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Why not just classical logic limited to computable
structures

Classical logic is isomorphism invariant, but there are lots of
interesting questions which are only
computable-isomorphism-invariant.

For instance:

Definition
A computable structure A has computable dimension k (for
k ≤ ω + 1) iff A has exactly k copies up to computable
isomorphism.

In a precise sense (McCoy), the only “natural” computable
dimensions are 1 and ω. But computable-isomorphism-type
counting is not the end of the story!
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A hard question

▶ (ω;<) is “productive for ∼=c :” given any computable list of
copies of (ω;<) we can computably biuild a new copy not ∼=c

any on the list.

▶ There are c.d.∞ structures for which no infinite collection of
pairwise-̸∼=c copies exists. (Turetsky)

▶ There are also c.d.∞ structures for which a computable list of
computable isomorphism types exists
(Hirschfeldt/Khoussainov/Shore)

Question
What does the set of “cardinalities” of computable isomorphism
types look like, as a poset?



Number realizability in structures, 1/2

Suppose A is a computable structure with domain ω in a finite (or
at worst computable) language.

We define the relation e : A |=0 φ
(“e realizes φ in A”) by recursion as follows:

▶ If φ is a literal, then e : A |=0 φ iff A |= φ in the usual sense.

▶ If φ ≡ ψ ∧ θ, then e : A |=0 φ iff e = ⟨a, b⟩ with a : A |= ψ
and b : A |= θ.

▶ If φ ≡ ψ ∨ θ, then e : A |=0 φ iff e = ⟨i , a⟩ ∈ 2× ω with
i = 0 =⇒ a : A |= ψ and i = 1 =⇒ a : A |= θ.

▶ If φ ≡ ∀xψ(x) then e : A |=0 φ iff e is an index for a total
computable function f with f (a) : A |= ψ(a) for each a ∈ ω.

▶ If φ ≡ ∃xψ(x) then e : A |=0 φ iff e = ⟨a, b⟩ with
a : A |= ψ(b).

Note: φ can have natural number (= domain-element) parameters
but must be finitary first-order and with no implications or
“non-atomic” negations. “∃e[e : A |=0 φ]” is abbreviated
“A |=0 φ.”
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Number realizability in structures, 2/2

We can extend the above in a couple obvious ways to get Rc ,R→,
and finally R:

▶ |=c : allow computable infinitary Boolean combinations.
(Already standard in computable structure theory, e.g.
“rice=Σc

1”)

▶ |=→: allow implications (with non-atomic negations being
shorthand for φ→⊥).

▶ |=⋆: do both.

Interpreting infinitary Boolean combinations is straightforward
(“stay effective”). Implication is more subtle:

▶ We will set e : A |=→ φ→ ψ iff e is an index for a partial
computable function p such that, whenever c : A |=→ φ, we
have

p(c) ↓: A |=→ ψ.



Wait, implication seems weird ...

▶ We will set e : A |=→ φ→ ψ iff e is an index for a partial
computable function p such that, whenever c : A |=→ φ, we
have

p(c) ↓: A |=→ ψ.

This is a “for-structures” version of Kleene’s number
realizability. Historically only the start, and very unsatisfying for
constructive semantics. Unsatisfying because it lets classical
negation sneak in through the back door. In particular, by putting
double negations everywhere we recover full classical logic!
Probably a lot of interesting things to do beyond this (cf. J.
Moschovakis or van Oosten). But for now, we’ll stick with number
realizability.



Complexity hierarchies

There is no single complexity hierarchy for R (or even R0) which
makes sense. Consider (for A a computable structure):

▶ Every ∃∀∃ sentence which is classically true is computably
true.

▶ Markov’s principle (“Every Turing machine either halts or
doesn’t on input 0”) is not computably true but is classically
Σ3.

Even finitary disjunctions carry nontrivial computability-theoretic
strength once inside a quantifier.
There are at least three hierarchies which seem relevant:
quantifier rank, tree rank, and (for R→ and R) moral type.



