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Beyond our comprehension

What? The usual comprehension hierarchy (by itself) is not
appropriate for studying third-order arithmetic.

Why? Many natural/basic statements of third-order arithmetic
need ‘crazy much’' comprehension for a proof. Same for Kleene's
higher-order computation based on S1-S9.

Solution? An alternative hierarchy, going back to Brouwer, is
identified. The ‘Big Five' equivalences are a reflection of (part of)
this new hierarchy, following Plato's allegory of the cave.
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In Grundlagen der Mathematik, Hilbert and Bernays formalise (a
lot of) mathematics in a logical system H.

System H makes (essential) use of third-order parameters, but is
‘more second-order’ than previous systems (with Ackermann).

H inspired second-order arithmetic Z, based on comprehension:
(3X C N)(Yn e N)(n e X < p(n))

for any formula ¢(n) in Ly, language of Z5.

Indeed, the following is (explicitly) introduced in H:
(3n e N)(f(n) =0) — f(u(f)) =0 (Feferman's )

yielding arithmetical comprehension. Similarly:

v-functional produces witness to (3f : N — N)A(f), yielding Z5.
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Comprehension by any other name
Z5 is based on comprehension as follows:
(3X C N)(Yn e N)(ne X < ¢(n))

for any formula ¢(n) in Ly, language of Z;. (Kreisel?)

5 is based on comprehension as follows:
(3f : N = N)A(f) < A(vkt18-Ag)) *)

for A € Hi N Ly and any k. (Feferman, Sieg, Suslin, Kohlenbach)

75 is based on comprehension as follows:
(3f :N—=N)(Y(f)=0) «< E(Y)=0.

for any third-order Y : NN — N. E is called Kleene's 3.

Connection: Zy =1, 75 =, Z“g. Note 3rd vs 4th order!



large cardinals

Godel hierarchy

strong :
ZFC
ZC (Zermelo set theory)
simple type theory

Z, (second-order arithmetic)

medium I13-CAq (comprehension for IT}-formulas)
I1}-CAq (comprehension for IT{-formulas)
ATRg (arithmetical transfinite recursion)
ACAq (arithmetical comprehension)

WKLy (weak Kénig's lemma)

RCAy (recursive comprehension)
PRA (primitive recursive arithmetic)
bounded arithmetic

weak

It is striking that a great many foundational theories are linearly ordered by
[consistency strength] <. Of course it is possible to construct pairs of artificial
theories which are incomparable under <. However, this is not the case for the
“natural” or non-artificial theories which are usually regarded as significant in the
foundations of mathematics.

(Simpson, Godel Centennial Volume; also: Koelner, Burgess, Friedman,...)
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large cardinals

ZFC
ZC  (Zermelo set theory)
simple type theory

Z, (second-order arithmetic)

I13-CAq (comprehension for IT}-formulas)
I1}-CAq (comprehension for IT{-formulas)
ATRg (arithmetical transfinite recursion)
ACAq (arithmetical comprehension)

WKLy (weak Kdnig's lemma)

RCAy (recursive comprehension)
PRA (primitive recursive arithmetic)
bounded arithmetic

Received view: natural/important systems form linear Godel hierarchy
and 80/90% of ordinary mathematics is provable in ACAq/I1{-CAy.
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Recall that 7, =, 75 =/, Zg. The following third-order theorems
are provable in Z¥, but not in Z§.

Arzela's convergence theorem for Riemann integral (1885).
Dini-Ascoli term-by-term Riemann integration thm (1872).

A countably-compact metric space ([0, 1], d) is separable.
Baire category theorem (open sets as characteristic functions)
There is a function f : R — R not in Baire class 2.

Baire characterisation theorem for Baire class 1.

Heine-Borel /Vitali/Lindelof for uncountable coverings.

Basic Lebesgue measure/integral and gauge integral.
Unordered sums are countable (E.H. Moore)

Convergence theorems for nets indexed by NN (Moore-Smith).
An open set in [0,1] is a countable union of open intervals.
There is no injection from [0, 1] to N (Cantor, 1874).
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The convergence thms show that the Lebesgue integral is superior
to the Riemann integral. Such thms do exist for Riemann integrals:

Theorem (Arzela, 1885)

Let f, : ([0,1] x N) — R be a sequence such that
@ Each f, is Riemann integrable on [0, 1].
@ There is M > 0 such that (Vn € N, x € [0,1])(|f(x)| < M).
O lim,_, f, = f exists and is Riemann integrable.

Then lim,_ o fo x)dx = fo (x)dx.

