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Cohesive sets
Let

~A = (A0,A1,A2, . . . )

be a countable sequence of subsets of N.

Then there is an infinite set C ⊆ N such that, for every i:

either C ⊆∗ Ai

or C ⊆∗ Ai.

C is called cohesive for ~A, or simply ~A-cohesive.

Definition
If ~A is the sequence of computable sets, then C is called r-cohesive.

If ~A is the sequence of c.e. sets, then C is called cohesive.
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Skolem’s countable non-standard model of true
arithmetic
Skolem (1934):
Let C be cohesive for the sequence of arithmetical sets.
(Such a C is also called arithmetically indecomposable.)

Consider arithmetical functions f, g : N→ N. Define:

f =C g if C ⊆∗ {n : f(n) = g(n)}
f < g if C ⊆∗ {n : f(n) < g(n)}

(f + g)(n) = f(n) + g(n)

(f × g)(n) = f(n)× g(n)

Let [f] = {g : g =C f} denote the =C-equivalence class of f.

Form a structureM with domain {[f] : f arithmetical} and
[f] < [g] if f < g; [f] + [g] = [f + g]; [f]× [g] = [f × g].

ThenM models true arithmetic!
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Effectivizing Skolem’s construction
Tennenbaum wanted to know:
What if we did Skolem’s construction, but
• used computable functions f : N→ N in place of arithmetical

functions;
• only assumed that C is r-cohesive?

Do we still get models of true arithmetic?

Feferman-Scott-Tennenbaum (1959):
It is not even possible to get models of Peano arithmetic in this way.

Lerman (1970) has further results in this direction:
If you only consider co-maximal sets C, then the structure you get
depends only on the many-one degree of C.

(Co-maximal means co-c.e. and cohesive.)
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Cohesive products
Let L be a computable language, (An | n ∈ N) be a uniformly
computable sequence of L-structures, |Ai| ⊆ N and C ⊆ N be cohesive.
The cohesive product of (An | n ∈ N) over C is the L-structure ΠCAn
defined as follows.
Let D be the set of partial computable functions ϕ such that
∀n(ϕ(n) ↓→ ϕ(n) ∈ |An|) and C ⊆∗ dom(ϕ).

ϕ =C ψ if C ⊆∗ {n : ϕ(n) = ψ(n)}
R(ψ0, . . . , ψk−1) if C ⊆∗ {n : RAn(ψ0(n), . . . , ψk−1(n))}
F(ψ0, . . . , ψk−1)(n) = fAn(ψ0(n), . . . , ψk−1(n))

Let [ϕ] denote the =C-equivalence class of ϕ.

Let ΠCAn be the structure with domain {[ϕ] : ϕ ∈ D} and

R([ψ0], . . . , [ψk−1]) if R(ψ0, . . . , ψk−1)

F([ψ0], . . . , [ψk−1]) = [F(ψ0, . . . , ψk−1)].
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Cohesive powers
Dimitrov (2009):
If An = A is the same fixed computable structure A for every n, the
cohesive product ΠCAn is called the cohesive power of A over C and is
denoted ΠCA.

Cohesive products by co-c.e. cohesive sets also have the helpful
property that every member of the cohesive product has a total
computable representative.

A computable structure A always naturally embeds into its cohesive
powers.

κ : x 7→ the constant function x.

• If A is finite and C is cohesive, then every partial computable
function ϕ : N→ |A| with C ⊆∗ dom(ϕ) is eventually constant on
C, and hence A ∼= ΠCA .
• If A is an infinite computable structure, then every cohesive power

ΠCA is countably infinite.
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Uniformly n-decidable structures

• A computable structure is a structure having a computable atomic
diagram (0-decidable).
• A decidable structure is a structure having a computable

elementary diagram.
• An n-decidable structure is a structure having a computable

Σn-elementary diagram.
• A sequence (Ai | i ∈ N) of L-structures is uniformly computable,

uniformly decidable, or uniformly n-decidable if the respective
sequence of atomic, elementary, or Σn-elementary diagrams is
uniformly computable.
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Łoś theorem for n-decidable structures

