(Not) Computing linear orders

Noah Schweber

April 23, 2020
Breaking uniform computations: linear orders with "wild" intervals
Measures of complexity, 1/2

By *structure* we will mean a countable structure in a finite language. A *copy* of a structure is an isomorphic structure with domain ω. We identify copies with their atomic diagrams. A few natural ways to compare structures:

- Muchnik (weak, nonuniform) reducibility: $A \leqsw B$ iff for every copy B of B there is a copy A of A with $A \leq T B$.
- Medvedev (strong, uniform) reducibility: $A \leqss B$ iff there is some $e \in \omega$ such that $\Phi_B e \sim A$ for every $B \sim B$.
- Medvedev-mod-parameters: $A \leqss/p B$ iff there is some tuple $c \in B$ such that $A \leqss (B, c)$.

Theorem (Kallimullin) Only the obvious implications hold in general (although in all known natural examples, \leqsw and \leqss/p coincide).

Theorem (Turetsky, Westrick) "\leqss/p" is not transitive in general.
Measures of complexity, 1/2

By *structure* we will mean a countable structure in a finite language. A *copy* of a structure is an isomorphic structure with domain ω. We identify copies with their atomic diagrams.

A few natural ways to compare structures:

- **Muchnik (weak, nonuniform) reducibility:** $A \leq_w B$ iff for every copy B of B there is a copy A of A with $A \leq_T B$.

- **Medvedev (strong, uniform) reducibility:** $A \leq_s B$ iff there is some $e \in \omega$ such that $\Phi^B_e \sim A$ for every $B \sim B$.

- **Medvedev-mod-parameters:** $A \leq_{s/p} B$ iff there is some tuple $c \in B$ such that $A \leq_s (B, c)$.

Theorem (Kallimullin): Only the obvious implications hold in general (although in all known natural examples, \leq_w and \leq_s coincide).

Theorem (Turetsky, Westrick): "$\leq_{s/p}$" is not transitive in general.
Measures of complexity, 1/2

By *structure* we will mean a countable structure in a finite language. A *copy* of a structure is an isomorphic structure with domain ω. We identify copies with their atomic diagrams.

A few natural ways to compare structures:

- **Muchnik (weak, nonuniform) reducibility**: $A \leq_w B$ iff for every copy B of B there is a copy A of A with $A \leq_T B$.
- **Medvedev (strong, uniform) reducibility**: $A \leq_s B$ iff there is some $e \in \omega$ such that $\Phi^B_e \equiv A$ for every $B \equiv B$.

Theorem (Kallimullin) Only the obvious implications hold in general (although in all known natural examples, \leq_w and \leq_s coincide).

Theorem (Turetsky, Westrick) "\leq_s" is not transitive in general.
Measures of complexity, 1/2

By *structure* we will mean a countable structure in a finite language. A *copy* of a structure is an isomorphic structure with domain ω. We identify copies with their atomic diagrams.

A few natural ways to compare structures:

- Muchnik (weak, nonuniform) reducibility: $A \leq_w B$ iff for every copy B of B there is a copy A of A with $A \leq_T B$.
- Medvedev (strong, uniform) reducibility: $A \leq_s B$ iff there is some $e \in \omega$ such that $\Phi^B_e \cong A$ for every $B \cong B$.
- Medvedev-mod-parameters: $A \leq_{s/p} B$ iff there is some tuple $\overline{c} \in B$ such that $A \leq_s (B, \overline{c})$.

Theorem (Kallimullin)

Only the obvious implications hold in general (although in all known natural examples, \leq_w and $\leq_{s/p}$ coincide).

Theorem (Turetsky, Westrick)

"$\leq_{s/p}$" is not transitive in general.
Measures of complexity, 1/2

By *structure* we will mean a countable structure in a finite language. A *copy* of a structure is an isomorphic structure with domain ω. We identify copies with their atomic diagrams. A few natural ways to compare structures:

- Muchnik (weak, nonuniform) reducibility: $\mathcal{A} \leq_w \mathcal{B}$ iff for every copy \mathcal{B} of \mathcal{B} there is a copy \mathcal{A} of \mathcal{A} with $\mathcal{A} \leq_T \mathcal{B}$.
- Medvedev (strong, uniform) reducibility: $\mathcal{A} \leq_s \mathcal{B}$ iff there is some $e \in \omega$ such that $\Phi^B_e \cong \mathcal{A}$ for every $\mathcal{B} \cong \mathcal{B}$.
- Medvedev-mod-parameters: $\mathcal{A} \leq_{s/p} \mathcal{B}$ iff there is some tuple $\overline{c} \in \mathcal{B}$ such that $\mathcal{A} \leq_s (\mathcal{B}, \overline{c})$.

Theorem (Kallimullin)

Only the obvious implications hold in general (although in all known natural examples, \leq_w and $\leq_{s/p}$ coincide).
Measures of complexity, 1/2

By *structure* we will mean a countable structure in a finite language. A *copy* of a structure is an isomorphic structure with domain \(\omega \). We identify copies with their atomic diagrams.

A few natural ways to compare structures:

- **Muchnik (weak, nonuniform) reducibility:** \(A \leq_w B \) iff for every copy \(B \) of \(B \) there is a copy \(A \) of \(A \) with \(A \leq_T B \).

- **Medvedev (strong, uniform) reducibility:** \(A \leq_s B \) iff there is some \(e \in \omega \) such that \(\Phi^B_e \cong A \) for every \(B \cong B \).

- **Medvedev-mod-parameters:** \(A \leq_{s/p} B \) iff there is some tuple \(\bar{c} \in B \) such that \(A \leq_s (B, \bar{c}) \).

Theorem (Kallimullin)

Only the obvious implications hold in general (although in all known natural examples, \(\leq_w \) and \(\leq_{s/p} \) coincide).

Theorem (Turetsky, Westrick)

“\(\leq_{s/p} \)” is not transitive in general.
Measures of complexity, 2/2

Muchnik reducibility is much better understood than Medvedev reducibility.