This theorem, called Arz, is provable in Zg but not in Z5.

Same for ‘term-by-term’ integration used by Dini-Ascoli starting
1872 (for functions with countably many discontinuities).

Riemann’s Habilschrift (1854) entrenched discontinuous functions
in the mainstream.
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Metric spaces

Separable metric spaces are represented/coded in L via a
countable dense subset.

How hard is to prove that such a subset exists?

A metric d : [0,1]?> — R on the unit interval is a third-order object
satisfying the usual properties of a metric.

A countably-compact metric space ([0, 1], d) is separable.

This theorem is provable in Z¥ but not in 74

We use ‘totally bounded’ and ‘separable’ in the sense of RM.
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Y :R —{0,1}; ‘x € O’ satisfies the usual property of open set.

Theorem (BCT)
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For this slide, we assume ‘open sets’ are given by (third-order)
characteristic functions: ‘x € O' means Y(x) = 1 for some
Y :R —{0,1}; ‘x € O’ satisfies the usual property of open set.

Theorem (BCT)

A sequence of dense open sets (Op,)nen in [0, 1] satisfies N, O, # 0.

This theorem is provable in Z¥ but not in Z4 .
Proofs are very different from previous NS-proofs.

These ‘new’ proofs led us to...
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Cantor (1874): for any sequence of reals (x,)nen, there is y € R
such that x, # y for all n € N.

To avoid the anti-platonist ire of Kronecker-Weierstrass, Cantor
(1874) only mentions that R and N are ‘therefore’ not one-to-one.

How hard is it to prove that there is no injection from [0, 1] to N?

For any Y : [0,1] — N, there are distinct x,y € [0, 1] such that
Y(x) = Y(y).

This theorem is provable in Z¥ but not in Z4.
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HBU: Heine-Borel theorem for uncountable coverings of [0, 1].

WHBU: Vitali covering theorem for uncountable coverings of [0, 1].

LIN(NN): Lindelof lemma for uncountable coverings of NN.

BOOT (& SUM): convergence theorems for nets (indexed by NN).

NINT: for any Y :[0,1] — N, there is a sequence (xp)neN
mapping to the same number.

Negative results do not change if we add QF-AC%! to Z4.
QF-AC%! is ‘weakest’ fragment of CC not provable in ZF.
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HBU: Heine-Borel theorem for uncountable coverings of [0, 1].
WHBU: Vitali covering theorem for uncountable coverings of [0, 1].

LIN(NN): Lindelof lemma for uncountable coverings of NN.

Similar computational results: 3% computes realiser © for HBU,
which computes realiser for NIN; no v, computes a realiser for NIN.
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+QF-ACO1)
(+QF-AC%L / i(JrQF ACO1)

SUM HBU +—— LIN(NN) open™ BCT Arz

H\WKLi
WHBU « N'NJ//
(FWWKL)

HBU: Heine-Borel theorem for uncountable coverings of [0, 1].

WHBU: Vitali covering theorem for uncountable coverings of [0, 1].

LIN(NN): Lindelof lemma for uncountable coverings of NN.

All these third-order theorems are provable in 22 + QF-AC%Y, but
not provable in Z§ + QF-AC%!, where Z, =1, 25 =4, Z?.

Why do we need ‘crazy much’ comprehension for basic theorems?

Because apples and oranges: the ‘comprehension functionals’ in Z%

and 229 are discontinuous, while the other theorems (HBU, NIN,
etc) are consistent with Brouwer’s (continuity) theorem.
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Brouwer and continuity to the rescue

L.E.J. Brouwer is (in)famous for his intuitionism.

Intuitionistic mathematics is formalised using non-classical
continuity axioms that have a (non-classical) weak counterpart.

The ‘weak’ counterpart yields the usual axiom via the classically
valid Neighbourhood Function Principle (NFP).

Definition (NFP, 1970, Kreisel-Troelstra)

For any formula A, we have
(VF € NNY(3n € N)A(Fn) — (3 € Ko)(VF € NN)A(FH(F)),

where ‘v € Ky' essentially means that 7 is an RM-code/associate.

Note that fn is the finite sequence (f(0),f(1),...,f(n—1)).

NFP expresses that there are (many) continuous choice functions.
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Brouwer and continuity to the rescue

Definition (NFP, 1970, Kreisel-Troelstra)

For any formula A, we have
(Vf € NN)(3n e N)A(fn) — (3 € Ko)(VF € NN)A(F~(f)),

where ‘v € Ky’ essentially means that 7 is an RM-code/associate.

