Plato and Brouwer, sitting in a binary tree

Sam Sanders (jww Dag Normann)

Dept. of Mathematics, TU Darmstadt, Germany

Online Logic Seminar, AE, April 16, 2020
This talk reports on my joint project with Dag Normann (U. of Oslo) on the Reverse Mathematics and computability theory of the uncountable.
This talk reports on my joint project with Dag Normann (U. of Oslo) on the Reverse Mathematics and computability theory of the uncountable.

See arXiv for some of our papers!
Beyond our comprehension

What? The usual comprehension hierarchy (by itself) is not appropriate for studying third-order arithmetic. Why? Many natural/basic statements of third-order arithmetic need 'crazy much' comprehension for a proof. Same for Kleene's higher-order computation based on S1-S9. Solution? An alternative hierarchy, going back to Brouwer, is identified. The 'Big Five' equivalences are a reflection of (part of) this new hierarchy, following Plato's allegory of the cave.
Beyond our comprehension

What? The usual comprehension hierarchy (by itself) is not appropriate for studying third-order arithmetic.
Beyond our comprehension

What? The usual comprehension hierarchy (by itself) is not appropriate for studying third-order arithmetic.

Why? Many natural/basic statements of third-order arithmetic need ‘crazy much’ comprehension for a proof.
Beyond our comprehension

What? The usual comprehension hierarchy (by itself) is not appropriate for studying third-order arithmetic.

Why? Many natural/basic statements of third-order arithmetic need ‘crazy much’ comprehension for a proof. Same for Kleene’s higher-order computation based on S1-S9.
What? The usual comprehension hierarchy (by itself) is not appropriate for studying third-order arithmetic.

Why? Many natural/basic statements of third-order arithmetic need ‘crazy much’ comprehension for a proof. Same for Kleene’s higher-order computation based on S1-S9.

Solution? An alternative hierarchy, going back to Brouwer, is identified.
Beyond our comprehension

What? The usual comprehension hierarchy (by itself) is not appropriate for studying third-order arithmetic.

Why? Many natural/basic statements of third-order arithmetic need ‘crazy much’ comprehension for a proof. Same for Kleene’s higher-order computation based on S1-S9.

Solution? An alternative hierarchy, going back to Brouwer, is identified. The ‘Big Five’ equivalences are a reflection of (part of) this new hierarchy, following Plato’s allegory of the cave.
History of comprehension (and vice versa)

In Grundlagen der Mathematik, Hilbert and Bernays formalise (a lot of) mathematics in a logical system H. System H makes (essential) use of third-order parameters, but is 'more second-order' than previous systems (with Ackermann). H inspired second-order arithmetic \mathbb{Z}_2 based on comprehension:

$$(\exists X \subseteq \mathbb{N}) (\forall n \in \mathbb{N}) (n \in X \iff \varphi(n))$$

for any formula $\varphi(n)$ in L_2, language of \mathbb{Z}_2.

Indeed, the following is (explicitly) introduced in H:

$$(\exists n \in \mathbb{N}) (f(n) = 0) \rightarrow f(\mu(f)) = 0$$

(Feferman's μ) yielding arithmetical comprehension. Similarly:

ν-functional produces witness to $(\exists f : \mathbb{N} \to \mathbb{N}) A(f)$, yielding \mathbb{Z}_2.

History of comprehension (and vice versa)

In *Grundlagen der Mathematik*, Hilbert and Bernays formalise (a lot of) mathematics in a logical system H.

System H makes (essential) use of third-order parameters, but is 'more second-order' than previous systems (with Ackermann). H inspired second-order arithmetic Z_2 based on comprehension:

$$(\exists X \subseteq \mathbb{N}) (\forall n \in \mathbb{N})(n \in X \iff \phi(n))$$

for any formula $\phi(n)$ in L_2, language of Z_2.

Indeed, the following is (explicitly) introduced in H:

$$(\exists n \in \mathbb{N})(f(n) = 0) \to f(\mu(f)) = 0 \text{ (Feferman's } \mu \text{)}$$

yielding arithmetical comprehension.

Similarly:

ν-functional produces witness to ($\exists f: \mathbb{N} \to \mathbb{N}$) $A(f)$, yielding Z_2.

History of comprehension (and vice versa)

In *Grundlagen der Mathematik*, Hilbert and Bernays formalise (a lot of) mathematics in a logical system H.

System H makes (essential) use of third-order parameters, but is ‘more second-order’ than previous systems (with Ackermann).