Theorem (Essentially Sacks)

For countable ordinals α, β (thought of as linear orders) we have $\alpha \leq_w \beta$ iff $\alpha < \omega_1^{CK}(\beta)$.

Question (Hamkins, Li)

What does the degree structure D^ord_s of the countable ordinals modulo \leq_s look like?

This is still largely open;
Measures of complexity, 2/2

Muchnik reducibility is much better understood than Medvedev reducibility.

Theorem (Essentially Sacks)

For countable ordinals α, β (thought of as linear orders) we have $\alpha \leq_w \beta$ iff $\alpha < \omega_1^{CK}(\beta)$.

Question (Hamkins, Li)

What does the degree structure D_ord^s of the countable ordinals modulo \leq_s look like?

This is still largely open; we know (S.) that there is a club of Medvedev-incomparable ordinals and that under mild assumptions there is no embedding of ω_1 into D_ord^s. But even very concrete questions are still open:

Question

Is $\omega_1^{CK} \leq_s \omega_2^{CK}$? Do joins exist in D_ord^s?
Measures of complexity, 2/2

Muchnik reducibility is much better understood than Medvedev reducibility.

Theorem (Essentially Sacks)

For countable ordinals α, β *(thought of as linear orders)* we have $\alpha \leq_w \beta$ iff $\alpha < \omega_1^{CK}(\beta)$.

Question (Hamkins, Li)

What does the degree structure D_{s}^{ord} *of the countable ordinals modulo* \leq_s *look like?*

This is still largely open; we know (S.) that there is a club of Medvedev-incomparable ordinals and that under mild assumptions there is no embedding of ω_1 into D_{s}^{ord}. But even very concrete questions are still open:

Question

Is $\omega_1^{CK} \leq_s \omega_2^{CK}$? *Do joins exist in* D_{s}^{ord}?

Things are a bit clearer if we look at uniform *hyperarithmetic* reducibility, but still largely unknown.
Definition

A wild interval in a linear order L is an endpointed interval $[a, b]_L$ with $[a, b]_L \not\leq_s L$. L is wild if L has a wild interval.

(Obviously impossible for \leq_w.)

Endpointed intervals
Endpointed intervals

Definition

A wild interval in a linear order L is an endpointed interval $[a, b]_L$ with $[a, b]_L \nleq_s L$. L is wild if L has a wild interval.

(Obviously impossible for \leq_w.) Since well-orderings compare nicely, \leq_s-incomparable ordinals yield wild intervals.
Endepnted intervals

Definition

A wild interval in a linear order L is an endpointed interval $[a, b]_L$ with $[a, b]_L \not\leq_s L$. L is wild if L has a wild interval.

(Obviously impossible for $\leq w$.) Since well-orderings compare nicely, \leq_s-incomparable ordinals yield wild intervals. Unfortunately, the examples produced are hideously large: images of ω_1 under Mostowski collapse of “sufficiently large” countable substructures of the universe. Can we do better?
A simple wild interval

Theorem (Knight, Soskova)

There wild linear orders low in the arithmetical hierarchy.
A simple wild interval

Theorem (Knight, Soskova)

There wild linear orders low in the arithmetical hierarchy.

(Sacks: impossible for ordinals.) Key observation:

$$\mathcal{A} \leq_{s} \mathcal{B} \implies \Sigma_{n}^{c} Th(\mathcal{A}) \leq_{e} \Sigma_{n}^{c} Th(\mathcal{B}).$$

Now look for "shapeable" linear orders with well-understood \(\Sigma_{n}^{c}\)-theories for some rich enough \(n\): shuffle sums.

Definition

For \(X \subseteq \omega + 1\), \(Shuff(X)\) is the unique-up-to-isomorphism linear order of the form

$$\sum_{q \in \mathbb{Q}} L_{q}$$

where each \(L_{q}\) has ordertype \(n\) for some \(n \in X\) and \(\{q \in \mathbb{Q} : |L_{q}| = n\}\) is dense for \(n \in X\).

Knight-Soskova use \(Shuff(X \cup \{\omega\} \cup \mathbb{Q}) + 1 + \mathcal{A}\) for \(X \not\in \Sigma_{0}^{3}\).
A simple wild interval

Theorem (Knight, Soskova)

There wild linear orders low in the arithmetical hierarchy.

(Sacks: impossible for ordinals.) Key observation:

\[A \leq_s B \implies \Sigma^c_n \text{Th}(A) \leq_e \Sigma^c_n \text{Th}(B). \]

Now look for “shapeable” linear orders with well-understood \(\Sigma^c_n \)-theories for some rich enough \(n \): shuffle sums.
A simple wild interval

Theorem (Knight, Soskova)

There wild linear orders low in the arithmetical hierarchy.

(Sacks: impossible for ordinals.) Key observation:

\[
A \leq_s B \implies \Sigma_n^c \text{Th}(A) \leq_e \Sigma_n^c \text{Th}(B).
\]

Now look for “shapeable” linear orders with well-understood \(\Sigma_n^c\)-theories for some rich enough \(n\): *shuffle sums*.

Definition

For \(X \subseteq \omega + 1\), \(\text{Shuff}(X)\) is the unique-up-to-isomorphism linear order of the form \(\sum_{q \in \mathbb{Q}} L_q\) where each \(L_q\) has ordertype \(n\) for some \(n \in X\) and \(\{q \in \mathbb{Q} : |L_q| = n\}\) is dense for \(n \in X\).
A simple wild interval

Theorem (Knight, Soskova)

There wild linear orders low in the arithmetical hierarchy.
(Sacks: impossible for ordinals.) Key observation:

\[A \leq_s B \implies \Sigma_n^c \text{Th}(A) \leq_e \Sigma_n^c \text{Th}(B). \]

Now look for “shapeable” linear orders with well-understood \(\Sigma_n^c \)-theories for some rich enough \(n \): **shuffle sums**.