NFP has great properties (in contrast to comprehension):

1) Theorems like BOOT, HBU, and the Lindelof lemma are
equivalent to natural fragments of NFP.

2) The equivalences from 1) map map to the Big Five
equivalences, under the canonical embedding of HOA in SOA.

The second item reminds one of Plato’s allegory of the cave.
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Plato and his -ism

Plato's allegory of the cave provides a powerful visual:

-k

We can only know reflections/shadows/... of ideal objects.

What are the current foundations of mathematics reflections of ?

Fragments of NFP
and equivalences
Big Five /ECF
and equivalences

ECF is canonical embedding of HOA into SOA (Kleene-Kreisel).
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The Big Five as a reflection
ECF replaces uncountable objects by countable representations/RM-codes
ECF converts right-hand side to left-hand side, including equivalences!
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The Big Five as a reflection
ECF replaces uncountable objects by countable/continuous RM-codes
Kohlenbach's RM: based on discontinuity; Plato hierarchy: based on continuity.

Cantor-Bendixson thm

4 +BOOT, ¢ (uncountable unions)

L [11-CAg ¢+ Cantor-Bendixson thm

|

+ATRg > perfect set theorem . 1 2-TR< perfect set thm (idem)
+ range of f : N = N exists! > range of Y : NN — N exist
+ACA( < Monotone conv. thm . +BOOT« Mon. conv. thm for nets
> Ascoli-Arzela ral i > Ascoli-Arzela for nets
<> thms about closed setsEC |:' <> thms about closed sets
(as countable unions) S (as uncountable unions)
+WKLg <> Dini's theorem. | WKL Dini's theorem for nets.
<> countabe Heine-Borel 1 <> uncountabe Heine-Borel
compactness 1 compactness: HBU
> Riemann int. thms ‘ <> gauge integral thms

+RCA( proves AY-comprehension RCAw Plus a fragment of

C F 0 countable choice
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Beyond Riemann and Lebesgue: the gauge integral

The gauge integral was introduced in 1912 by Denjoy (in a different
form) and generalises Lebesgue's integral (1904).

The development: Denjoy-Luzin-Perron-Henstock-Kurzweil

improper
Riemann
integral

Riemann
integral

Lebesgyue
integral

gauge integral

The first step in gauge integral literature is always HBU!
Most general FTC, no improper integrals (measurability?!?)

Many basic thms about gauge integral are equivalent to HBU.
ECF maps these to thms about Riemann integral.
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Definition (Riemann integral)

f : R — R is Riemann integrable on | = [0, 1] with integral A € R:

(Ve > 0)(3 § > 0)(VP)(¥i < K)(Ix — xisa| < 8) = IS(P, F) — A| < &)

constant P is ‘finer’ than &

P =(0,t1,x1...xk, tk, 1) partition S(P, f) = >, f(ti)|xi+1 — xi| Riemann sum
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f : R — R is Riemann integrable on | = [0, 1] with integral A € R:

(Ve > 0)(3 § > 0)(VP)(¥i < K)(Ix — xisa| < 8) = IS(P, F) — A| < &)

constant P is ‘finer’ than &

P =(0,t1,x1...xk, tk, 1) partition S(P, f) = >, f(ti)|xi+1 — xi| Riemann sum

v

Definition (Gauge integral)

f :R — R is gauge integrable on | = [0, 1] with integral A € R:

(Ve >0)3 5 : 1 —RT)YP)(Vi < k)(|xi — xiv1| < 6(t;)) = |S(P, F)—A|l< €)

‘gauge’ function P is ‘finer’ than &

N

If the gauge § : | — R* is continuous, then f is Riemann integrable.

A function is f Lebesgue integrable IFF f and |f| are gauge integrable.
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Kohlenbach: generalisations of WKL where tree-elementhood
o € T'is not decidable (Feferman's festschrift). Likewise:

Definition (WKL)

Weak Konig's lemma for binary trees T where ‘c € T’ is given by

(Vf € 2N)(Y(f,0) = 0).
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Higher-order WKL

Kohlenbach: generalisations of WKL where tree-elementhood
‘c € T'is not decidable (Feferman's festschrift). Likewise:

Definition (WKL)
Weak Konig's lemma for binary trees T where ‘c € T’ is given by

(Vf € 2N)(Y(f,0) = 0).

HBU <> WKL! needs some extra choice, which ECF maps to a
triviality.
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Kohlenbach's RM: based on discontinuity; Plato hierarchy: based on continuity.