Theorem
Let L be a computable language, let (Ai | i ∈ N) be a sequence of
uniformly n-decidable L-structures, |Ai| ⊆ N, and let C be cohesive.
Then for any [ϕ0], . . . , [ϕm−1] ∈ |ΠCAi|

1 if Φ(v0, . . . , vm−1) is a Σn+2 formula, then

ΠCAi |= Φ([ϕ0], . . . , [ϕm−1])→ C ⊆∗ {i | Ai |= Φ(ϕ0(i), . . . , ϕm−1(i))}

2 if Φ(v0, . . . , vm−1) is a Πn+2 formula, then

C ⊆∗ {i | Ai |= Φ(ϕ0(i), . . . , ϕm−1(i))} → ΠCAi |= Φ([ϕ0], . . . , [ϕm−1])

3 if Φ(v0, . . . , vm−1) is a ∆n+2 formula, then

C ⊆∗ {i | Ai |= Φ(ϕ0(i), . . . , ϕm−1(i))} ↔ ΠCAi |= Φ([ϕ0], . . . , [ϕm−1])
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Łoś theorem for n-decidable structures
Dimitrov : For cohesive powers of a computable structure the
fundamental theorem of cohesive powers holds.

1 Łoś’s theorem holds for Σ2 sentences and Π2 sentences.
2 One-way Łoś’s theorem holds for Σ3 sentences.

Theorem (Łoś’s theorem for cohesive powers)
Let L be a computable language, A be an n-decidable structure, and
let C be cohesive. Then

1 If Φ is a ∆n+3 sentence then

ΠCA |= Φ if and only if A |= Φ

2 If Φ is a Σn+3 sentence, then

A |= Φ implies ΠCA |= Φ

If A is decidable structure then ΠCA ≡ A.
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An observation
Example
Consider Q as a linear order (i.e., as a structure in the language {<}.)

Q is a countable dense linear order without endpoints.
If L is a countable dense linear order without endpoints, then L ∼= Q.
“Dense linear order w/o endpoints” is axiomatized by a Π2 sentence θ.

If C is any cohesive set, then ΠCQ |= θ by Łoś for cohesive powers.

So ΠCQ is a countable dense linear order without endpoints.

Thus ΠCQ ∼= Q.

(Not an accident: ΠCA ∼= A whenever A is uniformly locally finite
ultrahomogeneous, i.e. every isomorphism between two
finitely-generated substructures in a sufficiently effective way extends to
an automorphism on A. Examples are the computable presentations of
the Rado graph and the countable atomless Boolean algebra.)
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Reducts and substructures
Let L ⊆ L+ be two languages, and let A be an L+-structure. Then the
reduct A � L of A is the L-structure obtained from A by forgetting
about the symbols of L+ \ L.

Proposition
Let L ⊆ L+ be computable languages, (An | n ∈ N) be a uniformly
computable sequence of L+-structures and C ⊆ N be cohesive. Then

ΠC(An � L) ∼= (ΠCAn) � L

Proposition
Let L be a computable language with a unary relation symbol U. Let A
be a computable L-structure, and suppose that {a ∈ |A| | A |= U(a)}
forms the domain of a computable substructure B of A. Let C be a
cohesive set. Then {[ϕ] ∈ |ΠC(A)| : ΠCA |= U([ϕ])} forms the domain
of a substructure D of ΠCA and ΠCB ∼= D.
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Disjoint unions

Let L be a relational language, and let A0, . . . ,Ak−1 be L-structures.
Then the disjoint union of A0, . . . ,Ak−1 is the L-structure

⊔
i<kAi with

domain
⋃

i<k{i} × |Ai| and R
⊔
i<kAi((i0, x0), . . . , (im−1, xm−1)) if

i0 = · · · = im−1 = i for some i < k and RAi(x0, . . . , xm−1).

