses:

1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathcal{F}_p, \mathcal{X}_p \rangle$ such that the following statements hold:
 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1.
 1.2 \mathcal{F}_p is a finite set of functions from ω_1 to ω_1.
 1.3 \mathcal{X}_p is a finite ϵ-chain of countable elementary submodels of $H(\omega_2)$.
 1.4 If $X \in \mathcal{X}_p$ and $\alpha \in d_p \cap X$, then $a_p(\alpha) \in X$.
 1.5 If $X \in \mathcal{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1, then $a_p(\alpha) \neq f(\alpha)$.

2. Given conditions p and q in \mathbb{D}, we have $p \leq_\mathbb{D} q$ if and only if the following statements hold:
 2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathcal{F}_q \subseteq \mathcal{F}_p$ and $\mathcal{X}_q \subseteq \mathcal{X}_p$.
 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathcal{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.
The following forcing notion is due to P. Larson

Definition

We let \mathbb{D} denote the partial order defined by the following clauses:

1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathcal{F}_p, \mathcal{X}_p \rangle$ such that the following statements hold:
 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1.
 1.2 \mathcal{F}_p is a finite set of functions from ω_1 to ω_1.
 1.3 \mathcal{X}_p is a finite \in-chain of countable elementary submodels of $H(\omega_2)$.
 1.4 If $X \in \mathcal{X}_p$ and $\alpha \in d_p \cap X$, then $a_p(\alpha) \in X$.
 1.5 If $X \in \mathcal{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1, then $a_p(\alpha) \neq f(\alpha)$.

2. Given conditions p and q in \mathbb{D}, we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:
 2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathcal{F}_q \subseteq \mathcal{F}_p$ and $\mathcal{X}_q \subseteq \mathcal{X}_p$.
 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathcal{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.
The following forcing notion is due to P. Larson

Definition
We let \mathbb{D} denote the partial order defined by the following clauses:

1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathcal{F}_p, \mathcal{X}_p \rangle$ such that the following statements hold:
 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1.
 1.2 \mathcal{F}_p is a finite set of functions from ω_1 to ω_1.
 1.3 \mathcal{X}_p is a finite \in-chain of countable elementary submodels of $H(\omega_2)$.
 1.4 If $X \in \mathcal{X}_p$ and $\alpha \in d_p \cap X$, then $a_p(\alpha) \in X$.
 1.5 If $X \in \mathcal{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1, then $a_p(\alpha) \neq f(\alpha)$.

2. Given conditions p and q in \mathbb{D}, we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:
 2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathcal{F}_q \subseteq \mathcal{F}_p$ and $\mathcal{X}_q \subseteq \mathcal{X}_p$.
 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathcal{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.
The following forcing notion is due to P. Larson

Definition
We let \mathbb{D} denote the partial order defined by the following clauses:

1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathcal{F}_p, \mathcal{X}_p \rangle$ such that the following statements hold:
 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1.
 1.2 \mathcal{F}_p is a finite set of functions from ω_1 to ω_1.
 1.3 \mathcal{X}_p is a finite \in-chain of countable elementary submodels of $H(\omega_2)$.
 1.4 If $X \in \mathcal{X}_p$ and $\alpha \in d_p \cap X$, then $a_p(\alpha) \in X$.
 1.5 If $X \in \mathcal{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1, then $a_p(\alpha) \neq f(\alpha)$.

2. Given conditions p and q in \mathbb{D}, we have $p \leq_D q$ if and only if the following statements hold:
 2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathcal{F}_q \subseteq \mathcal{F}_p$ and $\mathcal{X}_q \subseteq \mathcal{X}_p$.
 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathcal{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.
The following forcing notion is due to P. Larson

Definition

We let \mathbb{D} denote the partial order defined by the following clauses:

1. A condition in \mathbb{D} is a triple $p = \langle a_p, F_p, X_p \rangle$ such that the following statements hold:

 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1.
 1.2 F_p is a finite set of functions from ω_1 to ω_1.
 1.3 X_p is a finite \in-chain of countable elementary submodels of $H(\omega_2)$.
 1.4 If $X \in X_p$ and $\alpha \in d_p \cap X$, than $a_p(\alpha) \in X$.
 1.5 If $X \in X_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1, then $a_p(\alpha) \neq f(\alpha)$.

2. Given conditions p and q in \mathbb{D}, we have $p \leq_D q$ if and only if the following statements hold:

 2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $F_q \subseteq F_p$ and $X_q \subseteq X_p$.
 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in F_q$, then $a_p(\alpha) \neq f(\alpha)$.
The following forcing notion is due to P. Larson

Definition

We let \(\mathbb{D} \) denote the partial order defined by the following clauses:

1. A condition in \(\mathbb{D} \) is a triple \(p = \langle a_p, \mathcal{F}_p, \mathcal{X}_p \rangle \) such that the following statements hold:
 1.1 \(a_p \) is a function from a finite subset \(d_p \) of \(\omega_1 \) into \(\omega_1 \).
 1.2 \(\mathcal{F}_p \) is a finite set of functions from \(\omega_1 \) to \(\omega_1 \).
 1.3 \(\mathcal{X}_p \) is a finite \(\in \)-chain of countable elementary submodels of \(H(\omega_2) \).
 1.4 If \(X \in \mathcal{X}_p \) and \(\alpha \in d_p \cap X \), than \(a_p(\alpha) \in X \).
 1.5 If \(X \in \mathcal{X}_p \), \(\alpha \in d_p \setminus X \) and \(f \in X \) is a function from \(\omega_1 \) to \(\omega_1 \), then \(a_p(\alpha) \neq f(\alpha) \).