Indeed, the following is (explicitly) introduced in H:

$$(\exists n \in \mathbb{N})(f(n) = 0) \rightarrow f(\mu(f)) = 0 \quad \text{(Feferman's } \mu \text{)}$$

yielding arithmetical comprehension.

Similarly:

$$\nu\text{-functional produces witness to } (\exists f : \mathbb{N} \rightarrow \mathbb{N})A(f), \text{ yielding } Z_2$$
History of comprehension (and vice versa)

In *Grundlagen der Mathematik*, Hilbert and Bernays formalise (a lot of) mathematics in a logical system H.

System H makes (essential) use of third-order parameters, but is ‘more second-order’ than previous systems (with Ackermann).

H inspired second-order arithmetic Z_2 based on comprehension:

$$(\exists X \subset \mathbb{N})(\forall n \in \mathbb{N})(n \in X \leftrightarrow \varphi(n))$$

for any formula $\varphi(n)$ in L_2, language of Z_2.
History of comprehension (and vice versa)

In *Grundlagen der Mathematik*, Hilbert and Bernays formalise (a lot of) mathematics in a logical system H. System H makes (essential) use of third-order parameters, but is ‘more second-order’ than previous systems (with Ackermann).

H inspired second-order arithmetic Z_2 based on comprehension:

$$(\exists X \subset \mathbb{N})(\forall n \in \mathbb{N})(n \in X \leftrightarrow \varphi(n))$$

for any formula $\varphi(n)$ in L_2, language of Z_2.

Indeed, the following is (explicitly) introduced in H:

$$(\exists n \in \mathbb{N})(f(n) = 0) \rightarrow f(\mu(f)) = 0 \text{ (Feferman's } \mu)$$
History of comprehension (and vice versa)

In Grundlagen der Mathematik, Hilbert and Bernays formalise (a lot of) mathematics in a logical system H.

System H makes (essential) use of third-order parameters, but is ‘more second-order’ than previous systems (with Ackermann).

H inspired second-order arithmetic Z_2 based on comprehension:

$$(\exists X \subset \mathbb{N})(\forall n \in \mathbb{N})(n \in X \leftrightarrow \varphi(n))$$

for any formula $\varphi(n)$ in L_2, language of Z_2.

Indeed, the following is (explicitly) introduced in H:

$$(\exists n \in \mathbb{N})(f(n) = 0) \rightarrow f(\mu(f)) = 0 \text{ (Feferman’s } \mu)$$

yielding arithmetical comprehension.
History of comprehension (and vice versa)

In *Grundlagen der Mathematik*, Hilbert and Bernays formalise (a lot of) mathematics in a logical system H.

System H makes (essential) use of third-order parameters, but is ‘more second-order’ than previous systems (with Ackermann).

H inspired second-order arithmetic Z_2 based on comprehension:

$$(\exists X \subseteq \mathbb{N})(\forall n \in \mathbb{N})(n \in X \leftrightarrow \varphi(n))$$

for any formula $\varphi(n)$ in L_2, language of Z_2.

Indeed, the following is (explicitly) introduced in H:

$$(\exists n \in \mathbb{N})(f(n) = 0) \rightarrow f(\mu(f)) = 0 \text{ (Feferman’s } \mu)$$

yielding arithmetical comprehension. Similarly:

ν-functional produces witness to $(\exists f : \mathbb{N} \rightarrow \mathbb{N})A(f)$, yielding Z_2.
Comprehension by any other name
Comprehension by any other name

Z_2 is based on comprehension as follows:

$$(\exists X \subset \mathbb{N})(\forall n \in \mathbb{N})(n \in X \leftrightarrow \varphi(n))$$

for any formula $\varphi(n)$ in L_2, language of Z_2. (Kreisel?)
Comprehension by any other name

Z_2 is based on comprehension as follows:

$$(\exists X \subset \mathbb{N})(\forall n \in \mathbb{N})(n \in X \leftrightarrow \varphi(n))$$

for any formula $\varphi(n)$ in L_2, language of Z_2. (Kreisel?)

Z^ω_2 is based on comprehension as follows:

$$(\exists f : \mathbb{N} \to \mathbb{N})A(f) \leftrightarrow A(\nu_{k+1}g.A(g)) \quad (*)$$

for $A \in \Pi^1_k \cap L_2$ and any k. (Feferman, Sieg, Suslin, Kohlenbach)
Comprehension by any other name

\(Z_2 \) is based on comprehension as follows:

\[
(\exists X \subset \mathbb{N})(\forall n \in \mathbb{N})(n \in X \iff \varphi(n))
\]

for any formula \(\varphi(n) \) in \(L_2 \), language of \(Z_2 \). (Kreisel?)

