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Beyond our comprehension

What? The usual comprehension hierarchy (by itself) is not
appropriate for studying third-order arithmetic.

Why? Many natural/basic statements of third-order arithmetic
need ‘crazy much’ comprehension for a proof. Same for Kleene’s
higher-order computation based on S1-S9.

Solution? An alternative hierarchy, going back to Brouwer, is
identified. The ‘Big Five’ equivalences are a reflection of (part of)
this new hierarchy, following Plato’s allegory of the cave.
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History of comprehension (and vice versa)

In Grundlagen der Mathematik, Hilbert and Bernays formalise (a
lot of) mathematics in a logical system H.

System H makes (essential) use of third-order parameters, but is
‘more second-order’ than previous systems (with Ackermann).

H inspired second-order arithmetic Z2 based on comprehension:

(∃X ⊂ N)(∀n ∈ N)(n ∈ X ↔ ϕ(n))

for any formula ϕ(n) in L2, language of Z2.

Indeed, the following is (explicitly) introduced in H:

(∃n ∈ N)(f (n) = 0)→ f (µ(f )) = 0 (Feferman’s µ)

yielding arithmetical comprehension. Similarly:

ν-functional produces witness to (∃f : N→ N)A(f ), yielding Z2.
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Comprehension by any other name

Z2 is based on comprehension as follows:

(∃X ⊂ N)(∀n ∈ N)(n ∈ X ↔ ϕ(n))

for any formula ϕ(n) in L2, language of Z2. (Kreisel?)

Zω2 is based on comprehension as follows:

(∃f : N→ N)A(f )↔ A(νk+1g .A(g)) (*)

for A ∈ Π1
k ∩ L2 and any k. (Feferman, Sieg, Suslin, Kohlenbach)

ZΩ2 is based on comprehension as follows:

(∃f : N→ N)(Y (f ) = 0)↔ E (Y ) = 0.

for any third-order Y : NN → N. E is called Kleene’s ∃3.

Connection: Z2 ≡L2 Zω2 ≡L2 ZΩ2 . Note 3rd vs 4th order!
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Gödel hierarchy
strong
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...
large cardinals
...
ZFC
ZC (Zermelo set theory)

simple type theory

medium



Z2 (second-order arithmetic)
...
Π1

2 -CA0 (comprehension for Π1
2 -formulas)

Π1
1 -CA0 (comprehension for Π1

1 -formulas)
ATR0 (arithmetical transfinite recursion)
ACA0 (arithmetical comprehension)

weak


WKL0 (weak König’s lemma)
RCA0 (recursive comprehension)
PRA (primitive recursive arithmetic)
bounded arithmetic

It is striking that a great many foundational theories are linearly ordered by
[consistency strength] <. Of course it is possible to construct pairs of artificial
theories which are incomparable under <. However, this is not the case for the
“natural” or non-artificial theories which are usually regarded as significant in the
foundations of mathematics.
(Simpson, Gödel Centennial Volume; also: Koelner, Burgess, Friedman,. . . )

Zermelo-Fraenkel set theory with choice
aka ‘the’ foundation of mathematics

Hilbert-Bernays’s Grundlagen
der Mathematik

Russell-Weyl-Feferman
predicative mathematics

The ‘Big Five’ of Reverse Mathematics


Hilbert’s finitary math

Received view: natural/important systems form linear Gödel hierarchy

and 80/90% of ordinary mathematics is provable in ACA0/Π1
1 -CA0.
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and 80/90% of ordinary mathematics is provable in ACA0/Π1
1 -CA0.
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Gödel hierarchy

strong



...
large cardinals
...
ZFC
ZC (Zermelo set theory)

simple type theory

medium



Z2 (second-order arithmetic)
...
Π1

2 -CA0 (comprehension for Π1
2 -formulas)

Π1
1 -CA0 (comprehension for Π1

1 -formulas)
ATR0 (arithmetical transfinite recursion)
ACA0 (arithmetical comprehension)

weak


WKL0 (weak König’s lemma)
RCA0 (recursive comprehension)
PRA (primitive recursive arithmetic)
bounded arithmetic