The three hierarchies
▶ Quantifier rank is just the classical alternation-of-quantifiers

count, adapted to non-prenex formulas by taking max at
Booleans. Very “lossy” but still has a role: plays well with
EF-games.

▶ Tree rank is the rank of the formula as a well-founded tree,
so that quantifiers and Booleans contribute equally. This
captures things better but gives anomalous results for very low
complexity things (e.g. the disjunction of two literals should
have rank zero but doesn’t).

▶ Finally, the moral type of a sentence is the intentional
behavior of a realizer for that sentence. E.g. even though all
realizers are numbers, if φ,ψ ∈ R0 we intuitively think of a
realizer for φ→ ψ as a function rather than a number. This
suggests

MT(φ→ ψ) = max{MT(φ) + 1,MT(ψ)},

with quantifiers having no impact and taking max(/sup) at
Booleans.



A bit more on moral type

Moral type plays an important role in index set calculations: if
φ ∈ Rc then the set of (indices of) structures satisfying φ is Σ3

even if the tree rank of φ is large.

Proposition

If MT(φ) = n then the set of structures satisfying φ is Σ3+n, and
this is sharp in general.

(We can generalize this to infinitary sentences, it just takes some
notational care.) See also Leivant on implicational complexity.



Computable copies of (ω;<)

Let N be the set of computable copies of (ω;<). Some good test
questions:

▶ In what way is the standard copy optimal?

▶ Is N “elementary,” and if not what is the model class of its
theory?

▶ How do things change when we generalize from R to Rc or
R→?



Optimality of “obvious” ω

The first question has an easy answer:

▶ The standard version of ω is characterized up to computable
isomorphism by the realizability of “Every element has a
successor,” which is an R-sentence.

▶ Moreover, every classically-true first-order sentence is
realizable in the standard version (can even go further, e.g.
include +), so no other copy (up to ∼=c) can be
R-characterized.

▶ Allowing infinitary sentences breaks this horribly, and allowing
implication probably breaks this horribly.



Not-quite-concrete characterizations of copies of ω, 1/2

Proposition

Let A be a computable copy of (ω;<). Then there is a φ ∈ Rc

such that A |=c φ and any B |=c φ has A ∼=c B.

Proof sketch.
We will have

φ ≡ ∀x
∨
i∈N

ψi (x),

where each ψi “follows” element i : e.g. if 7 starts out looking like
the initial element but then 23 gets enumerated before it, ψ7 will
look like

∀y [x ≤ y ∨ x ≤ y ∨ x ≤ y ∨ ... ∨ x ≤ y ∨ ψ23(y)].

Note that we avoid “loops” so everything stays well-founded.



Not-quite-concrete characterizations of copies of ω, 2/2

Proposition

Let A be a computable copy of (ω;<). Then there is a φ ∈ Rc

such that A |=c φ and any B |=c φ has A ∼=c B.
I don’t know what happens if we allow implication but keep things
finitary:

Question
Is there a computable copy of (ω;<) not computably isomorphic
to the usual one, which is ∼=c -characterized by an R→ sentence?



Some more questions about N

Rolling back to R0, there are still interesting open questions. Most
immediately:

Definition
Let ⊑ be the preorder on N given by A ⊑ B iff
ThR0(A ⊆ ThR0(B).
Canonical ω is maximal in this preorder.

▶ Are there minimal elements?

▶ Are there elements with no common lower bound?

▶ What are the possible sizes of the resulting equivalence
classes?

To me the first question is most interesting; I’ve spent some time
trying to get a negative answer without success.



The model class of Th0(N)

Which structures satisfy all the R0-sentences true in every copy of
(ω;<)?

Theorem
Suppose L is a discrete linear order with a first element and no last
element. The for every n ∈ ω, there is a computable copy A of
(ω;<) such that Duplicator computably wins the length-n
EF-game between L and A.
Consequently, if L |=0 φ and φ has tree rank < n then A |=0 φ.