Definition

For \(X \subseteq \omega + 1 \), **Shuff** \((X) \) *is the unique-up-to-isomorphism linear order of the form* \(\sum_{q \in \mathbb{Q}} \text{L}_q \) *where each \(\text{L}_q \) has ordertype \(n \) for some* \(n \in X \) *and \(\{ q \in \mathbb{Q} : |\text{L}_q| = n \} \) *is dense for* \(n \in X \).*

Knight-Soskova use

\[\text{Shuff}(X \cup \{\omega\}) + 1 + \text{Shuff}(\omega + 1) \]

for \(X \not\in \Sigma_3^0 \).
Beyond shuffle sums

Can we find more examples?
Beyond shuffle sums

Can we find more examples?

Question

Is there a scattered wild linear order low in the arithmetical hierarchy?

Question

Can a linear order be “totally wild” (whatever that means)?

Former appears to point towards ordinals; latter interesting on its own.
Beyond shuffle sums

Can we find more examples?

Question
Is there a scattered wild linear order low in the arithmetical hierarchy?

Question
Can a linear order be “totally wild” (whatever that means)?
Former appears to point towards ordinals; latter interesting on its own.

Theorem (S.)
Yes to both ... unhelpfully.

Both arguments via forcing. Nice feature: “coarse” argument relativizes to generally uniform reducibility notions (although we eventually need large cardinals), while Σⁿᶜ-analysis-approach doesn’t seem to.
A scattered wild linear order

We code reals into linear orders, then build a \(\mathbb{Z}\)-sum with separators out of a Cohen array.
A scattered wild linear order

We code reals into linear orders, then build a \mathbb{Z}-sum with separators out of a Cohen array.
A scattered wild linear order

We code reals into linear orders, then build a \mathbb{Z}-sum with separators out of a Cohen array.

For $X \subseteq \omega$, $n \in \omega$ let

$$A(X, i) = \begin{cases} \zeta + i + 2 + \zeta & \text{if } i \in X, \\ \zeta + i + 3 + \zeta & \text{if } i \notin X \end{cases}$$

and set $A(X) = \zeta + \sum_{i \in \omega} A(X, i) + \zeta$.
A scattered wild linear order

We code reals into linear orders, then build a \mathbb{Z}-sum with separators out of a Cohen array.

- For $X \subseteq \omega$, $n \in \omega$ let

$$A(X, i) = \begin{cases}
\zeta + i + 2 + \zeta & \text{if } i \in X, \\
\zeta + i + 3 + \zeta & \text{if } i \notin X
\end{cases}$$

and set $A(X) = \zeta + \sum_{i \in \omega} A(X, i) + \zeta$.

- For $\mathcal{X} = (X_z)_{z \in \mathbb{Z}}$ a doubly-infinite sequence of reals, let

$$S(\mathcal{X}) = \sum_{z \in \mathbb{Z}} [1 + A(X_z)]$$
A scattered wild linear order

We code reals into linear orders, then build a \mathbb{Z}-sum with separators out of a Cohen array.

For $X \subseteq \omega$, $n \in \omega$ let

$$A(X, i) = \begin{cases} \zeta + i + 2 + \zeta & \text{if } i \in X, \\ \zeta + i + 3 + \zeta & \text{if } i \not\in X \end{cases}$$

and set $A(X) = \zeta + \sum_{i \in \omega} A(X, i) + \zeta$.

For $\mathcal{X} = (X_z)_{z \in \mathbb{Z}}$ a doubly-infinite sequence of reals, let

$$S(\mathcal{X}) = \sum_{z \in \mathbb{Z}} [1 + A(X_z)]$$

$$= \ldots + 1 + A(X_{-1}) + 1 + A(X_0) + 1 + A(X_1) + 1 + \ldots$$
A scattered wild linear order

We code reals into linear orders, then build a \mathbb{Z}-sum with separators out of a Cohen array.

- For $X \subseteq \omega$, $n \in \omega$ let

$$A(X, i) = \begin{cases} \zeta + i + 2 + \zeta & \text{if } i \in X, \\ \zeta + i + 3 + \zeta & \text{if } i \notin X \end{cases}$$

and set $A(X) = \zeta + \sum_{i \in \omega} A(X, i) + \zeta$.

- For $\mathcal{X} = (X_z)_{z \in \mathbb{Z}}$ a doubly-infinite sequence of reals, let

$$S(\mathcal{X}) = \sum_{z \in \mathbb{Z}} [1 + A(X_z)]$$

$$= \ldots + 1 + A(X_{-1}) + 1 + A(X_0) + 1 + A(X_1) + 1 + \ldots$$

$S(\mathcal{X})$ is scattered. We’ll look at $S(\mathcal{X})$ for \mathcal{X} sufficiently (?) generic:

Definition

\mathbb{P}_{sca} is the set of arrays $p \in (2^{<\omega})^{\mathbb{Z}}$ with $p_z = \emptyset$ for cofinitely many $z \in \mathbb{Z}$. (This is just Cohen forcing rephrased.)
\[S(\mathcal{X}) = \ldots + 1 + A(X_{-1}) + 1 + A(X_0) + 1 + A(X_1) + 1 + \ldots \]

Let \(I^\mathcal{X}_z \) be the \((1 + A(X_z) + 1) \)-part of \(S(\mathcal{X}) \); under mild genericity, this is unique.
\[S(\mathcal{X}) = \ldots + 1 + A(X_{-1}) + 1 + A(X_0) + 1 + A(X_1) + 1 + \ldots \]

Let \(I^{\mathcal{X}}_z \) be the \((1 + A(X_z) + 1)\)-part of \(S(\mathcal{X}) \); under mild genericity, this is unique.