Zermelo-Fraenkel set theory with choice
aka ‘the’ foundation of mathematics

Hilbert-Bernays’s Grundlagen
der Mathematik

Russell-Weyl-Feferman
predicative mathematics

The ‘Big Five’ of Reverse Mathematics


Hilbert’s finitary math

Received view: natural/important systems form linear Gödel hierarchy
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2 -CA0 (comprehension for Π1
2 -formulas)

Π1
1 -CA0 (comprehension for Π1

1 -formulas)
ATR0 (arithmetical transfinite recursion)
ACA0 (arithmetical comprehension)

weak


WKL0 (weak König’s lemma)
RCA0 (recursive comprehension)
PRA (primitive recursive arithmetic)
bounded arithmetic

Zermelo-Fraenkel set theory with choice
aka ‘the’ foundation of mathematics

Hilbert-Bernays’s Grundlagen
der Mathematik

Russell-Weyl-Feferman
predicative mathematics

The ‘Big Five’ of Reverse Mathematics


Hilbert’s finitary math

Received view: natural/important systems form linear Gödel hierarchy

and 80/90% of ordinary mathematics is provable in ACA0/Π1
1 -CA0.
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Incomprehensible!

Recall that Z2 ≡L2 Zω2 ≡L2 ZΩ2 .

The following third-order theorems
are provable in ZΩ2 , but not in Zω2 .

1 Arzelà’s convergence theorem for Riemann integral (1885).

2 Dini-Ascoli term-by-term Riemann integration thm (1872).

3 A countably-compact metric space ([0, 1], d) is separable.

4 Baire category theorem (open sets as characteristic functions)

5 There is a function f : R→ R not in Baire class 2.

6 Baire characterisation theorem for Baire class 1.

7 Heine-Borel/Vitali/Lindelöf for uncountable coverings.

8 Basic Lebesgue measure/integral and gauge integral.

9 Unordered sums are countable (E.H. Moore)

10 Convergence theorems for nets indexed by NN (Moore-Smith).

11 An open set in [0, 1] is a countable union of open intervals.

12 There is no injection from [0, 1] to N (Cantor, 1874).
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7 Heine-Borel/Vitali/Lindelöf for uncountable coverings.

8 Basic Lebesgue measure/integral and gauge integral.

9 Unordered sums are countable (E.H. Moore)

10 Convergence theorems for nets indexed by NN (Moore-Smith).

11 An open set in [0, 1] is a countable union of open intervals.

12 There is no injection from [0, 1] to N (Cantor, 1874).



Introduction Apples and oranges Reflections of oranges

Incomprehensible!

Recall that Z2 ≡L2 Zω2 ≡L2 ZΩ2 . The following third-order theorems
are provable in ZΩ2 , but not in Zω2 .
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7 Heine-Borel/Vitali/Lindelöf for uncountable coverings.

8 Basic Lebesgue measure/integral and gauge integral.

9 Unordered sums are countable (E.H. Moore)

10 Convergence theorems for nets indexed by NN (Moore-Smith).

11 An open set in [0, 1] is a countable union of open intervals.

12 There is no injection from [0, 1] to N (Cantor, 1874).



Introduction Apples and oranges Reflections of oranges

Incomprehensible!

Recall that Z2 ≡L2 Zω2 ≡L2 ZΩ2 . The following third-order theorems
are provable in ZΩ2 , but not in Zω2 .
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7 Heine-Borel/Vitali/Lindelöf for uncountable coverings.

8 Basic Lebesgue measure/integral and gauge integral.

9 Unordered sums are countable (E.H. Moore)

10 Convergence theorems for nets indexed by NN (Moore-Smith).

11 An open set in [0, 1] is a countable union of open intervals.

12 There is no injection from [0, 1] to N (Cantor, 1874).



Introduction Apples and oranges Reflections of oranges

Incomprehensible!

Recall that Z2 ≡L2 Zω2 ≡L2 ZΩ2 . The following third-order theorems
are provable in ZΩ2 , but not in Zω2 .