Proof sketch.
Build A and the winning Duplicator strategy simultaneously.
Requirements correspond to intervals “matching up,” but this is a
weaker condition than having the same size: intervals k-match if
they have the same size or are each sufficiently large (basically
> 2k), with k a parameter keeping track of how many moves are
left in the game.

Since



Re: Scott’s isomorphism theorem

Theorem (Scott)

Classically, every countable structure is characterized up to
isomorphism by an Lω1,ω sentence.

This fails in a bad way in our setting!

Due to changed semantics,
this isn’t a trivial corollary of the existence of computable
structures of high (classical) Scott rank.

Theorem
There are non-computably-isomorphic computable structures which
have the same R⋆-theories.
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Failure of Scott phenomenon

Theorem
There are non-computably-isomorphic computable structures which
have the same R⋆-theories.

Proof sketch.
For each computable ordinal α there are
non-computably-isomorphic (indeed, non-isomorphic) computable
ordinals such that Duplicator has a winning strategy in the
counting-down-along-α EF-game.

Applying Barwise compactness
we get a pair of (classically isomorphic) non-computably-isomorphic
Harrison orders such that Duplicator computably wins every
computable-length EF-game between them.

Question
What is the relationship between being half of such a pair and
having high Scott rank?
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Scrutinizing R0

R0 is motivated significantly by preexisting interest in FOL.

This is
grounded — at least partly — in two tameness properties,
downward Lowenheim-Skolem and compactness. DLS is
meaningless for us, and compactness fails ...

Theorem (Tennenbaum)

There is a computable first-order theory with no computable
models such that every finite subtheory has a computable model.

... even within a classical isomorphism type!

Theorem
There is a computable structure A and a computable R0-theory T
such that for every finite F ⊆ T there is a computable B ∼= A with
B |=0 F but no computable structure satisfies0 T.
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(Non-)Compactness for computability

Theorem
There is a computable structure A and a computable R0-theory T
such that for every finite F ⊆ T there is a computable B ∼= A with
B |=0 F but no computable structure satisfies0 T.

Basically, “simultaneous computable presentability” is interesting.

Proof sketch.
We can produce a computable sequence of Π2 indices for graphs
which happen to have computable copies admitting no computable
sequence of computable indices for isomorphic copies. Via Marker
extensions, attach a “Π2 copy” of the ith graph in this sequence to
element i in a copy of (ω; 0, succ).

Question
Does computable dimension ∞ imply “not compact for
computability” (in any sense)?



Is compactness-for-computability interesting?

Question
Does computable dimension ∞ imply “not compact for
computability” (in any sense)?

Only relevant result I know:

Theorem (Harrison-Trainor, Proposition 4.14’s proof)

For any family of rice predicates which is finitely computably
realizable on a copy of (ω,<), there is a copy of (ω,<) in which
all of the relations are computable.

But this relies crucially on riceness.



Thinking categorically 1/2: strategories

That’s only the second-worst term for it: Benda 1979 introduced the (non-effective) one-object version, called

“modeloids.” Categorical naming convention then suggests ... modeloidoids.

Over all, the effective EF-games perspective seems more robust
and justified (to me anyways!) than any particular “sentential”
definition of logic I am aware of. And HT/M/M/M suggests a
different approach entirely:

Theorem (Harrison-Trainor/Melnikov/Miller/Montalbán)

Functors between categories of isomorphic copies of computable
structures correspond to effective infinitary interpretations.

(Uneducated comment: may be fruitful to compare with
“conceptual completeness” results in categorical logic, and see
Chen 2017.)
This suggests looking at a logic as an appropriately-invariant
assignment of games to pairs of structures so that strategies are
composable. Interpretations are then “nice” functors between such
categories. Sentential structure is (if present at all) an emergent
and secondary phenomenon.
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Computable forcing

This is only tangentially connected with the story so far, but:

Question
What do forcing arguments look like in the computable universe?