2. Given conditions \(p \) and \(q \) in \(\mathbb{D} \), we have \(p \leq_D q \) if and only if the following statements hold:
 2.1 \(d_q \subseteq d_p \), \(a_q = a_p \upharpoonright d_q \), \(\mathcal{F}_q \subseteq \mathcal{F}_p \) and \(\mathcal{X}_q \subseteq \mathcal{X}_p \).
 2.2 If \(\alpha \in d_p \setminus d_q \) and \(f \in \mathcal{F}_q \), then \(a_p(\alpha) \neq f(\alpha) \).
Theorem (Larson)

The partial order \mathbb{D} is proper.
Forcing Axioms

Definition
Given a partial ordering \mathbb{P} and a cardinal κ, the Forcing Axiom $FA_\kappa(\mathbb{P})$ is the following statement:

For every collection $\{l_\alpha | \alpha < \kappa\}$ of maximal antichains of \mathbb{P}, there exists a filter G that intersects every l_α.

If Γ is a class of partial orderings, $FA_\kappa(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $FA_\kappa(\mathbb{P})$ holds.

Example
1. Martin’s Axiom MA_κ is FA_κ(ccc), where $\kappa < 2^{\mathfrak{c}}$.
2. Proper Forcing Axiom PFA is FA_κ(proper).
Forcing Axioms

Definition

Given a partial ordering \mathbb{P} and a cardinal κ, the Forcing Axiom $FA_\kappa(\mathbb{P})$ is the following statement:

For every collection $\{I_\alpha | \alpha < \kappa\}$ of maximal antichains of \mathbb{P}, there exists a filter G that intersects every I_α.

If Γ is a class of partial orderings, $FA_\kappa(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $FA_\kappa(\mathbb{P})$ holds.

Example

1. Martin’s Axiom MA_κ is $FA_\kappa(\text{ccc})$, where $\kappa < 2^{\aleph_0}$.
2. Proper Forcing Axiom PFA is $FA_\kappa(\text{proper})$.
Forcing Axioms

Definition
Given a partial ordering \mathbb{P} and a cardinal κ, the Forcing Axiom $FA_\kappa(\mathbb{P})$ is the following statement:
For every collection $\{I_\alpha|\alpha<\kappa\}$ of maximal antichains of \mathbb{P}, there exists a filter G that intersects every I_α.
If Γ is a class of partial orderings, $FA_\kappa(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $FA_\kappa(\mathbb{P})$ holds.

Example
1. Martin’s Axiom $\kappa < 2^{\aleph_0}$.
2. Proper Forcing Axiom PFA is $FA_\aleph_1(\text{proper})$.
Forcing Axioms

Definition
Given a partial ordering \mathbb{P} and a cardinal κ, the Forcing Axiom $FA_\kappa(\mathbb{P})$ is the following statement:
For every collection $\{l_\alpha | \alpha < \kappa\}$ of maximal antichains of \mathbb{P}, there exists a filter G that intersects every l_α.
If Γ is a class of partial orderings, $FA_\kappa(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $FA_\kappa(\mathbb{P})$ holds.

Example
1. Martin’s Axiom MA_κ, $FA_\kappa(\text{ccc})$, where $\kappa < 2^{\aleph_0}$.
2. Proper Forcing Axiom PFA is $FA_{\aleph_1}(\text{proper})$.
Forcing Axioms

Definition
Given a partial ordering \mathbb{P} and a cardinal κ, the Forcing Axiom $FA_\kappa(\mathbb{P})$ is the following statement:
For every collection $\{l_\alpha | \alpha < \kappa\}$ of maximal antichains of \mathbb{P}, there exists a filter G that intersects every l_α.
If Γ is a class of partial orderings, $FA_\kappa(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $FA_\kappa(\mathbb{P})$ holds.

Example

1. Martin’s Axiom MA_κ $FA_\kappa(\text{ccc})$, where $\kappa < 2^{\aleph_0}$.
2. Proper Forcing Axiom PFA is $FA_{\aleph_1}(\text{proper})$.
Forcing Axioms

Definition
Given a partial ordering \mathbb{P} and a cardinal κ, the Forcing Axiom $FA_\kappa(\mathbb{P})$ is the following statement:
For every collection $\{I_\alpha | \alpha < \kappa\}$ of maximal antichains of \mathbb{P}, there exists a filter G that intersects every I_α.
If Γ is a class of partial orderings, $FA_\kappa(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $FA_\kappa(\mathbb{P})$ holds.

Example

1. Martin’s Axiom $MA_\kappa \ FA_\kappa(\text{ccc})$, where $\kappa < 2^{\aleph_0}$.
2. Proper Forcing Axiom PFA is $FA_{\aleph_1}(\text{proper})$.
Bounded forcing axioms are defined similarly, but the size of the antichains is now bounded.

Definition

Given a partial ordering \mathbb{P} and a cardinal κ, the Bounded Forcing Axiom $BFA_\kappa(\mathbb{P})$ is the following statement:

For every collection $\{I_\alpha | \alpha < \kappa\}$ of maximal antichains of $\mathbb{B} = \text{r.o.}(\mathbb{P}) \setminus \{0\}$, each of size at most κ, there exists a filter G that intersects every I_α.

If Γ is a class of partial orderings, $BFA_\kappa(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $BFA_\kappa(\mathbb{P})$ holds.
Bounded Forcing Axioms

Bounded forcing axioms are defined similarly, but the size of the antichains is now bounded.