1 Arzelà’s convergence theorem for Riemann integral (1885).

2 Dini-Ascoli term-by-term Riemann integration thm (1872).

3 A countably-compact metric space ([0, 1], d) is separable.

4 Baire category theorem (open sets as characteristic functions)

5 There is a function f : R→ R not in Baire class 2.

6 Baire characterisation theorem for Baire class 1.

7 Heine-Borel/Vitali/Lindelöf for uncountable coverings.
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The Riemann integral

The convergence thms show that the Lebesgue integral is superior
to the Riemann integral. Such thms do exist for Riemann integrals:

Theorem (Arzela, 1885)

Let fn : ([0, 1]× N)→ R be a sequence such that

1 Each fn is Riemann integrable on [0, 1].

2 There is M > 0 such that (∀n ∈ N, x ∈ [0, 1])(|fn(x)| ≤ M).

3 limn→∞ fn = f exists and is Riemann integrable.

Then limn→∞
∫ 1

0 fn(x)dx =
∫ 1

0 f (x)dx.

This theorem, called Arz, is provable in ZΩ2 but not in Zω2 .

Same for ‘term-by-term’ integration used by Dini-Ascoli starting
1872 (for functions with countably many discontinuities).

Riemann’s Habilschrift (1854) entrenched discontinuous functions
in the mainstream.
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Metric spaces

Separable metric spaces are represented/coded in L2 via a
countable dense subset.

How hard is to prove that such a subset exists?

A metric d : [0, 1]2 → R on the unit interval is a third-order object
satisfying the usual properties of a metric.

Theorem

A countably-compact metric space ([0, 1], d) is separable.

This theorem is provable in ZΩ2 but not in Zω2 .

We use ‘totally bounded’ and ‘separable’ in the sense of RM.
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Baire category theorem

For this slide, we assume ‘open sets’ are given by (third-order)
characteristic functions: ‘x ∈ O’ means Y (x) = 1 for some
Y : R→ {0, 1};

‘x ∈ O’ satisfies the usual property of open set.

Theorem (BCT)

A sequence of dense open sets (On)n∈N in [0, 1] satisfies ∩nOn 6= ∅.

This theorem is provable in ZΩ2 but not in Zω2 .

Proofs are very different from previous NS-proofs.

These ‘new’ proofs led us to...



Introduction Apples and oranges Reflections of oranges

Baire category theorem

For this slide, we assume ‘open sets’ are given by (third-order)
characteristic functions: ‘x ∈ O’ means Y (x) = 1 for some
Y : R→ {0, 1}; ‘x ∈ O’ satisfies the usual property of open set.

Theorem (BCT)

A sequence of dense open sets (On)n∈N in [0, 1] satisfies ∩nOn 6= ∅.

This theorem is provable in ZΩ2 but not in Zω2 .

Proofs are very different from previous NS-proofs.

These ‘new’ proofs led us to...



Introduction Apples and oranges Reflections of oranges

Baire category theorem

For this slide, we assume ‘open sets’ are given by (third-order)
characteristic functions: ‘x ∈ O’ means Y (x) = 1 for some
Y : R→ {0, 1}; ‘x ∈ O’ satisfies the usual property of open set.

Theorem (BCT)

A sequence of dense open sets (On)n∈N in [0, 1] satisfies ∩nOn 6= ∅.

This theorem is provable in ZΩ2 but not in Zω2 .

Proofs are very different from previous NS-proofs.

These ‘new’ proofs led us to...



Introduction Apples and oranges Reflections of oranges

Baire category theorem

For this slide, we assume ‘open sets’ are given by (third-order)
characteristic functions: ‘x ∈ O’ means Y (x) = 1 for some
Y : R→ {0, 1}; ‘x ∈ O’ satisfies the usual property of open set.

Theorem (BCT)

A sequence of dense open sets (On)n∈N in [0, 1] satisfies ∩nOn 6= ∅.

This theorem is provable in ZΩ2 but not in Zω2 .

Proofs are very different from previous NS-proofs.

These ‘new’ proofs led us to...



Introduction Apples and oranges Reflections of oranges

Baire category theorem

For this slide, we assume ‘open sets’ are given by (third-order)
characteristic functions: ‘x ∈ O’ means Y (x) = 1 for some
Y : R→ {0, 1}; ‘x ∈ O’ satisfies the usual property of open set.

Theorem (BCT)

A sequence of dense open sets (On)n∈N in [0, 1] satisfies ∩nOn 6= ∅.