Proposition
Let L be a computable language and let A0, . . . ,Ak−1 be L-structures,
and C ⊆ N be cohesive. Then

ΠC
⊔
i<k

Ai ∼=
⊔
i<k

ΠCAi.
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Saturation
Fact: for a countable language, ultraproducts over countably
incomplete ultrafilters (i.e., ultrafilters that are not closed under
countable intersections) are always ℵ1-saturated.
A structure A is recursively saturated if it realizes every computable
type over A.
A is Σn-recursively saturated if it realizes every computable Σn-type
over A.

Theorem
Let L be a computable language, and C ⊆ N be cohesive.

1 Let (An | n ∈ N) be a sequence of uniformly decidable L-structures.
Then ΠCAn is recursively saturated.

2 Let (An | n ∈ N) be a sequence of uniformly n-decidable
L-structures. Then ΠCAn is recursively Σn-saturated.

3 For a decidable L-structure A, ΠCA is recursively saturated.
4 For an n-decidable L-structure A, ΠCA is recursively Σn-saturated.
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Saturation and isomorphism
Theorem
Let L be a computable language, and C ⊆ N be co-c.e. cohesive.

1 Let (An | n ∈ N) be a sequence of uniformly n-decidable
L-structures. Then ΠCAn is recursively Σn+1-saturated.

2 For an n-decidable L-structure A, ΠCA is recursively
Σn+1-saturated.

Theorem
Let L be a computable language, let A0 and A1 be computable
L-structures that are computably isomorphic, and let C be cohesive.
Then ΠCA0 ∼= ΠCA1.

Corollary
If A is a computable L-structures which is computably categorical, then
for every structure B ∼= A we have ΠCA ∼= ΠCB.
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Linear orders

Theorem
Let L = (L,≺L) andM = (M,≺M) be computable linear orders, and
let C be a cohesive.
(1) Sum ΠC(L+M) ∼= ΠCL+ ΠCM,

(2) Product ΠC(LM) ∼=
(
ΠCL

)(
ΠCM

)
, and

(3) Reverse ΠC(L∗) ∼=
(
ΠCL

)∗.
The product LM is a linear order P = (P,≺P), where P = M× L and

(x, a) ≺P (y, b), if and only if (x ≺M y) or (x = y and a ≺L b).

• ω — the order type of (N;<).
• ζ — the order type of (Z;<).
• η — the order type of (Q;<).
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Linear orders: condensation
Let L = (L,≺L) be a linear order.

Definition
A condensation of L is any linear orderM = (M,≺M) obtained by
partitioning L into a collection of non-empty intervals M and, for
I, J ∈ M, I ≺M J if and only if (∀a ∈ I)(∀b ∈ J)(a ≺L b).

Definition
For x ∈ L, let cF(x) denote the set of y ∈ L for which there are only
finitely many elements between x and y:

cF(x) = {y ∈ L : the interval [min≺L{x, y},max≺L{x, y}]L in L is finite}.

The set cF(x) 6= ∅, as x ∈ cF(x). The finite condensation cF(L) of L is
the condensation obtained from the partition {cF(x) : x ∈ L}.

For example, cF(ω) ∼= 1, cF(ζ) ∼= 1, cF(η) ∼= η, and cF(ω + ζη) ∼= 1 + η.
Notice that the order-type of cF(x) is always either finite, ω, ω∗, or ζ.
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Linear orders
Let (Ln | n ∈ N) be a uniformly computable sequence of linear orders,
let C be cohesive.

Lemma
Let [ψ] and [ϕ] be elements of ΠCLn. Then the following are equivalent.
(1) [ϕ] is the ≺ΠCLn-immediate successor of [ψ].
(2) (∀∞n ∈ C)(ϕ(n) is the ≺Ln-immediate successor of ψ(n)).
(3) (∃∞n ∈ C)(ϕ(n) is the ≺Ln-immediate successor of ψ(n)).
Moreover [ψ] 2ΠCLn [ϕ] iff limn∈C |(ψ(n), ϕ(n))Ln | =∞.