Definition

Given a partial ordering \mathbb{P} and a cardinal κ, the Bounded Forcing Axiom $BFA_\kappa(\mathbb{P})$ is the following statement:

For every collection $\{I_\alpha | \alpha < \kappa\}$ of maximal antichains of $\mathbb{B} = r.o.(\mathbb{P}) \setminus \{0\}$, each of size at most κ, there exists a filter G that intersects every I_α.

If Γ is a class of partial orderings, $BFA_\kappa(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $BFA_\kappa(\mathbb{P})$ holds.
Bounded forcing axioms are defined similarly, but the size of the antichains is now bounded.

Definition

Given a partial ordering \mathbb{P} and a cardinal κ, the Bounded Forcing Axiom $\text{BFA}_\kappa(\mathbb{P})$ is the following statement:

For every collection $\{l_\alpha | \alpha < \kappa\}$ of maximal antichains of $\mathbb{B} = \text{r.o.}(\mathbb{P}) \setminus \{0\}$, each of size at most κ, there exists a filter G that intersects every l_α.

If Γ is a class of partial orderings, $\text{BFA}_\kappa(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $\text{BFA}_\kappa(\mathbb{P})$ holds.
Bounded forcing axioms are defined similarly, but the size of the antichains is now bounded.

Definition
Given a partial ordering \(P \) and a cardinal \(\kappa \), the Bounded Forcing Axiom \(BFA_\kappa(P) \) is the following statement:
For every collection \(\{ I_\alpha \mid \alpha < \kappa \} \) of maximal antichains of \(B = r.o.(P) \setminus \{0\} \), each of size at most \(\kappa \), there exists a filter \(G \) that intersects every \(I_\alpha \).

If \(\Gamma \) is a class of partial orderings, \(BFA_\kappa(\Gamma) \) is the statement that for every \(P \in \Gamma \), \(BFA_\kappa(P) \) holds.
Bounded Forcing Axioms

Bounded forcing axioms are defined similarly, but the size of the antichains is now bounded.

Definition
Given a partial ordering \mathbb{P} and a cardinal κ, the Bounded Forcing Axiom $BFA_\kappa(\mathbb{P})$ is the following statement: For every collection $\{l_\alpha | \alpha < \kappa\}$ of maximal antichains of $\mathbb{B} = r.o.(\mathbb{P}) \setminus \{0\}$, each of size at most κ, there exists a filter G that intersects every l_α.

If Γ is a class of partial orderings, $BFA_\kappa(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $BFA_\kappa(\mathbb{P})$ holds.
Generic Σ_1-Absoluteness

Definition

If Γ is a class of posets, $\Sigma_1(X)$-absoluteness for Γ is the following statement:

For every poset $P \in \Gamma$, every Σ_1-formula $\phi(x_1, \ldots, x_n)$, and every $a_1, \ldots, a_n \in X$,

$$\phi(a_1, \ldots, a_n) \text{ iff } V^{r.o.}(P) \models \phi(\check{a}_1, \ldots, \check{a}_n)$$

(If a Σ_1 statement with parameters from X is forceable, then it is true.)
Generic Σ_1-Absoluteness

Definition
If Γ is a class of posets, $\Sigma_1(X)$-absoluteness for Γ is the following statement:

For every poset $P \in \Gamma$, every Σ_1-formula $\phi(x_1, \ldots, x_n)$, and every $a_1, \ldots, a_n \in X$,

$$\phi(a_1, \ldots, a_n) \iff V^{r.o.}(P) \models \phi(\check{a}_1, \ldots, \check{a}_n)$$

(If a Σ_1 statement with parameters from X is forceable, then it is true.)
Generic Σ_1-Absoluteness

Definition

If Γ is a class of posets, $\Sigma_1(X)$-absoluteness for Γ is the following statement:

For every poset $\mathbb{P} \in \Gamma$, every Σ_1-formula $\phi(x_1, \ldots, x_n)$, and every $a_1, \ldots, a_n \in X$,

$$\phi(a_1, \ldots, a_n) \text{ iff } \forall r.o.(\mathbb{P}) \models \phi(\check{a}_1, \ldots, \check{a}_n)$$

(If a Σ_1 statement with parameters from X is forceable, then it is true.)
Generic Σ_1-Absoluteness

Definition

If Γ is a class of posets, $\Sigma_1(X)$-absoluteness for Γ is the following statement:
For every poset $\mathbb{P} \in \Gamma$, every Σ_1-formula $\phi(x_1, \ldots, x_n)$, and every $a_1, \ldots, a_n \in X$,

$$\phi(a_1, \ldots, a_n) \iff V^{r.o.}(\mathbb{P}) \models \phi(\check{a}_1, \ldots, \check{a}_n)$$

(If a Σ_1 statement with parameters from X is forceable, then it is true.)
Forcing Axioms and Generic Absoluteness

Forcing axioms are equivalent to generic Σ_1-absoluteness

Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

1. $\text{BFA}_\kappa(\mathbb{P})$
2. $\Sigma_1(P(\kappa))$-absoluteness for \mathbb{P}.
3. $\Sigma_1(H(\kappa^+))$-absoluteness for \mathbb{P}.

Corollary

The following statements are equivalent:

1. BPF A holds.
2. If $\varphi(v)$ is a Σ_1-formula, z is an element of $H(\omega_2)$, \mathbb{P} is a proper forcing and p is a condition in \mathbb{P} with $p \Vdash \varphi(z)$, then $\varphi(z)$ holds.
Forcing Axioms and Generic Absoluteness

Forcing axioms are equivalent to generic Σ_1-absoluteness Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

1. $\text{BFA}_\kappa(\mathbb{P})$
2. $\Sigma_1(\mathcal{P}(\kappa))$-absoluteness for \mathbb{P}.
3. $\Sigma_1(\mathcal{H}(\kappa^+))$-absoluteness for \mathbb{P}.