This theorem is provable in ZΩ2 but not in Zω2 .

Proofs are very different from previous NS-proofs.

These ‘new’ proofs led us to...



Introduction Apples and oranges Reflections of oranges

Baire category theorem

For this slide, we assume ‘open sets’ are given by (third-order)
characteristic functions: ‘x ∈ O’ means Y (x) = 1 for some
Y : R→ {0, 1}; ‘x ∈ O’ satisfies the usual property of open set.

Theorem (BCT)

A sequence of dense open sets (On)n∈N in [0, 1] satisfies ∩nOn 6= ∅.

This theorem is provable in ZΩ2 but not in Zω2 .

Proofs are very different from previous NS-proofs.

These ‘new’ proofs led us to...



Introduction Apples and oranges Reflections of oranges

Uncountability of R

Cantor (1874): for any sequence of reals (xn)n∈N, there is y ∈ R
such that xn 6= y for all n ∈ N.
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audience of mathematicians as we identify surprising results about a very well-
studied topic in the foundations of mathematics, namely the genesis of set theory.
Beyond this, we have formulated the below proofs in such a way as to appeal to an
as broad as possible audience. In particular, the below is meant to showcase the
techniques used to establish the results in [48–51], which are part of our ongoing
project on the logical and computational properties of the uncountable. Indeed,
NIN is implied by most of the (third-order) principles we have hitherto studied, e.g.
the Lindelöf lemma (LIN) and the Heine-Borel (HBU), Vitali (WHBU), and Baire
category (BCT) theorems. Our results for NIN imply that all stronger principles
behave in the same way, as depicted in Figure 1.

Moreover, our results have a number of interesting conceptual consequences.
Indeed, NIN seems to be the weakest natural third-order statement not provable in
Z!

2 ⌘ [k⇧
1
k -CA!

0 , a system conservative over second-order arithmetic Z2. We admit
that such claims are inherently vague. Moreover, a number of early critics, including
Borel, of the Axiom of Choice actually implicitly used this axiom in their work (see
[20, p. 315]). A similar observation can be made for NIN as follows: around 1874,
Weierstrass seems to have held the belief4 that there cannot be essential di↵erences
between infinite sets (see [20, p. 184]), although basic compactness results, pioneered
in part by Weierstrass himself, imply the uncountability of R.

Finally, the following figure provides an overview of some of the results in this
paper. Here, NIN+ expresses that any [0, 1] ! N-functional maps some sequence
of (distinct) reals to the same natural number. Further definitions can be found
in Section 2 while implications not involving NIN or NIN+ are in [48–51, 57]. We
do point out that Arz is Arzelà’s convergence theorem for the Riemann integral,
published in 1885 ([1]), i.e. ordinary mathematics if ever there was such.

BOOT Z⌦
2

SUM HBU LIN(NN) open+ BCT Z!
2 Arz

WHBU NIN+

NIN

(+QF-AC0,1) (+QF-AC0,1)

(+QF-AC0,1)

(+IND)

(+WKL)
/

\
(+WWKL)

Figure 1. The landscape

Note that Z⌦
2 ⌘ RCA!

0 + (93) and Z!
2 are both conservative extensions of Z2, and

where ⇧1
k -CA!

0 ⌘ RCA!
0 + (S2

k) is as above. The negative results in Figure 1 do

not change if we add countable choice as in QF-AC0,1 to Z!
2 . Lest we be accused of

comparing apples and oranges, we point out that the functionals S2
k used to define

Z!
2 are third-order and that NIN is part of the language of third-order arithmetic.

By contrast, Kleene’s 93 used to define Z⌦
2 , is fourth-order.

4Weierstrass seems to have changed his mind by 1885, which he expressed in a letter to Mittag-

Le✏er (see [20, p. 185]).

HBU: Heine-Borel theorem for uncountable coverings of [0, 1].

WHBU: Vitali covering theorem for uncountable coverings of [0, 1].

LIN(NN): Lindelöf lemma for uncountable coverings of NN.

BOOT (& SUM): convergence theorems for nets (indexed by NN).

NIN+: for any Y : [0, 1]→ N, there is a sequence (xn)n∈N

mapping to the same number.