Theorem

Suppose \(\mathcal{X} \) is sufficiently \((?)\) \(P_{sca} \)-generic. Then for each \(z \in \mathbb{Z} \) we have \(I_z \nsubseteq_s S(\mathcal{X}) \).
$$S(\mathcal{X}) = ... + 1 + A(X_{-1}) + 1 + A(X_0) + 1 + A(X_1) + 1 + ...$$

Let $I^\mathcal{X}_z$ be the $(1 + A(X_z) + 1)$-part of $S(\mathcal{X})$; under mild genericity, this is unique.

Theorem

*Suppose \mathcal{X} is sufficiently (?) P_{sca}-generic. Then for each $z \in \mathbb{Z}$ we have $I_z \not\leq_s S(\mathcal{X})$.***

Idea:

- Shifts of \mathbb{Z} yield automorphisms of P_{sca} which preserve the isomorphism type of the linear order built.
- Finite support (cofinitely many partial reals empty at each stage) lets us build divergent extensions of conditions.

Convention

Look at $z = 0$ for simplicity, let \mathcal{G} be (name for) P_{sca}-generic filter, and assume $(p_z)_{z \in \mathbb{Z}} = p \in P_{sca}$ forces $\Phi^-_e : S(\mathcal{G}) \geq_s I^\mathcal{G}_0$. (?)
Shift and split

Set $\sigma : z \mapsto z + k$ for some “big enough” k (and conflate σ obvious extension to conditions/filters),
Shift and split

Set $\sigma : z \mapsto z + k$ for some “big enough” k (and conflate σ obvious extension to conditions/filters), and note that if $\mathcal{V}_0, \mathcal{V}_1$ differ by a shift then $S(\mathcal{V}_0) \cong S(\mathcal{V}_1)$.
Set $\sigma : z \mapsto z + k$ for some “big enough” k (and conflate σ
obreakspace{}obvious extension to conditions/filters), and note that if $\mathcal{Y}_0, \mathcal{Y}_1$ differ by a shift then $S(\mathcal{Y}_0) \cong S(\mathcal{Y}_1)$.

Choose extensions $p^{left}, p^{right} \leq p$ such that $\sigma(p^{left}) = p^{right}$ and $p_0^{left}(n) \nmid p_0^{right}(n)$ for some “big enough” n.
Set \(\sigma : z \mapsto z + k \) for some “big enough” \(k \) (and conflate \(\sigma \) obvious extension to conditions/filters), and note that if \(\mathcal{V}_0, \mathcal{V}_1 \) differ by a shift then \(S(\mathcal{V}_0) \cong S(\mathcal{V}_1) \).

Choose extensions \(p^{\text{left}}, p^{\text{right}} \leq p \) such that \(\sigma(p^{\text{left}}) = p^{\text{right}} \) and \(p^{\text{left}}_0(n) \downarrow \neq p^{\text{right}}_0(n) \) for some “big enough” \(n \).

Picking generics \(G^{\text{left}} \ni p^{\text{left}}, G^{\text{right}} \ni p^{\text{right}} \) with \(\sigma(G^{\text{left}}) = G^{\text{right}} \) we have:
Shift and split

Set $\sigma : z \mapsto z + k$ for some “big enough” k (and conflate σ obvious extension to conditions/filters), and note that if $\mathcal{V}_0, \mathcal{V}_1$ differ by a shift then $S(\mathcal{V}_0) \cong S(\mathcal{V}_1)$.

Choose extensions $p^{left}, p^{right} \leq p$ such that $\sigma(p^{left}) = p^{right}$ and $p^{left}_0(n) \not\leq p^{right}_0(n)$ for some “big enough” n.

Picking generics $G^{left} \ni p^{left}, G^{right} \ni p^{right}$ with $\sigma(G^{left}) = G^{right}$ we have:

- $I^G_{0}^{left} \not\cong I^G_{0}^{right}$.
Set $\sigma : z \mapsto z + k$ for some “big enough” k (and conflate σ obvious extension to conditions/filters), and note that if $\mathcal{Y}_0, \mathcal{Y}_1$ differ by a shift then $S(\mathcal{Y}_0) \cong S(\mathcal{Y}_1)$.

Choose extensions $p^{\text{left}}, p^{\text{right}} \leq p$ such that $\sigma(p^{\text{left}}) = p^{\text{right}}$ and $p_0^{\text{left}}(n) \downarrow \neq p_0^{\text{right}}(n)$ for some “big enough” n.

Picking generics $G^{\text{left}} \ni p^{\text{left}}, G^{\text{right}} \ni p^{\text{right}}$ with $\sigma(G^{\text{left}}) = G^{\text{right}}$ we have:

- $I^0_{G^{\text{left}}} \not\cong I^0_{G^{\text{right}}}$,
- $S(G^{\text{left}}) \cong S(G^{\text{right}})$ (call this “S”),
Shift and split

Set $\sigma : z \mapsto z + k$ for some “big enough” k (and conflate σ obvious extension to conditions/filters), and note that if $\mathcal{Y}_0, \mathcal{Y}_1$ differ by a shift then $S(\mathcal{Y}_0) \cong S(\mathcal{Y}_1)$.
Choose extensions $p^{\text{left}}, p^{\text{right}} \leq p$ such that $\sigma(p^{\text{left}}) = p^{\text{right}}$ and $p_0^{\text{left}}(n) \neq p_0^{\text{right}}(n)$ for some “big enough” n.
Picking generics $G^{\text{left}} \ni p^{\text{left}}, G^{\text{right}} \ni p^{\text{right}}$ with $\sigma(G^{\text{left}}) = G^{\text{right}}$ we have:

\triangleright $I_0^{G^{\text{left}}} \ncong I_0^{G^{\text{right}}}$

\triangleright $S(G^{\text{left}}) \cong S(G^{\text{right}})$ (call this “S”),

\triangleright $\Phi_e^{S(G^{\text{left}})} \cong I_0^{G^{\text{left}}}$ and $\Phi_e^{S(G^{\text{right}})} \cong I_0^{G^{\text{right}}}$, but
Shift and split

Set $\sigma : z \mapsto z + k$ for some “big enough” k (and conflate σ obvious extension to conditions/filters), and note that if $\mathcal{Y}_0, \mathcal{Y}_1$ differ by a shift then $S(\mathcal{Y}_0) \cong S(\mathcal{Y}_1)$.