Corollary

The following statements are equivalent:

1. BPPFA holds.
2. If $\phi(v)$ is a Σ_1-formula, z is an element of $\mathcal{H}(\omega_2)$, \mathbb{P} is a proper forcing and p is a condition in \mathbb{P} with $p \Vdash \phi(z)$, then $\phi(z)$ holds.
Forcing Axioms and Generic Absoluteness

Forcing axioms are equivalent to generic \(\Sigma_1\)-absoluteness

Theorem

Let \(\mathbb{P}\) be a partial ordering and \(\kappa\) an infinite cardinal of uncountable cofinality. Then the following are equivalent:

1. \(\text{BFA}_\kappa(\mathbb{P})\)
2. \(\Sigma_1(P(\kappa))-\text{absoluteness for } \mathbb{P}\).
3. \(\Sigma_1(H(\kappa^+))-\text{absoluteness for } \mathbb{P}\).

Corollary

The following statements are equivalent:

1. BPFA holds.
2. If \(\varphi(v)\) is a \(\Sigma_1\)-formula, \(z\) is an element of \(H(\omega_2)\), \(\mathbb{P}\) is a proper forcing and \(p\) is a condition in \(\mathbb{P}\) with \(p \Vdash_{\mathbb{P}} \varphi(\check{z})\), then \(\varphi(z)\) holds.
Forcing Axioms and Generic Absoluteness

Forcing axioms are equivalent to generic Σ_1-absoluteness

Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

1. $\text{BFA}_\kappa(\mathbb{P})$
2. $\Sigma_1(P(\kappa))$-absoluteness for \mathbb{P}.
3. $\Sigma_1(H(\kappa^+))$-absoluteness for \mathbb{P}.

Corollary

The following statements are equivalent:

1. BPFA holds.
2. If $\varphi(v)$ is a Σ_1-formula, z is an element of $H(\omega_2)$, \mathbb{P} is a proper forcing and $p \Vdash \mathbb{P} \varphi(\check{z})$, then $\varphi(z)$ holds.
Forcing Axioms and Generic Absoluteness

Forcing axioms are equivalent to generic Σ_1-absoluteness

Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

1. $BFA_\kappa(\mathbb{P})$
2. $\Sigma_1(P(\kappa))$-absoluteness for \mathbb{P}.
3. $\Sigma_1(H(\kappa^+))$-absoluteness for \mathbb{P}.

Corollary

The following statements are equivalent:

1. BPFA holds.
2. If $\varphi(v)$ is a Σ_1-formula, z is an element of $H(\omega_2)$, \mathbb{P} is a proper forcing and $p \forces_{\mathbb{P}} \varphi(\check{z})$, then $\varphi(z)$ holds.
Forcing Axioms and Generic Absoluteness

Forcing axioms are equivalent to generic Σ_1-absoluteness

Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

1. $BFA_\kappa(\mathbb{P})$
2. $\Sigma_1(P(\kappa))$-absoluteness for \mathbb{P}.
3. $\Sigma_1(H(\kappa^+))$-absoluteness for \mathbb{P}.

Corollary

The following statements are equivalent:

1. BPFA holds.
2. If $\varphi(v)$ is a Σ_1-formula, z is an element of $H(\omega_2)$, \mathbb{P} is a proper forcing and p is a condition in \mathbb{P} with $p \Vdash_\mathbb{P} \varphi(\check{z})$, then $\varphi(z)$ holds.
Forcing Axioms and Generic Absoluteness

Forcing axioms are equivalent to generic Σ_1-absoluteness

Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

1. $BFA_\kappa(\mathbb{P})$
2. $\Sigma_1(P(\kappa))$-absoluteness for \mathbb{P}.
3. $\Sigma_1(H(\kappa^+))$-absoluteness for \mathbb{P}.

Corollary

The following statements are equivalent:

1. BPFA holds.
2. If $\varphi(v)$ is a Σ_1-formula, z is an element of $H(\omega_2)$, \mathbb{P} is a proper forcing and p is a condition in \mathbb{P} with $p \Vdash_{\mathbb{P}} \varphi(\check{z})$, then $\varphi(z)$ holds.
Forcing Axioms and Generic Absoluteness

Forcing axioms are equivalent to generic Σ_1-absoluteness

Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

1. $BFA_\kappa(\mathbb{P})$
2. $\Sigma_1(\mathbb{P}(\kappa))$-absoluteness for \mathbb{P}.
3. $\Sigma_1(\mathbb{H}(\kappa^+))$-absoluteness for \mathbb{P}.

Corollary

The following statements are equivalent:

1. BPFA holds.
2. If $\varphi(v)$ is a Σ_1-formula, z is an element of $\mathbb{H}(\omega_2)$, \mathbb{P} is a proper forcing and p is a condition in \mathbb{P} with $p \Vdash_\mathbb{P} \varphi(\check{z})$, then $\varphi(z)$ holds.
Theorem
BPFA implies that (Δ) holds.

Idea of the Proof Fix a sequence of functions
$\vec{f} = (f_\alpha : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$, a finite subset F of ω_1 and a monotone function $m : [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$.

Let G be \mathbb{D}-generic over the ground model V. Work in $V[G]$ and define $g = \bigcup \{a_p | p \in G\}$.

Then $g : \omega_1 \mapsto \omega_1$ with $F \cap \text{range}(g) = \emptyset$ and g satisfies the desired finite intersection property with all f_α's.