Negative results do not change if we add QF-AC0,1 to Zω2 .
QF-AC0,1 is ‘weakest’ fragment of CC not provable in ZF.
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the Lindelöf lemma (LIN) and the Heine-Borel (HBU), Vitali (WHBU), and Baire
category (BCT) theorems. Our results for NIN imply that all stronger principles
behave in the same way, as depicted in Figure 1.

Moreover, our results have a number of interesting conceptual consequences.
Indeed, NIN seems to be the weakest natural third-order statement not provable in
Z!

2 ⌘ [k⇧
1
k -CA!

0 , a system conservative over second-order arithmetic Z2. We admit
that such claims are inherently vague. Moreover, a number of early critics, including
Borel, of the Axiom of Choice actually implicitly used this axiom in their work (see
[20, p. 315]). A similar observation can be made for NIN as follows: around 1874,
Weierstrass seems to have held the belief4 that there cannot be essential di↵erences
between infinite sets (see [20, p. 184]), although basic compactness results, pioneered
in part by Weierstrass himself, imply the uncountability of R.

Finally, the following figure provides an overview of some of the results in this
paper. Here, NIN+ expresses that any [0, 1] ! N-functional maps some sequence
of (distinct) reals to the same natural number. Further definitions can be found
in Section 2 while implications not involving NIN or NIN+ are in [48–51, 57]. We
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HBU: Heine-Borel theorem for uncountable coverings of [0, 1].

WHBU: Vitali covering theorem for uncountable coverings of [0, 1].

LIN(NN): Lindelöf lemma for uncountable coverings of NN.

Similar computational results: ∃3 computes realiser Θ for HBU,
which computes realiser for NIN; no νn computes a realiser for NIN.
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Finally, the following figure provides an overview of some of the results in this
paper. Here, NIN+ expresses that any [0, 1] ! N-functional maps some sequence
of (distinct) reals to the same natural number. Further definitions can be found
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published in 1885 ([1]), i.e. ordinary mathematics if ever there was such.
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Introduction Apples and oranges Reflections of oranges

Brouwer and continuity to the rescue

L.E.J. Brouwer is (in)famous for his intuitionism.

Intuitionistic mathematics is formalised using non-classical
continuity axioms that have a (non-classical) weak counterpart.

The ‘weak’ counterpart yields the usual axiom via the classically
valid Neighbourhood Function Principle (NFP).

Definition (NFP, 1970, Kreisel-Troelstra)

For any formula A, we have

(∀f ∈ NN)(∃n ∈ N)A(f n)→ (∃γ ∈ K0)(∀f ∈ NN)A(f γ(f )),

where ‘γ ∈ K0’ essentially means that γ is an RM-code/associate.

Note that f n is the finite sequence 〈f (0), f (1), . . . , f (n − 1)〉.
NFP expresses that there are (many) continuous choice functions.
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NFP has great properties (in contrast to comprehension):

1) Theorems like BOOT, HBU, and the Lindelöf lemma are
equivalent to natural fragments of NFP.

2) The equivalences from 1) map map to the Big Five
equivalences, under the canonical embedding of HOA in SOA.

The second item reminds one of Plato’s allegory of the cave.
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Plato and his -ism

Plato is well-known in (foundations of) mathematics for his
eponymous philosophy platonism, i.e.

the theory that mathematical objects are objective, timeless entities,

independent of the physical world and the symbols that represent them.

Plato’s allegory of the cave provides a powerful visual:

We can only know reflections/shadows/... of ideal objects.
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The Big Five as a reflection

6

RCA0

WKL0

ACA0

ATR0

Π1
1 -CA0

proves ∆0
1-comprehension

↔ Dini’s theorem.
↔ countabe Heine-Borel

compactness
↔ Riemann int. thms

↔ range of f : N→ N exists
↔ Monotone conv. thm
↔ Ascoli-Arzela
↔ thms about closed sets

(as countable unions)

↔ perfect set theorem

↔ Cantor-Bendixson thm

SECOND-ORDER arithmetic

6

RCAω0

WKL1

BOOT

Σ-TR

BOOT2

HIGHER-ORDER arithmetic

plus a fragment of
countable choice

↔ Dini’s theorem for nets.
↔ uncountabe Heine-Borel

compactness: HBU
↔ gauge integral thms

↔ range of Y : NN → N exists
↔ Mon. conv. thm for nets
↔ Ascoli-Arzela for nets
↔ thms about closed sets

(as uncountable unions)

Cantor-Bendixson thm
↔ (uncountable unions)

↔ perfect set thm (idem)

ECF replaces uncountable objects by countable representations/RM-codes

←−ECF

ECF converts right-hand side to left-hand side, including equivalences!