\(Z^\omega_2 \) is based on comprehension as follows:

\[
(\exists f : \mathbb{N} \to \mathbb{N})A(f) \iff A(\nu_{k+1}g.A(g))
\]

\((*)\)

for \(A \in \Pi^1_k \cap L_2 \) and any \(k \). (Feferman, Sieg, Suslin, Kohlenbach)

\(Z^\Omega_2 \) is based on comprehension as follows:

\[
(\exists f : \mathbb{N} \to \mathbb{N})(Y(f) = 0) \iff E(Y) = 0.
\]

for any third-order \(Y : \mathbb{N}^\mathbb{N} \to \mathbb{N} \).
Comprehension by any other name

\(Z_2 \) is based on comprehension as follows:

\[(\exists X \subset \mathbb{N})(\forall n \in \mathbb{N})(n \in X \leftrightarrow \varphi(n))\]

for any formula \(\varphi(n) \) in \(L_2 \), language of \(Z_2 \). (Kreisel?)

\(Z_2^\omega \) is based on comprehension as follows:

\[(\exists f : \mathbb{N} \to \mathbb{N})A(f) \leftrightarrow A(\nu_{k+1}g.A(g)) \quad (*)\]

for \(A \in \Pi^1_k \cap L_2 \) and any \(k \). (Feferman, Sieg, Suslin, Kohlenbach)

\(Z_2^\Omega \) is based on comprehension as follows:

\[(\exists f : \mathbb{N} \to \mathbb{N})(Y(f) = 0) \leftrightarrow E(Y) = 0.\]

for any third-order \(Y : \mathbb{N}^\mathbb{N} \to \mathbb{N} \). \(E \) is called Kleene’s \(\exists^3 \).
Comprehension by any other name

Z_2 is based on comprehension as follows:

$$(\exists X \subset \mathbb{N})(\forall n \in \mathbb{N})(n \in X \leftrightarrow \varphi(n))$$

for any formula $\varphi(n)$ in L_2, language of Z_2. (Kreisel?)

Z_2^ω is based on comprehension as follows:

$$(\exists f : \mathbb{N} \to \mathbb{N})A(f) \leftrightarrow A(\nu_{k+1}g.A(g))$$

(*)

for $A \in \Pi^1_k \cap L_2$ and any k. (Feferman, Sieg, Suslin, Kohlenbach)

Z_2^Ω is based on comprehension as follows:

$$(\exists f : \mathbb{N} \to \mathbb{N})(Y(f) = 0) \leftrightarrow E(Y) = 0.$$

for any third-order $Y : \mathbb{N}^\mathbb{N} \to \mathbb{N}$. E is called Kleene’s \exists^3.

Connection: $Z_2 \equiv_{L_2} Z_2^\omega \equiv_{L_2} Z_2^\Omega$.

Note 3rd vs 4th order!
Comprehension by any other name

Z_2 is based on comprehension as follows:

$$(\exists X \subset \mathbb{N}) (\forall n \in \mathbb{N}) (n \in X \leftrightarrow \varphi(n))$$

for any formula $\varphi(n)$ in L_2, language of Z_2. (Kreisel?)

Z^ω_2 is based on comprehension as follows:

$$(\exists f : \mathbb{N} \rightarrow \mathbb{N}) A(f) \leftrightarrow A(\nu_{k+1} g. A(g))\quad (*)$$

for $A \in \Pi^1_k \cap L_2$ and any k. (Feferman, Sieg, Suslin, Kohlenbach)

Z^Ω_2 is based on comprehension as follows:

$$(\exists f : \mathbb{N} \rightarrow \mathbb{N})(Y(f) = 0) \leftrightarrow E(Y) = 0.$$

for any third-order $Y : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}$. E is called Kleene’s \exists^3.

Connection: $Z_2 \equiv_{L_2} Z^\omega_2 \equiv_{L_2} Z^\Omega_2$. Note 3rd vs 4th order!
Gödel hierarchy

<table>
<thead>
<tr>
<th>Strong</th>
<th>Medium</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>large cardinals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZFC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZC (Zermelo set theory)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>simple type theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z₂ (second-order arithmetic)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z₁₁-CA₀ (comprehension for Z₁₁-formulas)</td>
<td>WKL₀ (weak König's lemma)</td>
</tr>
<tr>
<td></td>
<td>Z₁₁-CA₀ (comprehension for Z₁₁-formulas)</td>
<td>RCA₀ (recursive comprehension)</td>
</tr>
<tr>
<td></td>
<td>ATR₀ (arithmetical transfinite recursion)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACA₀ (arithmetical comprehension)</td>
<td>bound arithmetic</td>
</tr>
</tbody>
</table>

It is striking that a great many foundational theories are linearly ordered by [consistency strength] <. Of course it is possible to construct pairs of artificial theories which are incomparable under <. However, this is not the case for the “natural” or non-artificial theories which are usually regarded as significant in the foundations of mathematics.