Since this statement can be formulate by a Σ_1-formula with parameters $\vec{f}, F, m \in H(\omega_2)^V$, we can use BPFA to conclude the given statement also holds in V.
Theorem

BPFA implies that (\triangle) holds.

Idea of the Proof Fix a sequence of functions $\vec{f} = (f_\alpha : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$, a finite subset F of ω_1 and a monotone function $m : [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$.

Let G be \mathbb{D}-generic over the ground model V. Work in $V[G]$ and define $g = \bigcup \{ a_p | p \in G \}$.

Then $g : \omega_1 \mapsto \omega_1$ with $F \cap \text{range}(g) = \emptyset$ and g satisfies the desired finite intersection property with all f_α’s.

Since this statement can be formulate by a Σ_1-formula with parameters $\vec{f}, F, m \in H(\omega_2)^V$, we can use BPFA to conclude the given statement also holds in V.
Theorem

BPFA implies that (\(\triangle\)) holds.

Idea of the Proof Fix a sequence of functions
\(\vec{f} = (f_\alpha : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)\), a finite subset \(F\) of \(\omega_1\) and a monotone function \(m : [\omega_1]^{< \omega} \mapsto [\omega_1]^{< \omega}\).

Let \(G\) be \(\mathbb{D}\)-generic over the ground model \(V\). Work in \(V[G]\) and define \(g = \bigcup \{a_p | p \in G\}\).

Then \(g : \omega_1 \mapsto \omega_1\) with \(F \cap \text{range}(g) = \emptyset\) and \(g\) satisfies the desired finite intersection property with all \(f_\alpha\)'s.

Since this statement can be formulate by a \(\Sigma_1\)-formula with parameters \(\vec{f}, F, m \in H(\omega_2)^V\), we can use BPFA to conclude the given statement also holds in \(V\).
Theorem
BPFA implies that (Δ) holds.

Idea of the Proof Fix a sequence of functions
\(\vec{f} = (f_\alpha : \omega_1 \leftrightarrow \omega_1 | \alpha < \omega_1) \), a finite subset \(F \) of \(\omega_1 \) and a monotone function \(m : [\omega_1]^{<\omega} \leftrightarrow [\omega_1]^{<\omega} \).
Let \(G \) be \(\mathbb{D} \)-generic over the ground model \(V \). Work in \(V[G] \) and define \(g = \bigcup \{ a_p | p \in G \} \).
Then \(g : \omega_1 \leftrightarrow \omega_1 \) with \(F \cap \text{range}(g) = \emptyset \) and \(g \) satisfies the desired finite intersection property with all \(f_\alpha \)'s.
Since this statement can be formulate by a \(\Sigma_1 \)-formula with parameters \(\vec{f}, F, m \in H(\omega_2)^V \), we can use BPFA to conclude the given statement also holds in \(V \).
Theorem

BPFA implies that (\triangle) holds.

Idea of the Proof Fix a sequence of functions $\vec{f} = (f_\alpha : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$, a finite subset F of ω_1 and a monotone function $m : [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$.

Let G be \mathbb{D}-generic over the ground model V. Work in $V[G]$ and define $g = \bigcup \{ a_p | p \in G \}$.

Then $g : \omega_1 \mapsto \omega_1$ with $F \cap \text{range}(g) = \emptyset$ and g satisfies the desired finite intersection property with all f_α’s.

Since this statement can be formulate by a Σ_1-formula with parameters $\vec{f}, F, m \in H(\omega_2)^V$, we can use BPFA to conclude the given statement also holds in V.
We can actually do better (i.e. reduce the consistency strength)

Theorem

(Δ) can be forced over a model of CH with a proper forcing \(\mathbb{P} \) that satisfies the \(\aleph_2 \)-chain condition.

Idea of the Proof The proper forcing \(\mathbb{P} \) is a “matrix version” of Larson’s forcing \(\mathbb{D} \).
Absolute Characterizations

Summary:

- Hjorth proved that there exists a countable model M which characterizes \aleph_1 in all models of ZFC.
- Using M he constructed a countable (M, N)-full structure S.
- S characterizes \aleph_1 in models of CH and \aleph_2 in models of BPFA.
- One may ask if our results for \aleph_2 generalize to higher cardinalities, e.g. \aleph_3.
- To prove this one would have to extend our results for functions $f : \omega_1 \mapsto \omega_1$ to functions $f : \omega_2 \mapsto \omega_2$ (which is considerably harder).
- However, the main question here should be different.
Absolute Characterizations

Summary:

- Hjorth proved that there exists a countable model M which characterizes \aleph_1 in all models of ZFC.
- Using M he constructed a countable (M, N)-full structure S.
- S characterizes \aleph_1 in models of CH and \aleph_2 in models of BPFA.
- One may ask if our results for \aleph_2 generalize to higher cardinalities, e.g. \aleph_3.
- To prove this one would have to extend our results for functions $f : \omega_1 \rightarrow \omega_1$ to functions $f : \omega_2 \rightarrow \omega_2$ (which is considerably harder).
- However, the main question here should be different.
Absolute Characterizations

Summary:

- Hjorth proved that there exists a countable model M which characterizes \aleph_1 in all models of ZFC.
- Using M, he constructed a countable (M, N)-full structure S.
- S characterizes \aleph_1 in models of CH and \aleph_2 in models of BPFA.
- One may ask if our results for \aleph_2 generalize to higher cardinalities, e.g., \aleph_3.
- To prove this one would have to extend our results for functions $f : \omega_1 \mapsto \omega_1$ to functions $f : \omega_2 \mapsto \omega_2$ (which is considerably harder).
- However, the main question here should be different.
Absolute Characterizations