←−ECF
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Beyond Riemann and Lebesgue: the gauge integral

The gauge integral was introduced in 1912 by Denjoy (in a different

form) and generalises Lebesgue’s integral (1904).

The development: Denjoy-Luzin-Perron-Henstock-Kurzweil

The first step in gauge integral literature is always HBU!

Most general FTC, no improper integrals (measurability?!?)

Many basic thms about gauge integral are equivalent to HBU.
ECF maps these to thms about Riemann integral.
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The gauge integral: Riemann’s cousin!

Definition (Riemann integral)

f : R→ R is Riemann integrable on I ≡ [0, 1] with integral A ∈ R:

(∀ε > 0)(∃ δ > 0︸ ︷︷ ︸
constant

)(∀P)((∀i ≤ k)(|xi − xi+1| < δ)︸ ︷︷ ︸
P is ‘finer’ than δ

→ |S(P, f )− A| < ε)

P = (0, t1, x1 . . . xk , tk , 1) partition S(P, f ) =
∑

i f (ti )|xi+1 − xi | Riemann sum

Definition (Gauge integral)

f : R→ R is gauge integrable on I ≡ [0, 1] with integral A ∈ R:

(∀ε > 0)(∃ δ : I → R+︸ ︷︷ ︸
‘gauge’ function

)(∀P)((∀i ≤ k)(|xi − xi+1| < δ(ti ))︸ ︷︷ ︸
P is ‘finer’ than δ

→ |S(P, f )−A| < ε)

If the gauge δ : I → R+ is continuous, then f is Riemann integrable.

A function is f Lebesgue integrable IFF f and |f | are gauge integrable.
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Definition (Riemann integral)

f : R→ R is Riemann integrable on I ≡ [0, 1] with integral A ∈ R:

(∀ε > 0)(∃ δ > 0︸ ︷︷ ︸
constant

)(∀P)((∀i ≤ k)(|xi − xi+1| < δ)︸ ︷︷ ︸
P is ‘finer’ than δ

→ |S(P, f )− A| < ε)

P = (0, t1, x1 . . . xk , tk , 1) partition S(P, f ) =
∑

i f (ti )|xi+1 − xi | Riemann sum
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Higher-order WKL

Kohlenbach: generalisations of WKL where tree-elementhood
‘σ ∈ T ’ is not decidable (Feferman’s festschrift). Likewise:

Definition (WKL1)

Weak König’s lemma for binary trees T where ‘σ ∈ T ’ is given by
(∀f ∈ 2N)(Y (f , σ) = 0).

HBU↔WKL1 needs some extra choice, which ECF maps to a
triviality.
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Today: a higher RM

6

RCA0

WKL0

ACA0

ATR0

Π1
1 -CA0

proves ∆0
1-comprehension

↔ Dini’s theorem.
↔ countabe Heine-Borel

compactness
↔ Riemann int. thms

↔ range of f : N→ N exists
↔ Monotone conv. thm
↔ Ascoli-Arzela
↔ thms about closed sets

(as countable unions)

↔ perfect set theorem

↔ Cantor-Bendixson thm 6

RCAω0

WKL1

BOOT

Σ-TR

BOOT2

SECOND-ORDER arithmetic HIGHER-ORDER arithmetic

plus ∆-comprehension
or countable choice

↔ Dini’s theorem for nets.
↔ uncountabe Heine-Borel

compactness: HBU
↔ gauge integral thms

↔ range of Y : NN → N exists
↔ Mon. conv. thm for nets
↔ Ascoli-Arzela for nets
↔ thms about closed sets

(as uncountable unions)

Cantor-Bendixson thm
↔ (uncountable unions)

↔ perfect set thm (idem)

ECF replaces uncountable objects by countable/continuous RM-codes

←−ECF

Kohlenbach’s RM: based on discontinuity; Plato hierarchy: based on continuity.