Choose extensions $p^{\left}, p^{\right} \leq p$ such that $\sigma(p^{\left}) = p^{\right}$ and $p^{\left}_0(n) \downarrow \neq p^{\right}_0(n)$ for some “big enough” n.

Picking generics $G^{\left} \ni p^{\left}, G^{\right} \ni p^{\right}$ with $\sigma(G^{\left}) = G^{\right}$ we have:

- $I^G_0^{\left} \not\cong I^G_0^{\right}$,
- $S(G^{\left}) \cong S(G^{\right})$ (call this “S”),
- $\Phi^{S(G^{\left})}_e \cong I^G_0^{\left}$ and $\Phi^{S(G^{\right})}_e \cong I^G_0^{\right}$, but
- Φ_e is isomorphism-invariant on copies of S
Even more wild intervals

Next, we’ll build a linear order which has as many wild intervals as possible - even relative to parameters - in a precise sense.
The extreme example

Definition
A non-computably-presentable linear order \(L \) is a thicket if for every finite tuple \(\overline{c} \in L \) and every infinite \([a, b]_L\) we have \((L, \overline{c}) \geq_s [a, b]_L\) iff there are \(c_a, c_b \in \overline{c}\) finitely far from \(a, b\) respectively.
The extreme example

Definition
A non-computably-presentable linear order \(L \) is a thicket if for every finite tuple \(\bar{c} \in L \) and every infinite \([a, b]_L \) we have \((L, \bar{c}) \geq_s [a, b]_L \) iff there are \(c_a, c_b \in \bar{c} \) finitely far from \(a, b \) respectively.

Easy to see that:

- Every thicket has the form

\[
\sum_{i \in \hat{\eta}} B_i
\]

for \(\hat{\eta} \in \{\eta, 1 + \eta, \eta + 1, 1 + \eta + 1\} \) and \(B_i \in \hat{\omega} := \omega \cup \{\omega, \omega^*, \zeta\} \).
The extreme example

Definition

A non-computably-presentable linear order L is a thicket if for every finite tuple $\bar{c} \in L$ and every infinite $[a, b]_L$ we have $(L, \bar{c}) \geq_s [a, b]_L$ iff there are $c_a, c_b \in \bar{c}$ finitely far from a, b respectively.

Easy to see that:

- Every thicket has the form

$$\sum_{i \in \hat{\eta}} B_i$$

for $\hat{\eta} \in \{\eta, 1 + \eta, \eta + 1, 1 + \eta + 1\}$ and $B_i \in \hat{\omega} := \omega \cup \{\omega, \omega^*, \zeta\}$.

- Thickets are basically interwoven nowhere-dense sets: for each nontrivial interval $J \subseteq \hat{\eta}$, the set \{q \in J : B_q$ appears nowhere densely in J\} is dense in J.
Co-shuffle sums

Simplest examples of thickets happen to be *co-shuffle-sums*:

Definition

A *co-shuffle sum is a linear order of the form*

\[\sum_{q \in \mathbb{Q}} n_q \]

with \(n_q \in \omega \) *such that for each* \(i \in \omega \) *the set* \(\{ q \in \mathbb{Q} : n_q = i \} \) *is nowhere dense.*

Contra shuffle-sums, there are *many* co-shuffle sums up to isomorphism and their \(\Sigma^c_n \)-theories look complicated.
Co-shuffle sums

Simplest examples of thickets happen to be *co-shuffle-sums*:

Definition

A co-shuffle sum is a linear order of the form

$$\sum_{q \in Q} n_q$$

with $n_q \in \omega$ such that for each $i \in \omega$ the set $\{q \in \mathbb{Q} : n_q = i\}$ is nowhere dense.

Contra shuffle-sums, there are many co-shuffle sums up to isomorphism and their Σ^c_n-theories look complicated. As before, we’ll build a co-shuffle sum from an appropriately-generic family of reals, then use a symmetry-and-splitting argument to kill off potential Medvedev reductions. We can accommodate parameters now since η is sufficiently homogeneous (couldn’t do that above).
The forcing

Vaguely Mathias-flavored
The forcing

Vaguely Mathias-flavored

Conditions: \(\pi = \langle a, B \rangle \) where:

- \(a : \mathbb{Q} \rightarrow \mathbb{N} \) partial finite,
- \(B \) is a finite partial map from closed intervals in \(\mathbb{R} \) with distinct finite algebraic irrational endpoints to \(\mathbb{N} \),
- for each \(\langle [x, y], n \rangle \in B \) and \(q \in dom(a) \), if \(x < q < y \) then \(a(q) \neq n \).

Order conditions as with Mathias.
The forcing

Vaguely Mathias-flavored
Conditions: $\pi = \langle a, B \rangle$ where:

- $a : \mathbb{Q} \rightarrow \mathbb{N}$ partial finite,
- B is a finite partial map from closed intervals in \mathbb{R} with distinct finite algebraic irrational endpoints to \mathbb{N},
- for each $\langle [x, y], n \rangle \in B$ and $q \in dom(a)$, if $x < q < y$ then $a(q) \neq n$.