Summary:

- Hjorth proved that there exists a countable model M which characterizes \aleph_1 in all models of ZFC.
- Using M he constructed a countable (M, N)-full structure S.
- S characterizes \aleph_1 in models of CH and \aleph_2 in models of BPFA.
- One may ask if our results for \aleph_2 generalize to higher cardinalities, e.g. \aleph_3.
- To prove this one would have to extend our results for functions $f : \omega_1 \rightarrow \omega_1$ to functions $f : \omega_2 \rightarrow \omega_2$ (which is considerably harder).
- However, the main question here should be different.
Absolute Characterizations

Summary:

- Hjorth proved that there exists a countable model M which characterizes \aleph_1 in all models of ZFC.
- Using M he constructed a countable (M, N)-full structure S.
- S characterizes \aleph_1 in models of CH and \aleph_2 in models of BPFA.
- One may ask if our results for \aleph_2 generalize to higher cardinalities, e.g. \aleph_3.
- To prove this one would have to extend our results for functions $f : \omega_1 \mapsto \omega_1$ to functions $f : \omega_2 \mapsto \omega_2$ (which is considerably harder).
- However, the main question here should be different.
Absolute Characterizations

Summary:

- Hjorth proved that there exists a countable model M which characterizes \aleph_1 in all models of ZFC.
- Using M he constructed a countable (M, N)-full structure S.
- S characterizes \aleph_1 in models of CH and \aleph_2 in models of BPFA.
- One may ask if our results for \aleph_2 generalize to higher cardinalities, e.g. \aleph_3.
- To prove this one would have to extend our results for functions $f : \omega_1 \rightarrow \omega_1$ to functions $f : \omega_2 \rightarrow \omega_2$ (which is considerably harder).
- However, the main question here should be different.
Absolute Characterizations

Summary:

- Hjorth proved that there exists a countable model M which characterizes \aleph_1 in all models of ZFC.
- Using M he constructed a countable (M, N)-full structure S.
- S characterizes \aleph_1 in models of CH and \aleph_2 in models of BPFA.
- One may ask if our results for \aleph_2 generalize to higher cardinalities, e.g. \aleph_3.
- To prove this one would have to extend our results for functions $f : \omega_1 \mapsto \omega_1$ to functions $f : \omega_2 \mapsto \omega_2$ (which is considerably harder).
- However, the main question here should be different.
Question

1. Can we have an absolute characterization of \aleph_2?
2. What does it mean to have an absolute characterizations?

(1) is open. We suggest some answers for (2)
Question

1. *Can we have an absolute characterization of \(\aleph_2 \)?*

2. *What does it mean to have an absolute characterizations?*

(1) is open. We suggest some answers for (2)
Question

1. *Can we have an absolute characterization of \(\aleph_2 \)?*

2. *What does it mean to have an absolute characterizations?*

(1) is open. We suggest some answers for (2)
Question

1. Can we have an absolute characterization of \aleph_2?
2. What does it mean to have an absolute characterizations?

(1) is open. We suggest some answers for (2)
Question

1. Can we have an absolute characterization of \(\aleph_2 \)?
2. What does it mean to have an absolute characterizations?

(1) is open. We suggest some answers for (2)
Question

Does there exist a formula $\Phi(v_0, v_1)$ in the language of set theory such that ZFC proves the following statements hold for all ordinals α:

1. In \mathbb{L}, there exists a unique code c for a complete $\mathcal{L}_{\alpha^+, \omega}$-sentence ψ_α such that $\Phi(\alpha, c)$ holds.
2. If α is countable and ψ_α is as above, then ψ_α characterizes \aleph_α.
Question

Does there exist a formula $\Phi(v_0, v_1)$ in the language of set theory such that ZFC proves the following statements hold for all ordinals α:

1. In L, there exists a unique code c for a complete $\mathcal{L}_{\alpha^+, \omega}$-sentence ψ_α such that $\Phi(\alpha, c)$ holds.
2. If α is countable and ψ_α is as above, then ψ_α characterizes \aleph_α.
Question

Does there exist a formula $\Phi(v_0, v_1)$ in the language of set theory such that ZFC proves the following statements hold for all ordinals α:

1. In L, there exists a unique code c for a complete $\mathcal{L}_{\alpha^+, \omega}$-sentence ψ_α such that $\Phi(\alpha, c)$ holds.
2. If α is countable and ψ_α is as above, then ψ_α characterizes \aleph_α.
Fact (Shoenfield absoluteness)

Σ^1_3-statements are upwards absolute between transitive models of set theory with the same ordinals.

Question

Is there a Σ^1_3-formula $\Phi(v_0, v_1)$ in the language of second-order arithmetic with the property that the axioms of ZFC prove that the following statements hold:

1. For every real a, there is a unique real b such that $\Phi(a, b)$ holds.

2. If α is a countable ordinal, c is a code for a complete $L_{\omega_1, \omega}$-sentence that characterizes \mathfrak{N}_α and d is a real with the property that $\Phi(c, d)$ holds, then d is a code for a complete $L_{\omega_1, \omega}$-sentence that characterizes $\mathfrak{N}_{\alpha+1}$.
Fact (Shoenfield absoluteness)

Σ^1_3-statements are upwards absolute between transitive models of set theory with the same ordinals.