←−ECF
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Nets: Moore-Smith-Vietoris

Nets generalise the concept of sequence to (possibly) uncountable
index sets. Nets capture topology where sequences fail to.

Definition (Nets, ca. 1915)

A set D 6= ∅ with a binary relation ‘�’ is directed if

a The relation � is transitive and reflexive.

b For d , e ∈ D, there is f ∈ D such that d � f ∧ e � f .

For such (D,�) and topological space X , any x : D → X is a net.

Sequences are nets for (D,�) = (N,≤). We write xd for x(d).
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Definitions

Definition (Convergence of nets)

A net xd converges to the limit y = limd xd if for any neigh-
bourhood U of y , there is d0 ∈ D such that for all e � d0, xe ∈ U.

If the topological space X has some order ≤X :

Definition (Increasing nets)

A net xd : D → X is increasing if d � e → xd ≤X xe for d , e ∈ D.

Most notions of convergence carry over to nets mutatis mutandis.

We (only) study nets with D ⊆ NN and �D ⊆ D × D.

In this way, our nets are third-order objects with extra structure
(D,�) on the domain.

Nets yield same (lower type) convergence theory as filters (Bartle).



Introduction Apples and oranges Reflections of oranges

Definitions

Definition (Convergence of nets)

A net xd converges to the limit y = limd xd if for any neigh-
bourhood U of y , there is d0 ∈ D such that for all e � d0, xe ∈ U.

If the topological space X has some order ≤X :

Definition (Increasing nets)

A net xd : D → X is increasing if d � e → xd ≤X xe for d , e ∈ D.

Most notions of convergence carry over to nets mutatis mutandis.

We (only) study nets with D ⊆ NN and �D ⊆ D × D.

In this way, our nets are third-order objects with extra structure
(D,�) on the domain.

Nets yield same (lower type) convergence theory as filters (Bartle).



Introduction Apples and oranges Reflections of oranges

Definitions

Definition (Convergence of nets)

A net xd converges to the limit y = limd xd if for any neigh-
bourhood U of y , there is d0 ∈ D such that for all e � d0, xe ∈ U.

If the topological space X has some order ≤X :

Definition (Increasing nets)

A net xd : D → X is increasing if d � e → xd ≤X xe for d , e ∈ D.

Most notions of convergence carry over to nets mutatis mutandis.

We (only) study nets with D ⊆ NN and �D ⊆ D × D.

In this way, our nets are third-order objects with extra structure
(D,�) on the domain.

Nets yield same (lower type) convergence theory as filters (Bartle).



Introduction Apples and oranges Reflections of oranges

Definitions

Definition (Convergence of nets)

A net xd converges to the limit y = limd xd if for any neigh-
bourhood U of y , there is d0 ∈ D such that for all e � d0, xe ∈ U.

If the topological space X has some order ≤X :

Definition (Increasing nets)

A net xd : D → X is increasing if d � e → xd ≤X xe for d , e ∈ D.

Most notions of convergence carry over to nets mutatis mutandis.

We (only) study nets with D ⊆ NN and �D ⊆ D × D.

In this way, our nets are third-order objects with extra structure
(D,�) on the domain.

Nets yield same (lower type) convergence theory as filters (Bartle).



Introduction Apples and oranges Reflections of oranges

Definitions

Definition (Convergence of nets)

A net xd converges to the limit y = limd xd if for any neigh-
bourhood U of y , there is d0 ∈ D such that for all e � d0, xe ∈ U.

If the topological space X has some order ≤X :

Definition (Increasing nets)

A net xd : D → X is increasing if d � e → xd ≤X xe for d , e ∈ D.

Most notions of convergence carry over to nets mutatis mutandis.

We (only) study nets with D ⊆ NN and �D ⊆ D × D.

In this way, our nets are third-order objects with extra structure
(D,�) on the domain.

Nets yield same (lower type) convergence theory as filters (Bartle).



Introduction Apples and oranges Reflections of oranges

Definitions

Definition (Convergence of nets)

A net xd converges to the limit y = limd xd if for any neigh-
bourhood U of y , there is d0 ∈ D such that for all e � d0, xe ∈ U.