Theorem
Let (Ln | n ∈ N) be a uniformly computable sequence of linear orders,
let C be cohesive. If either (Ln | n ∈ N) is uniformly 1-decidable or C is
co-c.e. then cF(ΠCLn) is dense.
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Cohesive powers of computable copies of ω

Let L be a computable copy of ω, and let C be cohesive.

Lemma

• The image of the canonical embedding of L into ΠCL is an initial
segment of ΠCL of order-type ω.
• So, ΠC(L) ∼= ω +M, for some linear orderM. ω-standard part

andM-nonstandard.
• If [ϕ] is an element of ΠCL then [ϕ] is non-standard if and only if

limn∈C ϕ(n) =∞.
• If [ϕ] is nonstandard element of ΠCL then there are nonstandard

elements [ψ−] and [ψ+] of ΠCL, in other blocks of [ϕ], such that
[ψ−] 2ΠCL [ϕ] 2ΠCL [ψ+]. (limn∈C |(ψ−(n), ϕ(n))L| =∞).
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Cohesive powers of computable copies of ω

Let L be a computable copy of ω, and let C be cohesive.

Theorem
• If either L is 1-decidable or C is co-c.e. then cF(ΠCL) = 1 + η.
• If L is computably isomorphic to the standard presentation of ω

then ΠCL has order type ω + ζη.
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Examples

Example
Let C be a cohesive set. Let N,Z, and Q denote the standard
presentations of ω, ζ, and η.
• ΠCN∗ ∼= (ΠCN)∗ ∼= (ω + ζη)∗ ∼= ζη + ω∗.

• ΠCZ ∼= ΠC(N∗ + N) ∼= ζη + ω∗ + ω + ζη ∼= ζη + ζ + ζη ∼= ζη.

• ΠCZQ ∼= (ΠCZ)(ΠCQ) ∼= ζηη ∼= ζη.

• ΠC(N+ ZQ) ∼= (ΠCN) + (ΠCZQ) ∼= (ω + ζη) + (ζη) ∼= ω + ζη.
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Are there other cohesive powers of N?
More properly:
Is there a computable copy L of N with ΠCL � ω + ζη?

Such an L cannot be isomorphic to N via a computable isomorphism.

Classic computable copy L = (N,≺) of N with non-computable
isomorphism (the successor is not computable).
• Let f : N→ N be computable injection with

ran(f) = K = {e : Φe(e)↓}.
• Put the evens in their usual order: 2a ≺ 2b if 2a < 2b.
• For each s, put 2s + 1 between 2f(s) and 2f(s) + 2:

2f(s) ≺ 2s + 1 ≺ 2f(s) + 2.

However:
We still get ΠCL ∼= ω + ζη for every cohesive C.

So, it is not enough just to ensure that the isomorphism L ∼= N is
non-computable!
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A different cohesive power of N
Theorem
For every co-c.e. cohesive set C, there is a computable copy L of N such
that ΠCL 6≡ ω + ζη.

Idea: Build L = (N,≺) so that [id] does not have an immediate
successor in the cohesive power ΠCL.
To do this, ensure that
∀∞n ∈ C (ϕe(n)↓ ⇒ ϕe(n) is not the ≺-immediate successor of n)

Then [ϕe] is not the immediate successor of [id] in ΠCL.

Corollary
There is a computable linear order L, a cohesive set C, and a
Π3-sentence Φ such that L |= Φ, but ΠCL 6|= Φ.

Proposition
There is a unif. comp. seq. of finite linear orders (Ln | n ∈ N) such that
the cohesive product ΠCLn is a linear order with no maximum element.
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Coloured linear orders

Definition
A coloured linear order is a structure O = (L,N,≺L,F), where
L = (L,≺L) is a linear order and F is (the graph of) a function
F : L→ N, thought of as a colouring of L.