L [11-CAg ¢+ Cantor-Bendixson thm
- ATRg < perfect set theorem

+» range of f : N — N exists
- ACAg < Monotone conv. thm
<> Ascoli-Arzela
<> thms about closed sets
(as countable unions)

+ WKLg <> Dini's theorem. |
<+ countabe Heine-Borel 1
compactness 1

> Riemann int. thms ‘

L RCAq proves A%-comprehension

@_

Cantor-Bendixson thm
+ BOOT, < (uncountable unions)

- 2-TR+ perfect set thm (idem)

> range of Y : NN — N exist
t BOOT<« Mon. conv. thm for nets
r < Ascoli-Arzela for nets
<+ thms about closed sets
(as uncountable unions)

| WKL Dini's theorem for nets.
<+ uncountabe Heine-Borel
compactness: HBU
<> gauge integral thms

RCAY plus A-comprehension

C F 0 or countable choice
SECOND-ORDER arithmetic E HIGHER-ORDER arithmetic
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index sets. Nets capture topology where sequences fail to.
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A set D # () with a binary relation ‘<X’ is directed if
@ The relation < is transitive and reflexive.
O Ford,e e D, thereis f € D such that d < f Ae < f.
For such (D, <) and topological space X, any x : D — X is a net.
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Nets generalise the concept of sequence to (possibly) uncountable
index sets. Nets capture topology where sequences fail to.

Definition (Nets, ca. 1915)

A set D # () with a binary relation ‘<X’ is directed if
@ The relation < is transitive and reflexive.
O Ford,e e D, thereis f € D such that d < f Ae < f.
For such (D, <) and topological space X, any x : D — X is a net.

y

Sequences are nets for (D, <) = (N, <). We write x4 for x(d).
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Definition (Convergence of nets)

A net xg converges to the limit y = limy x4 if for any neigh-
bourhood U of y, there is dy € D such that for all e = dg, xe € U.




Introduction Apples and oranges Reflections of oranges
00000 00000000 00000000000e0000

Definitions

Definition (Convergence of nets)

A net x4 converges to the limit y = limy xy if for any neigh-
bourhood U of y, there is dy € D such that for all e = dg, xe € U.

If the topological space X has some order <x:

Definition (Increasing nets)

A net x4 : D — X is increasing if d < e — x4 <x x. for d,e € D.




Introduction Apples and oranges Reflections of oranges
00000 00000000 00000000000e0000

Definitions

Definition (Convergence of nets)

A net x4 converges to the limit y = limy xy if for any neigh-
bourhood U of y, there is dy € D such that for all e = dg, xe € U.

If the topological space X has some order <x:

Definition (Increasing nets)

A net x4 : D — X is increasing if d < e — x4 <x x. for d,e € D.

Most notions of convergence carry over to nets mutatis mutandis.



Introduction Apples and oranges Reflections of oranges
00000 00000000 00000000000e0000

Definitions

Definition (Convergence of nets)

A net x4 converges to the limit y = limy xy if for any neigh-
bourhood U of y, there is dy € D such that for all e = dg, xe € U.

If the topological space X has some order <x:

Definition (Increasing nets)

A net x4 : D — X is increasing if d < e — x4 <x x. for d,e € D.

Most notions of convergence carry over to nets mutatis mutandis.
We (only) study nets with D € NN and <p € D x D.



Introduction Apples and oranges Reflections of oranges
00000 00000000 00000000000e0000

Definitions

Definition (Convergence of nets)

A net x4 converges to the limit y = limy xy if for any neigh-
bourhood U of y, there is dy € D such that for all e = dg, xe € U.

If the topological space X has some order <x:

Definition (Increasing nets)

A net x4 : D — X is increasing if d < e — x4 <x x. for d,e € D.

Most notions of convergence carry over to nets mutatis mutandis.
We (only) study nets with D € NN and <p € D x D.

In this way, our nets are third-order objects with extra structure
(D, =) on the domain.



Introduction Apples and oranges Reflections of oranges
00000 00000000 00000000000e0000

Definitions

Definition (Convergence of nets)

A net x4 converges to the limit y = limy xy if for any neigh-
bourhood U of y, there is dy € D such that for all e = dg, xe € U.

If the topological space X has some order <x:

Definition (Increasing nets)

A net x4 : D — X is increasing if d < e — x4 <x x. for d,e € D.

Most notions of convergence carry over to nets mutatis mutandis.
We (only) study nets with D € NN and <p € D x D.

In this way, our nets are third-order objects with extra structure
(D, =) on the domain.