If the topological space X has some order ≤X :

Definition (Increasing nets)

A net xd : D → X is increasing if d � e → xd ≤X xe for d , e ∈ D.

Most notions of convergence carry over to nets mutatis mutandis.

We (only) study nets with D ⊆ NN and �D ⊆ D × D.

In this way, our nets are third-order objects with extra structure
(D,�) on the domain.

Nets yield same (lower type) convergence theory as filters (Bartle).



Introduction Apples and oranges Reflections of oranges

Definitions

Definition (Convergence of nets)

A net xd converges to the limit y = limd xd if for any neigh-
bourhood U of y , there is d0 ∈ D such that for all e � d0, xe ∈ U.

If the topological space X has some order ≤X :

Definition (Increasing nets)

A net xd : D → X is increasing if d � e → xd ≤X xe for d , e ∈ D.

Most notions of convergence carry over to nets mutatis mutandis.

We (only) study nets with D ⊆ NN and �D ⊆ D × D.

In this way, our nets are third-order objects with extra structure
(D,�) on the domain.

Nets yield same (lower type) convergence theory as filters (Bartle).



Introduction Apples and oranges Reflections of oranges

Monotone convergence

The central object of study in domain theory is the directed
complete partial order (dcpo), formulated using nets.

Any increasing net converges to its supremum in a dcpo. In this
light, let us study the most basic version of monotone convergence:

Definition (MCTnet)

For D ⊆ NN, an increasing net xd : D → [0, 1] converges.

MCTnet is equivalent to BOOT, as follows.

(∀Y 2)(∃X 1)(∀n0)
[
n ∈ X ↔ (∃f 1)(Y (f , n) = 0)

]
. (BOOT)

Many theorems for nets imply (are equivalent to) BOOT:
Ascoli-Arzela, anti-Specker, Bolzano-Weierstrass, Cauchy nets, . . .

Adding a modulus of convergence to MCTnet yields equivalence to
BOOT + QF-AC0,1. Non-uniqueness and ECF!
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A higher RM

6

RCA0

WKL0

ACA0

ATR0

Π1
1 -CA0

proves ∆0
1-comprehension

↔ Dini’s theorem.
↔ countabe Heine-Borel

compactness
↔ Riemann int. thms

↔ range of f : N→ N exists
↔ Monotone conv. thm
↔ Ascoli-Arzela
↔ thms about closed sets

(as countable unions)

↔ perfect set theorem

↔ Cantor-Bendixson thm 6

RCAω0

WKL1

BOOT

Σ-TR

BOOT2

SECOND-ORDER arithmetic HIGHER-ORDER arithmetic

plus ∆-comprehension
or countable choice

↔ Dini’s theorem for nets.
↔ uncountabe Heine-Borel

compactness: HBU
↔ gauge integral thms

↔ range of Y : NN → N exists
↔ Mon. conv. thm for nets
↔ Ascoli-Arzela for nets
↔ thms about closed sets

(as uncountable unions)

Cantor-Bendixson thm
↔ (uncountable unions)

↔ perfect set thm (idem)

ECF replaces uncountable objects by countable/continuous RM-codes

←−ECF

Kohlenbach’s RM: based on discontinuity; Plato hierarchy: based on continuity.

←−ECF



Why...

should I do third-order arithmetic?

Because RM ‘malfunctions’ in
second-order arithmetic.

RM seeks to classify theorems of ordinary mathematics ‘as they
stand’ according to the minimal axioms needed for a proof.

The Tietze, Weierstrass, and Heine theorems for continuous
functions on separably closed sets; the various versions of the
Ekeland variational principle; other extension theorems.

Two possible meanings of continuous function, namely:

1 second-order RM code for a continuous function.

2 third-order function that satisfies the ε-δ-definition

Above theorems are much weaker when using (2) instead of (1).

See my latest arxiv paper.
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Final Thoughts

The revolution is not an apple that falls when it is ripe. You have
to make it fall. (AN & CG)

The safest general characterisation of the European philosophical
tradition is that it consists of a series of footnotes to Plato.

(A.N. Whitehead)

We thank DFG, TU Darmstadt, John Templeton Foundation, and
Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!

Any (content) questions?
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