If O is a computable coloured linear order and C is a cohesive set, then
the cohesive power ΠCO consists of a linear order ΠCL, a set ΠCN
thought of as a collection of colours, and a (graph of a) function F
thought of as a colouring of ΠCL.
Call a colour ‖ δ ‖∈ ΠCN a solid colour if δ is eventually constant on C
(i.e., if ‖ δ ‖ is in the range of the canonical embedding of N into ΠCN).
Otherwise, call ‖ δ ‖ a striped colour.
If L is a copy of ω then we call O a coloured copy of ω.
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Colourful linear orders

Definition
Call the cohesive power ΠCO colourful if the following items hold:
For every pair of non-standard elements [φ], [ψ] ∈ ΠCL with
[ψ] ≺ΠCL [ϕ]

• and every solid colour ‖ δ ‖∈ ΠCN, there is a [θ] ∈ ΠCL with
[ψ] ≺ΠCL [θ] ≺ΠCL [ϕ] and F([θ]) =‖ δ ‖.
• there is a [θ] ∈ ΠCL with [ψ] ≺ΠCL [θ] ≺ΠCL [ϕ] where F([θ]) is a

striped colour.

Theorem
Let C be a co-c.e. cohesive set. Then there is a computable coloured
copy O of ω such that ΠCO is colourful.

If C is a co-c.e. cohesive set, then the first bullet of Definition implies
the second.
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Colourful linear orders

We construct a linear order O = (L,N,≺L,F), with L ∼= ω.
• C - co-c.e. cohesive set, then [φ] ∈ ΠCL has a total computable el.
• [φ] is non-standard if and only if limn∈C ϕ(n) =∞.
• for every pair of total computable functions ϕ and ψ with

limn∈C ϕ(n) = limn∈C ψ(n) =∞:

(∀∞n ∈ C)(ψ(n) ↓≺L ϕ(n) ↓ ⇒
(∀d ≤ max<(ϕ(n), ψ(n))(∃k)(ψ(n) ≺L k ≺L ϕ(n) & (F(k) = d))

• Thus between [ψ] and [ϕ] there are elements of ΠCL of every solid
colour and also at least one element of a striped colour.
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A computable copy of ω with a cohesive power of
order-type ω + η

Theorem
For every co-c.e. cohesive set C, there is a computable copy L of N such
that

ΠCL ∼= ω + η.

Proof.
Let C be co-c.e. and cohesive. Let O = (L,N,≺L,F) be the computable
coloured copy of ω. Let L = (L,≺L) denote the computable copy of ω.
The cohesive power ΠCL has an initial segment of order-type ω. There
is neither a least nor greatest non-standard element of ΠCL. By the
previous theorem the non-standard elements of ΠCL are dense. So ΠCL
consists of a standard part of order-type ω and a non-standard part
that forms a countable dense linear order without endpoints. So,
ΠCL ∼= ω + η.
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Non-elementary equivalent
Example
Let C be a co-c.e. cohesive set, and let L is a computable copy of ω
with ΠCL ∼= ω + η.

1 Let k ≥ 1, and k denote a linear order with k elements
0 < 1 < · · · < k− 1. Then kL ∼= ω

ΠC(kL) ∼=
(
ΠCk

)(
ΠCL

) ∼= k(ω + η) ∼= ω + kη.

The linear orders ω + kη for k ≥ 1 are pairwise non-elementarily
equivalent.

2 Consider the computable linear orders L and L+Q. They are not
elementarily equivalent because the sentence “every element has an
immediate successor” is true of L but not of L+Q. However, using
the last theorem and the fact that ΠCQ ∼= η, we calculate

ΠC(L+Q) ∼= ΠCL+ ΠCQ ∼= (ω + η) + η ∼= ω + η ∼= ΠCL.
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A generalized sum
Definition
Let L be a linear order, and let (Ml | l ∈ |L|) be a sequence of linear
orders indexed by |L|. The generalized sum Σl∈|L|Ml of (Ml | l ∈ |L|)
over L is the linear order S = (S,≺S) defined as follows:
S = {(l,m) | l ∈ L & m ∈Ml}, and (l0,m0) ≺S (l1,m1) if and only if
(l0 ≺L l1) ∨ (l0 = l1 & m0 ≺Ml0

m1).