Order conditions as with Mathias.
Using irrational endpoints for the prohibitions in B isn’t necessary but gives us “sufficiently homogeneous” intervals for convenience.
Orderings from filters

A barely generic filter G yields a co-shuffle sum $L(G)$.
Orderings from filters

A barely generic filter G yields a co-shuffle sum $L(G)$:

- The domain of $L(G)$ is the set

$$\{ \langle q, k \rangle \in \mathbb{Q} \times \mathbb{N} : k < G(q) \}.$$
Orderings from filters

A barely generic filter G yields a co-shuffle sum $L(G)$:

- The domain of $L(G)$ is the set

$$\{\langle q, k \rangle \in \mathbb{Q} \times \mathbb{N} : k < G(q) \}.$$

- The ordering on $L(G)$ is the lexicographic ordering

$$\langle q, k \rangle \leq_{L(G)} \langle q', k' \rangle \iff (q < q') \lor (q = q' \land k \leq k').$$
Orderings from filters

A barely generic filter G yields a co-shuffle sum $L(G)$:

- The domain of $L(G)$ is the set

$$\{ \langle q, k \rangle \in \mathbb{Q} \times \mathbb{N} : k < G(q) \}.$$

- The ordering on $L(G)$ is the lexicographic ordering

$$\langle q, k \rangle \leq_{L(G)} \langle q', k' \rangle \iff (q < q') \lor (q = q' \land k \leq k').$$

For rationals $q_0 < q_1$ we write "$[q_0, q_1]^G$" for the sub-order of $L(G)$ consisting of all points with left coordinate q satisfying $q_0 \leq q \leq q_1$.

Orderings from filters

A barely generic filter G yields a co-shuffle sum $L(G)$:

- The domain of $L(G)$ is the set

$$\{\langle q, k \rangle \in \mathbb{Q} \times \mathbb{N} : k < G(q) \}.$$

- The ordering on $L(G)$ is the lexicographic ordering

$$\langle q, k \rangle \leq_{L(G)} \langle q', k' \rangle \iff (q < q') \lor (q = q' \land k \leq k').$$

For rationals $q_0 < q_1$ we write “$[q_0, q_1]^G$” for the sub-order of $L(G)$ consisting of all points with left coordinate q satisfying $q_0 \leq q \leq q_1$. For $\bar{c} \in \mathbb{Q}$ and G sufficiently \mathbb{P}-generic, we let $\langle L(G); \bar{c} \rangle$ be the expansion of $L(G)$ by constants naming each element with left coordinate in \bar{c}.
Automorphisms

It will be enough to show that for every tuple \overline{c} of rationals and every pair of rationals $p < q$ not both in \overline{c}, we have

$$\langle L(G); \overline{c} \rangle \not\preceq_s [p, q]^G.$$
Automorphisms

It will be enough to show that for every tuple \overline{c} of rationals and every pair of rationals $p < q$ not both in \overline{c}, we have

$$\langle L(G); \overline{c} \rangle \not\leq_s [p, q]^G.$$

Definition

By automorphism we’ll mean an automorphism of the linear order \mathbb{R} which sends rationals to rationals and irrationals to irrationals whose restriction to the rationals is computable.
Automorphisms

It will be enough to show that for every tuple c of rationals and every pair of rationals $p < q$ not both in c, we have

$$\langle L(G); c \rangle \not \preceq_s [p, q]^G.$$

Definition

By automorphism we’ll mean an automorphism of the linear order \mathbb{R} which sends rationals to rationals and irrationals to irrationals whose restriction to the rationals is computable.

Automorphisms preserve genericity, and extend naturally to maps on conditions and filters (with which we conflate them). Automorphic filters yield isomorphic orderings.
Some structure

Definition

Fix a condition \(\pi = \langle a, B \rangle \in \mathbb{P} \), irrationals \(x < y \), and a rational \(q \in [x, y] \). The interval \([x, y]\) is \(\langle \pi, q \rangle \)-homogeneous iff

\[\text{dom}(a) \cap [x, y] = \{q\}, \text{ and} \]

useful here: irrationality of prohibitions implies that no element of \(\text{dom}(a) \) is "critical."
Some structure

Definition
Fix a condition \(\pi = \langle a, B \rangle \in \mathbb{P} \), irrationals \(x < y \), and a rational \(q \in [x, y] \). The interval \([x, y]\) is \(\langle \pi, q \rangle \)-homogeneous iff

1. \(\text{dom}(a) \cap [x, y] = \{q\} \), and
2. whenever \(\langle u, v, n \rangle \in B \) we have either \([u, v] \cap [x, y] = \emptyset\) or \(u < x < y < v \).
Definition
Fix a condition $\pi = \langle a, B \rangle \in \mathbb{P}$, irrationals $x < y$, and a rational $q \in [x, y]$. The interval $[x, y]$ is $\langle \pi, q \rangle$-homogeneous \textit{iff}

- $\text{dom}(a) \cap [x, y] = \{q\}$, and
- whenever $\langle u, v, n \rangle \in B$ we have either $[u, v] \cap [x, y] = \emptyset$ or $u < x < y < v$.

Lemma
For every condition $\pi = \langle a, B \rangle$ and every rational $q \in \text{dom}(a)$ there is a $\langle \pi, q \rangle$-homogeneous interval.

Useful here: irrationality of prohibitions implies that no element of $\text{dom}(a)$ is “critical.”
More shifting and splitting, 1/3

Theorem

If G is sufficiently (?!) generic, then $L(G)$ is a thicket.

For $w \in I \cup N$ and π a condition, say w is π-huge if for each $\langle q, n \rangle \in a$ and each $\langle x, y, k \rangle \in B$ we have $w > q, n, x, y, k$.

Fix sufficiently (?) generic G and $\pi = \langle a, B \rangle \in G$ with $q_0, c \in \text{dom}(a)$ such that $\pi \models \Phi_{ge}: \langle L(G); c \rangle \geq s[q_0, q_1]$ G.

Have the following:

▶ an $s \in I$ with $s > \max(\text{dom}(a))$;

▶ a positive natural $N > \max(\text{ran}(a) \cup \text{ran}(B))$;

▶ a $t \in Q$ and $r_0, r_1 \in I$ such that $q_0 < t < r_0 < r_1$ $[u, r_1]$ is $\langle \pi, q_0 \rangle$-homogeneous (which exists by Lemma 0.19); and

▶ an automorphism α which is the identity outside (u, r_1) and has $\alpha(r_0) < q_0$ (which exists by the homogeneity of Q).
Theorem

If \(G \) is sufficiently (?) generic, then \(L(G) \) is a thicket.
More shifting and splitting, 1/3

Theorem

If G is sufficiently (?) generic, then $L(G)$ is a thicket.