Question

Is there a Σ^1_3-formula $\Phi(v_0, v_1)$ in the language of second-order arithmetic with the property that the axioms of ZFC prove that the following statements hold:

1. For every real a, there is a unique real b such that $\Phi(a, b)$ holds.
2. If α is a countable ordinal, c is a code for a complete $\mathcal{L}_{\omega_1, \omega}$-sentence that characterizes \mathbb{N}_α and d is a real with the property that $\Phi(c, d)$ holds, then d is a code for a complete $\mathcal{L}_{\omega_1, \omega}$-sentence that characterizes $\mathbb{N}_{\alpha+1}$.
Fact (Shoenfield absoluteness)

Σ^1_3-statements are upwards absolute between transitive models of set theory with the same ordinals.

Question

Is there a Σ^1_3-formula $\Phi(v_0, v_1)$ in the language of second-order arithmetic with the property that the axioms of ZFC prove that the following statements hold:

1. For every real a, there is a unique real b such that $\Phi(a, b)$ holds.

2. If α is a countable ordinal, c is a code for a complete $\mathcal{L}_{\omega_1, \omega}$-sentence that characterizes \aleph_α and d is a real with the property that $\Phi(c, d)$ holds, then d is a code for a complete $\mathcal{L}_{\omega_1, \omega}$-sentence that characterizes $\aleph_{\alpha+1}$.
Fact (Shoenfield absoluteness)

Σ^1_3-statements are upwards absolute between transitive models of set theory with the same ordinals.

Question

Is there a Σ^1_3-formula $\Phi(v_0, v_1)$ in the language of second-order arithmetic with the property that the axioms of ZFC prove that the following statements hold:

1. For every real a, there is a unique real b such that $\Phi(a, b)$ holds.

2. If α is a countable ordinal, c is a code for a complete $L_{\omega_1, \omega}$-sentence that characterizes \mathbb{N}_α and d is a real with the property that $\Phi(c, d)$ holds, then d is a code for a complete $L_{\omega_1, \omega}$-sentence that characterizes $\mathbb{N}_{\alpha+1}$.
Theorem (Woodin)

The existence of a proper class of Woodin cardinals implies that the theory of $\mathcal{L}(\mathbb{R})$ with real parameters is generically absolute.

Question

Is there a formula $\Phi(v_0, v_1)$ in the language of set theory with the property that the theory $\text{ZFC} + \text{There exists a proper class of Woodin cardinals}$ proves the following statements hold:

1. For every real a, there is a unique real b such that $\Phi(a, b)$ holds in $\mathcal{L}(\mathbb{R})$.

2. If α is a countable ordinal, c is a code for a complete $\mathcal{L}_{\omega_1, \omega}$-sentence that characterizes \aleph_α and d is a real with the property that $\Phi(c, d)$ holds in $\mathcal{L}(\mathbb{R})$, then d is a code for a complete $\mathcal{L}_{\omega_1, \omega}$-sentence that characterizes $\aleph_{\alpha+1}$.
Theorem (Woodin)

The existence of a proper class of Woodin cardinals implies that the theory of $L(\mathbb{R})$ with real parameters is generically absolute.

Question

Is there a formula $\Phi(v_0, v_1)$ in the language of set theory with the property that the theory $\text{ZFC} + \text{There exists a proper class of Woodin cardinals}$ proves the following statements hold:

1. For every real a, there is a unique real b such that $\Phi(a, b)$ holds in $L(\mathbb{R})$.

2. If α is a countable ordinal, c is a code for a complete $L_{\omega_1, \omega}$-sentence that characterizes \aleph_α and d is a real with the property that $\Phi(c, d)$ holds in $L(\mathbb{R})$, then d is a code for a complete $L_{\omega_1, \omega}$-sentence that characterizes $\aleph_{\alpha+1}$.
Theorem (Woodin)

The existence of a proper class of Woodin cardinals implies that the theory of $L(\mathbb{R})$ with real parameters is generically absolute.

Question

Is there a formula $\Phi(v_0, v_1)$ in the language of set theory with the property that the theory $\text{ZFC} + \text{There exists a proper class of Woodin cardinals}$ proves the following statements hold:

1. For every real a, there is a unique real b such that $\Phi(a, b)$ holds in $L(\mathbb{R})$.

2. If α is a countable ordinal, c is a code for a complete $\mathcal{L}_{\omega_1, \omega}$-sentence that characterizes \mathbb{N}_α and d is a real with the property that $\Phi(c, d)$ holds in $L(\mathbb{R})$, then d is a code for a complete $\mathcal{L}_{\omega_1, \omega}$-sentence that characterizes $\mathbb{N}_{\alpha + 1}$.
Theorem (Woodin)

The existence of a proper class of Woodin cardinals implies that the theory of $L(\mathbb{R})$ with real parameters is generically absolute.

Question

Is there a formula $\Phi(v_0, v_1)$ in the language of set theory with the property that the theory ZFC + There exists a proper class of Woodin cardinals proves the following statements hold:

1. For every real a, there is a unique real b such that $\Phi(a, b)$ holds in $L(\mathbb{R})$.

2. If α is a countable ordinal, c is a code for a complete $\mathcal{L}_{\omega_1, \omega}$-sentence that characterizes \aleph_α and d is a real with the property that $\Phi(c, d)$ holds in $L(\mathbb{R})$, then d is a code for a complete $\mathcal{L}_{\omega_1, \omega}$-sentence that characterizes $\aleph_{\alpha+1}$.
Thank you!

Questions?
Thank you!

Questions?
Joan Bagaria.
Bounded forcing axioms as principles of generic absoluteness.

John T. Baldwin, Martin Koerwien, and Michael C. Laskowski.
Disjoint amalgamation in locally finite AEC.

James E. Baumgartner.
Almost-disjoint sets, the dense set problem and the partition calculus.