Example
L1 + L2 = Σi∈2Li and L1L2 = Σl∈|L2|L1

Theorem
Let L be a computable linear order, and let (Ml | l ∈ |L|) be a
uniformly computable sequence of linear orders indexed by |L|. Let C
be a cohesive set. Then

ΠCΣl∈|L|Ml ∼= Σ[θ]∈ΠCLΠCMθ(n)
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A shuffle sum
Definition
Let X be a non-empty collection of linear orders with |X| ≤ ℵ0. Let
f : Q→ X be a function such that f−1(M) is dense in Q for each linear
orderM∈ X. Let S = Σq∈Qf(q) be the generalized sum of the
sequence (f(q) | q ∈ Q) over Q. By density, the order-type of S does not
depend on the particular choice of f. Therefore S is called the shuffle of
X and is denoted σ(X).

Example
We wantM∼= ω: ΠCM∼= ω + σ({2, 3}).
• Start with L with ΠCL ∼= ω + η and O = (L,N,≺L,F).
• Collapse F into a colouring G : L→ {0, 1}. (G(n) = sg(F(n))).
• The colours ‖0‖ and ‖1‖ are dense in the non-standard p. of ΠCL.
• Replace the elements of L with colour 0 — with a copy of 2, and

with colour 1 — with a copy of 3.
Then ΠCM∼= ω + σ({2, 3}).
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Shuffle of finite orders
Proposition
Let k0, . . . , kN be nonzero natural numbers and let O be a computable
coloured copy of ω. There is a computable copy L of ω (constructed
from O) such that for every cohesive set C, if ΠCL is colourful, then
ΠCL has order type ω + σ({k0, . . . , kN}).

When shuffling infinite collections of finite linear orders into a cohesive
power of a computable copy of ω, we start with a computable colored
copy of ω and replace its elements by arbitrarily large finite linear
orders. If the finite linear orders can be uniformly computably
expanded to models of Γ, a set with Π2 sentences, that says that every
element except the last element has an immediate successor, every
element except the first element has an immediate predecessor, there is
a unique least element and a unique greatest element, then this
replacement process naturally shuffles the linear order ω + ζη + ω∗ into
the cohesive power.
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The main result
Expand the language of linear orders to D with the immediate
successor relation, the least element and the greatest element.

Proposition
Let (Mn | n ∈ I) be a uniformly computable sequence of D structures,
that are all finite models of Γ, indexed by a computable I ⊆ N. Let C
be a cohesive set. Let θ : N→ I be a partial computable function with
C ⊆∗ dom(θ). Suppose that lim n ∈ C|Mθ(n)| =∞. Then, as a linear
order, ΠCMθ(n) has order-type ω + ζη + ω∗.

Theorem
Let X ⊆ N \ {0} be a Boolean combination of Σ2 sets thought of as a
set of finite order types. Let C be a co-c.e. cohesive set. There is a
computable copy L of ω such that ΠCL has order type
ω + σ(X ∪ {ω + ζη + ω∗}).
Moreover if X is finite and non-empty, then there is also a computable
copy L of ω where the cohesive power ΠCL has order-type ω + σ(X).
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A new result

Theorem (Paul Shafer)
Let X ⊆ N \ {0} be a Boolean combination of Σ2 sets thought of as a
set of finite order types. There is a computable copy L of ω such that
for every ∆2 cohesive set C the cohesive power ΠCL has order type
ω + σ(X ∪ {ω + ζη + ω∗}).
Moreover if X is finite and non-empty, then there is also a computable
copy L of ω where the cohesive power ΠCL has order-type ω + σ(X).

Byproduct:
Martin, 1963: There is an infinite Π1 set with no Π1 cohesive subset.
Shafer, 2022: There is an infinite Π1 set with no ∆2 cohesive subset.

THANK YOU!
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