For $w \in \mathbb{I} \cup \mathbb{N}$ and π a condition, say w is π-huge if for each $\langle q, n \rangle \in a$ and each $\langle x, y, k \rangle \in B$ we have $w > q, n, x, y, k$.
More shifting and splitting, 1/3

Theorem

If G is sufficiently (?) generic, then $L(G)$ is a thicket.

For $w \in \mathbb{I} \cup \mathbb{N}$ and π a condition, say w is π-huge if for each $\langle q, n \rangle \in a$ and each $\langle x, y, k \rangle \in B$ we have $w > q, n, x, y, k$.

Fix sufficiently (?) generic G and $\pi = \langle a, B \rangle \in G$ with $q_0, \overline{c} \in dom(a)$ such that

\[\pi \models \Phi^G_e : \langle L(\mathbb{G}); \overline{c} \rangle \geq_s [q_0, q_1]^\mathbb{G}. \]
More shifting and splitting, 1/3

Theorem

If G is sufficiently (?) generic, then $L(G)$ is a thicket.

For $w \in I \cup \mathbb{N}$ and π a condition, say w is π-huge if for each $\langle q, n \rangle \in a$ and each $\langle x, y, k \rangle \in B$ we have $w > q, n, x, y, k$.

Fix sufficiently (?) generic G and $\pi = \langle a, B \rangle \in G$ with $q_0, \overline{c} \in \text{dom}(a)$ such that

$$\pi \models \Phi^G_e : \langle L(G); \overline{c} \rangle \geq_s [q_0, q_1]^G.$$

Have the following:
Theorem

If G is sufficiently (?) generic, then $L(G)$ is a thicket.

For $w \in I \cup \mathbb{N}$ and π a condition, say w is π-huge if for each $\langle q, n \rangle \in a$ and each $\langle x, y, k \rangle \in B$ we have $w > q, n, x, y, k$. Fix sufficiently (?) generic G and $\pi = \langle a, B \rangle \in G$ with $q_0, \overline{c} \in \text{dom}(a)$ such that

$$
\pi \models \Phi^G_e : \langle L(G); \overline{c} \rangle \geq_s [q_0, q_1]^G.
$$

Have the following:

- an $s \in I$ with $s > \max(\text{dom}(a))$;
Theorem

If G is sufficiently (?) generic, then $L(G)$ is a thicket.

For $w \in I \cup N$ and π a condition, say w is π-huge if for each $\langle q, n \rangle \in a$ and each $\langle x, y, k \rangle \in B$ we have $w > q, n, x, y, k$.

Fix sufficiently (?) generic G and $\pi = \langle a, B \rangle \in G$ with $q_0, \bar{c} \in \text{dom}(a)$ such that

$$\pi \models \Phi_e^G : \langle L(G); \bar{c} \rangle \geq_s [q_0, q_1]^G.$$

Have the following:

- an $s \in I$ with $s > \max(\text{dom}(a))$;
- a positive natural $N > \max(\text{ran}(a) \cup \text{ran}(B))$;
Theorem

If G is sufficiently (?) generic, then $L(G)$ is a thicket.

For $w \in \mathbb{I} \cup \mathbb{N}$ and π a condition, say w is π-huge if for each $\langle q, n \rangle \in a$ and each $\langle x, y, k \rangle \in B$ we have $w > q, n, x, y, k$.

Fix sufficiently (?) generic G and $\pi = \langle a, B \rangle \in G$ with $q_0, \bar{c} \in \text{dom}(a)$ such that

$$\pi \models \Phi_e^G : \langle L(\mathcal{G}); \bar{c} \rangle \geq_s [q_0, q_1]^G.$$

Have the following:

- an $s \in \mathbb{I}$ with $s > \max(\text{dom}(a))$;
- a positive natural $N > \max(\text{ran}(a) \cup \text{ran}(B))$;
- a $t \in \mathbb{Q}$ and $r_0, r_1 \in \mathbb{I}$ such that $q_0 < t < r_0 < r_1$ $[u, r_1]$ is (π, q_0)-homogeneous (which exists by Lemma 0.19); and
More shifting and splitting, 1/3

Theorem

If G is sufficiently (?) generic, then $L(G)$ is a thicket.

For $w \in \mathbb{I} \cup \mathbb{N}$ and π a condition, say w is π-huge if for each $\langle q, n \rangle \in a$ and each $\langle x, y, k \rangle \in B$ we have $w > q, n, x, y, k$.

Fix sufficiently (?) generic G and $\pi = \langle a, B \rangle \in G$ with $q_0, \overline{c} \in \text{dom}(a)$ such that

$$\pi \models \Phi^G_e : \langle L(G); \overline{c} \rangle \geq_s [q_0, q_1]^G.$$

Have the following:

- an $s \in \mathbb{I}$ with $s > \max(\text{dom}(a))$;
- a positive natural $N > \max(\text{ran}(a) \cup \text{ran}(B))$;
- a $t \in \mathbb{Q}$ and $r_0, r_1 \in \mathbb{I}$ such that $q_0 < t < r_0 < r_1$ $[u, r_1]$ is (π, q_0)-homogeneous (which exists by Lemma 0.19); and
- an automorphism α which is the identity outside (u, r_1) and has $\alpha(r_0) < q_0$ (which exists by the homogeneity of \mathbb{Q}).
More shifting and splitting, 2/3

\(\pi\) forces an unwanted computation, and we’ve chosen some useful auxiliary objects. Define two extensions of \(\pi\) as follows:

\[
\pi + = \langle a \cup \{\langle t, N \rangle\}, \langle \alpha^{-1}(q_0), a(q_0) \rangle \rangle, B \cup \{\langle \alpha(r_0), s, N \rangle\} \rangle,
\]

\[
\pi - = \alpha(\pi +) = \langle a \cup \{\langle \alpha(t), N \rangle\}, \langle \alpha(q_0), a(q_0) \rangle \rangle, B \cup \{\langle \alpha(r_0), s, N \rangle\} \rangle.
\]

These are indeed conditions via useful choices above (in particular, note that \(\alpha(s) = s\)).