Nets yield same (lower type) convergence theory as filters (Bartle).
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The central object of study in domain theory is the directed
complete partial order (dcpo), formulated using nets.

Any increasing net converges to its supremum in a dcpo. In this
light, let us study the most basic version of monotone convergence:

Definition (MCT ,et)

For D C NN, an increasing net x4 : D — [0,1] converges.
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The central object of study in domain theory is the directed
complete partial order (dcpo), formulated using nets.

Any increasing net converges to its supremum in a dcpo. In this
light, let us study the most basic version of monotone convergence:

Definition (MCT ,et)

For D C NN, an increasing net x4 : D — [0,1] converges.

MCT et is equivalent to BOOT, as follows.
(VY2 3EX)(¥n®)[n € X < (3F)(Y(f,n)=0)]. (BOOT)

Many theorems for nets imply (are equivalent to) BOOT:
Ascoli-Arzela, anti-Specker, Bolzano-Weierstrass, Cauchy nets, ...

Adding a modulus of convergence to MCT ¢ yields equivalence to
BOOT + QF-AC’™.
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Monotone convergence

The central object of study in domain theory is the directed
complete partial order (dcpo), formulated using nets.

Any increasing net converges to its supremum in a dcpo. In this
light, let us study the most basic version of monotone convergence:

Definition (MCT ,et)

For D C NN, an increasing net x4 : D — [0,1] converges.

MCT et is equivalent to BOOT, as follows.
(VY2 3EX)(¥n®)[n € X < (3F)(Y(f,n)=0)]. (BOOT)

Many theorems for nets imply (are equivalent to) BOOT:
Ascoli-Arzela, anti-Specker, Bolzano-Weierstrass, Cauchy nets, ...

Adding a modulus of convergence to MCT ¢ yields equivalence to
BOOT + QF-AC%!. Non-uniqueness and ECF!
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Kohlenbach's RM: based on discontinuity; Plato hierarchy: based on continuity.

L [11-CAg ¢+ Cantor-Bendixson thm
- ATRg < perfect set theorem

+» range of f : N — N exists
- ACAg < Monotone conv. thm
<> Ascoli-Arzela
<> thms about closed sets
(as countable unions)

+ WKLg <> Dini's theorem. |
<+ countabe Heine-Borel 1
compactness 1

> Riemann int. thms ‘

L RCAq proves A%-comprehension
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Cantor-Bendixson thm
+ BOOT, < (uncountable unions)

- 2-TR+ perfect set thm (idem)

> range of Y : NN — N exist
t BOOT<« Mon. conv. thm for nets
r < Ascoli-Arzela for nets
<+ thms about closed sets
(as uncountable unions)

| WKL Dini's theorem for nets.
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compactness: HBU
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Why...

should | do third-order arithmetic? Because RM ‘malfunctions’ in
second-order arithmetic.

RM seeks to classify theorems of ordinary mathematics ‘as they
stand’ according to the minimal axioms needed for a proof.

The Tietze, Weierstrass, and Heine theorems for continuous
functions on separably closed sets; the various versions of the
Ekeland variational principle; other extension theorems.
Two possible meanings of continuous function, namely:

@ second-order RM code for a continuous function.

@ third-order function that satisfies the e-d-definition
Above theorems are much weaker when using (2) instead of (1).

See my latest arxiv paper.



Introduction Apples and oranges Reflections of oranges
00000 00000000 000000000000000e

Final Thoughts



Introduction Apples and oranges Reflections of oranges
00000 00000000 000000000000000e

Final Thoughts

The revolution is not an apple that falls when it is ripe. You have
to make it fall. (AN & CG)



Introduction Apples and oranges Reflections of oranges
00000 00000000 000000000000000e

Final Thoughts

The revolution is not an apple that falls when it is ripe. You have
to make it fall. (AN & CG)

The safest general characterisation of the European philosophical
tradition is that it consists of a series of footnotes to Plato.
(A.N. Whitehead)



Introduction Apples and oranges Reflections of oranges
00000 00000000 000000000000000e

Final Thoughts

The revolution is not an apple that falls when it is ripe. You have
to make it fall. (AN & CG)

The safest general characterisation of the European philosophical
tradition is that it consists of a series of footnotes to Plato.
(A.N. Whitehead)
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The revolution is not an apple that falls when it is ripe. You have
to make it fall. (AN & CG)

The safest general characterisation of the European philosophical
tradition is that it consists of a series of footnotes to Plato.
(A.N. Whitehead)

We thank DFG, TU Darmstadt, John Templeton Foundation, and
Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!

Any (content) questions?
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