Can injury-freely prove Friedberg-Muchnik relative to a Cohen
generic, so this is tempting! (Nies-Shore-Slaman barrier
notwithstanding)

There is some material here which seems
potentially relevant to building structures in more transparent
ways, but is not widely known.
The main ideas:

▶ V is to REC as a c.t.m. M is to a subrecursive class

▶ Not much to say about bare posets (all effectively equivalent
or trivial); instead, look at posets equipped with enumeration
operators (“virtual c.e. sets”)

▶ Rasiowa-Sikorski is much more nuanced!

I want to focus on this last bulletpoint here.
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operators (“virtual c.e. sets”)

▶ Rasiowa-Sikorski is much more nuanced!

I want to focus on this last bulletpoint here.



A stumbling block for computable RS

Classically, RS says “Every countable family of dense sets is met by
a filter”

Warning

A naive effectivization of RS is false: there is no filter through 2<ω

which meets every primitive recursive dense set, since if f = Φe is
computable then

{σ : ∃n < |σ|(Φe(n)[|σ|] ↓̸= σ(n))}

is p.r. and dense.

Note that this parallels the failure of choiceless RS, so this isn’t
too surprising (we’ll get into more trouble shortly).
There are two effectivizations of RS that seem interesting/useful
and are actually true. The weaker one is much more intuitive and
has nicer “algebraic” properties.



Two computable RS theorems
There are two effectivizations of RS that seem interesting/useful
and are actually true. Let P be a computable poset and let
F : ω2 → ω be total, enumerating C(F ) := {λx .F (n, x) : n ∈ ω}.

Lemma (Folklore, trivial)

There is a computable filter G such that G ∩ D ̸= ∅ whenever (the
characteristic function of) D is a dense set in C(F ) and some
f ∈ C(F ) has f (p) ∈ D≤p for each p.

Lemma (Maass 1982)

There is a computable filter G such that G ∩ D ̸= ∅ whenever (the
characteristic function of) D is a dense set in C(F ) and some
f ∈ C(F ) has the more complicated property that for every
computable maximal filter H there are cofinal-in-H-many p ∈ H
with f (p) ∈ D≤p.

Call such filters “naively F -generic” and “Maassively F -generic”
respectively. (Sorry ...) Each notion has a (basically tautological)
game characterization.
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Comparing genericity notions

First let’s see why naive genericity is weak:

Proposition

Let f be a computable function with properly c.e. range. Then no
matter what F we pick, there are naively F -generic filters G0,G1

through the poset of “permission below f ” which enumerate in the
obvious way sets of degree 0 and 0′ respectively.

Compare Maass 1982: Maassive genericity doesn’t suffer the same
weakness!
So why (besides messiness, e.g. no choiceless parallel for Maassive
genericity) is naive genericity still useful?



Thinking categorically 2/2: virtual c.e. sets

The proof of the proposition on the previous side involves “adding
constraints” to the forcing in two incompatible ways: one forces
the generic to enumerate something in 0, and the other something
in 0′.

The result then follows from monotonicity of forcing with
respect to appropriate maps of posets: “enriching the poset” only
ever forces more things, as long as “forces” means “makes true of
all sufficiently-naively-generic filters.”
This monotonicity fails for Maassive genericity, as a consequence
precisely of the power of Maass’ genericity notion.

Definition
A virtual c.e. set (P, ν) is a computable poset equipped with a
computable and monotonic enumeration operator.
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Morphisms between virtual c.e. sets

Definition
A virtual c.e. set (P, ν) is a computable poset P equipped with a
computable and monotonic enumeration operator ν. A morphism
of v.c.e. sets

(P, ν) → (Q, µ)

is a computable function m : Q → P such that the m-preimage of
any P-dense set is Q-dense and such that µ = ν ◦m.

(Idea: “adding clauses” to a poset in a non-geneiricity-preventing
way gives rise to a morphism)
While Maassive genericity gives us more control over the behavior
of individual virtual c.e. sets, the category of virtual c.e. sets is
better behaved in terms of naive genericity.
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Thanks!
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