Let \(H = \alpha(G)\). Have \(\pi \in H\) and WLOG \(\pi + \in G\) so \(\pi - \in H\).
More shifting and splitting, 2/3

π forces an unwanted computation, and we’ve chosen some useful auxiliary objects.
Define two extensions of π as follows:

\[\pi^+ = \langle a \cup \{ \langle t, N \rangle, \langle \alpha^{-1}(q_0), a(q_0) \rangle \}, B \cup \{ \langle r_0, s, N \rangle \} \rangle, \]
More shifting and splitting, 2/3

\(\pi\) forces an unwanted computation, and we've chosen some useful auxiliary objects.

Define two extensions of \(\pi\) as follows:

\[
\pi^+ = \langle a \cup \{\langle t, N \rangle, \langle \alpha^{-1}(q_0), a(q_0) \rangle\}, B \cup \{\langle r_0, s, N \rangle\}\rangle,
\]

\[
\pi^- = \alpha(\pi^+) = \langle a \cup \{\langle \alpha(t), N \rangle, \langle \alpha(q_0), a(q_0) \rangle\}, B \cup \{\langle \alpha(r_0), s, N \rangle\}\rangle.
\]
π forces an unwanted computation, and we’ve chosen some useful auxiliary objects. Define two extensions of π as follows:

\[\pi^+ = \langle a \cup \{\langle t, N \rangle, \langle \alpha^{-1}(q_0), a(q_0) \rangle\}, B \cup \{\langle r_0, s, N \rangle\} \rangle, \]

\[\pi^- = \alpha(\pi^+) = \langle a \cup \{\langle \alpha(t), N \rangle, \langle \alpha(q_0), a(q_0) \rangle\}, B \cup \{\langle \alpha(r_0), s, N \rangle\} \rangle. \]

These are indeed conditions via useful choices above (in particular, note that \(\alpha(s) = s \)).
More shifting and splitting, 2/3

π forces an unwanted computation, and we've chosen some useful auxiliary objects.
Define two extensions of π as follows:

\[\pi^+ = \langle a \cup \{\langle t, N \rangle, \langle \alpha^{-1}(q_0), a(q_0) \rangle \}, B \cup \{\langle r_0, s, N \rangle \} \rangle, \]

\[\pi^- = \alpha(\pi^+) = \langle a \cup \{\langle \alpha(t), N \rangle, \langle \alpha(q_0), a(q_0) \rangle \}, B \cup \{\langle \alpha(r_0), s, N \rangle \} \rangle. \]

These are indeed conditions via useful choices above (in particular, note that \(\alpha(s) = s \)).
Let \(H = \alpha(G) \). Have \(\pi \in H \) and WLOG \(\pi^+ \in G \) so \(\pi^- \in H \).
More shifting and splitting, 3/3
Comparing G and H, we have $[q_0, q_1]^H \not\cong [q_0, q_1]^G$ (the latter has a block of size N while the former doesn’t).
Comparing G and H, we have $[q_0, q_1]^H \not\cong [q_0, q_1]^G$ (the latter has a block of size N while the former doesn’t). Since $\pi \in G \cap H$ we get

$$\Phi_e : \langle L(G); \bar{c} \rangle \geq_s [q_0, q_1]^G$$

and

$$\Phi_e : \langle L(H); \bar{c} \rangle \geq_s [q_0, q_1]^H.$$
More shifting and splitting, 3/3

Comparing G and H, we have $[q_0, q_1]^H \not\cong [q_0, q_1]^G$ (the latter has a block of size N while the former doesn’t).

Since $\pi \in G \cap H$ we get

$$\Phi_e : \langle L(G); \bar{c} \rangle \succeq_s [q_0, q_1]^G$$

and

$$\Phi_e : \langle L(H); \bar{c} \rangle \succeq_s [q_0, q_1]^H.$$

Since $\alpha(\bar{c}) = \bar{c}$ have $\langle L(G); \bar{c} \rangle \cong \langle L(H); \bar{c} \rangle$. And this contradicts isomorphism-invariance of Φ_e.
How much genericity do we need?

Above we glossed over “sufficient genericity.”
How much genericity do we need?

Above we glossed over “sufficient genericity.”
Key point: in neither proof did we need to force isomorphism, just equality of invariants (“which bits are coded in?”) after simple modifications (shifts and automorphisms). That’s low-level arithmetic.
How much genericity do we need?

Above we glossed over “sufficient genericity.” Key point: in neither proof did we need to force isomorphism, just equality of invariants ("which bits are coded in?") after simple modifications (shifts and automorphisms). That’s low-level arithmetic.

Question
What are the Turing degrees of thickets? (Are there Δ^0_2 thickets? Are there PA-degrees not computing thickets?)
How much genericity do we need?

Above we glossed over “sufficient genericity.”
Key point: in neither proof did we need to force isomorphism, just equality of invariants (“which bits are coded in?”) after simple modifications (shifts and automorphisms). That’s low-level arithmetic.

Question

What are the Turing degrees of thickets? (Are there Δ^0_2 thickets? Are there PA-degrees not computing thickets?)

Also, this generalizes beyond \leq_S: any “reasonably-definable” uniform reducibility notion has thickets (possibly after assuming large cardinals).
So we can build several kinds of wild linear orders. But the ordinal situation is still unsatisfactory, and the crucial role of automorphisms above means that all the preceding work is irrelevant to that.
Back to ordinals

So we can build several kinds of wild linear orders. But the ordinal situation is still unsatisfactory, and the crucial role of automorphisms above means that all the preceding work is irrelevant to that.

A concrete problem to help things along:

Problem

Either find a pair of Medvedev-incomparable ordinals below the first recursively inaccessible, or show that no such exists.