Martin Goldstern and Saharon Shelah.
The bounded proper forcing axiom.
Joan Bagaria.
Bounded forcing axioms as principles of generic absoluteness.

John T. Baldwin, Martin Koerwien, and Michael C. Laskowski.
Disjoint amalgamation in locally finite AEC.

James E. Baumgartner.
Almost-disjoint sets, the dense set problem and the partition calculus.

Martin Goldstern and Saharon Shelah.
The bounded proper forcing axiom.
Joan Bagaria.
Bounded forcing axioms as principles of generic absoluteness.

John T. Baldwin, Martin Koerwien, and Michael C. Laskowski.
Disjoint amalgamation in locally finite AEC.

James E. Baumgartner.
Almost-disjoint sets, the dense set problem and the partition calculus.

Martin Goldstern and Saharon Shelah.
The bounded proper forcing axiom.
Joan Bagaria.
Bounded forcing axioms as principles of generic absoluteness.

John T. Baldwin, Martin Koerwien, and Michael C. Laskowski.
Disjoint amalgamation in locally finite AEC.

James E. Baumgartner.
Almost-disjoint sets, the dense set problem and the partition calculus.

Martin Goldstern and Saharon Shelah.
The bounded proper forcing axiom.
Greg Hjorth.
Knight’s model, its automorphism group, and characterizing the uncountable cardinals.

Akihiro Kanamori.
The higher infinite.
Large cardinals in set theory from their beginnings.

Paul B. Larson.
The nonstationary ideal in the \mathbb{P}_{max} extension.

Saharon Shelah.
Proper forcing, volume 940 of \textit{Lecture Notes in Mathematics}.

Ioannis Souldatos.
Notes on cardinals that are characterizable by a complete (Scott) sentence.
Greg Hjorth.
Knight’s model, its automorphism group, and characterizing the uncountable cardinals.

Akihiro Kanamori.
The higher infinite.
Large cardinals in set theory from their beginnings.

Paul B. Larson.
The nonstationary ideal in the \mathbb{P}_{max} extension.

Saharon Shelah.
Proper forcing, volume 940 of *Lecture Notes in Mathematics*.

Ioannis Souldatos.
Notes on cardinals that are characterizable by a complete (Scott) sentence.
Greg Hjorth.
Knight’s model, its automorphism group, and characterizing the uncountable cardinals.

Akihiro Kanamori.
The higher infinite.
Large cardinals in set theory from their beginnings.

Paul B. Larson.
The nonstationary ideal in the \mathbb{P}_{max} extension.

Saharon Shelah.
Proper forcing, volume 940 of _Lecture Notes in Mathematics._

Ioannis Souldatos.
Notes on cardinals that are characterizable by a complete (Scott) sentence.
Greg Hjorth.
Knight’s model, its automorphism group, and characterizing the uncountable cardinals.

Akihiro Kanamori.
The higher infinite.
Large cardinals in set theory from their beginnings.

Paul B. Larson.
The nonstationary ideal in the \mathbb{P}_{max} extension.

Saharon Shelah.
Proper forcing, volume 940 of *Lecture Notes in Mathematics*.

Ioannis Souldatos.
Notes on cardinals that are characterizable by a complete (Scott) sentence.
Greg Hjorth.
Knight’s model, its automorphism group, and characterizing the uncountable cardinals.

Akihiro Kanamori.

The higher infinite.
Large cardinals in set theory from their beginnings.

Paul B. Larson.
The nonstationary ideal in the \(P_{\text{max}} \) extension.

Saharon Shelah.

Proper forcing, volume 940 of *Lecture Notes in Mathematics*.

Ioannis Souldatos.
Notes on cardinals that are characterizable by a complete (Scott) sentence.

Greg Hjorth.
Knight’s model, its automorphism group, and characterizing the uncountable cardinals.

Akihiro Kanamori.
The higher infinite.
Large cardinals in set theory from their beginnings.

Paul B. Larson.
The nonstationary ideal in the \mathbb{P}_{max} extension.

Saharon Shelah.
Proper forcing, volume 940 of *Lecture Notes in Mathematics.*

Ioannis Souldatos.
Notes on cardinals that are characterizable by a complete (Scott) sentence.
Greg Hjorth.
Knight’s model, its automorphism group, and characterizing the uncountable cardinals.

Akihiro Kanamori.
The higher infinite.
Large cardinals in set theory from their beginnings.

Paul B. Larson.
The nonstationary ideal in the \mathbb{P}_{max} extension.

Saharon Shelah.
Proper forcing, volume 940 of *Lecture Notes in Mathematics*.

Ioannis Souldatos.
Notes on cardinals that are characterizable by a complete (Scott) sentence.
Ioannis Souldatos.
Notes on cardinals that are characterizable by a complete (Scott) sentence.

Stevo Todorcevic.
Directed sets and cofinal types.

W. Hugh Woodin.
The axiom of determinacy, forcing axioms, and the nonstationary ideal, volume 1 of *De Gruyter Series in Logic and its Applications.*
Ioannis Souldatos.
Notes on cardinals that are characterizable by a complete (Scott) sentence.

Stevo Todorčević.
Directed sets and cofinal types.

W. Hugh Woodin.
The axiom of determinacy, forcing axioms, and the nonstationary ideal, volume 1 of *De Gruyter Series in Logic and its Applications.*
Ioannis Souldatos.
Notes on cardinals that are characterizable by a complete (Scott) sentence.

Stevo Todorcevic.
Directed sets and cofinal types.

W. Hugh Woodin.
The axiom of determinacy, forcing axioms, and the nonstationary ideal, volume 1 of *De Gruyter Series in Logic and its Applications*.