(Simpson, Gödel Centennial Volume; also: Koelner, Burgess, Friedman,...)
Gödel hierarchy

= ‘comprehension’ hierarchy

MORE sets exist

\[
\begin{align*}
\text{strong} & \quad \{ \ldots \} \\
\text{medium} & \quad \{ Z_2 \text{ (second-order arithmetic)} \} \\
\text{weak} & \quad \{ WKL_0 \text{ (weak König’s lemma)} \}
\end{align*}
\]

\ldots

\LARGE{\uparrow}

\LARGE{\downarrow}

LESS sets exist

\ldots

large cardinals

ZFC

\begin{align*}
ZC & \quad (\text{Zermelo set theory}) \\
\text{simple type theory} & \quad \{ \ldots \}
\end{align*}

\begin{align*}
\Pi^1_2-\text{CA}_0 & \quad (\text{comprehension for } \Pi^1_2\text{-formulas}) \\
\Pi^1_1-\text{CA}_0 & \quad (\text{comprehension for } \Pi^1_1\text{-formulas}) \\
\text{ATR}_0 & \quad (\text{arithmetical transfinite recursion}) \\
\text{ACA}_0 & \quad (\text{arithmetical comprehension}) \\
\text{WKL}_0 & \quad (\text{weak König’s lemma}) \\
\text{RCA}_0 & \quad (\text{recursive comprehension}) \\
\text{PRA} & \quad (\text{primitive recursive arithmetic}) \\
\text{bounded arithmetic}
\end{align*}
Gödel hierarchy

strong

Zermelo-Fraenkel set theory with choice
aka ‘the’ foundation of mathematics

ZFC
ZC (Zermelo set theory)
simple type theory

medium

\ \begin{align*}
Z_2 \text{ (second-order arithmetic)} \\
\vdots \\
\end{align*}

\ \begin{align*}
II_2^1 \text{-CA}_0 \text{ (comprehension for } II_2^1 \text{-formulas)} \\
II_1^1 \text{-CA}_0 \text{ (comprehension for } II_1^1 \text{-formulas)} \\
\text{ATR}_0 \text{ (arithmetical transfinite recursion)} \\
\text{ACA}_0 \text{ (arithmetical comprehension)} \\
\end{align*}

weak

\ \begin{align*}
WKL_0 \text{ (weak König's lemma)} \\
\text{RCA}_0 \text{ (recursive comprehension)} \\
\text{PRA} \text{ (primitive recursive arithmetic)} \\
\text{bounded arithmetic} \\
\end{align*}
Gödel hierarchy

strong
- Zermelo-Fraenkel set theory with choice
- aka ‘the’ foundation of mathematics

- Hilbert-Bernays’s *Grundlagen der Mathematik*

medium
- Π^1_2-CA$_0$ (comprehension for Π^1_2-formulas)
- Π^1_1-CA$_0$ (comprehension for Π^1_1-formulas)
- ATR$_0$ (arithmetical transfinite recursion)
- ACA$_0$ (arithmetical comprehension)

weak
- WKL$_0$ (weak König’s lemma)
- RCA$_0$ (recursive comprehension)
- PRA (primitive recursive arithmetic)
- bounded arithmetic

Other Foundations
- ZFC (Zermelo set theory)
- ZC (Zermelo set theory)
- simple type theory
Gödel hierarchy

- **strong**
 - Zermelo-Fraenkel set theory with choice
 - aka ‘the’ foundation of mathematics

- **medium**
 - Hilbert-Bernays’s *Grundlagen der Mathematik*
 - Russell-Weyl-Feferman
 - predicative mathematics

- **weak**
 - WKL₀ (weak König’s lemma)
 - RCA₀ (recursive comprehension)

...
Gödel hierarchy

strong
- Zermelo-Fraenkel set theory with choice
- aka ‘the’ foundation of mathematics

medium
- Hilbert-Bernays’s *Grundlagen der Mathematik*
- Russell-Weyl-Feferman
- predicative mathematics

weak
- The ‘Big Five’ of Reverse Mathematics

- : large cardinals
- : ZFC
- : ZC (Zermelo set theory)
- : simple type theory

- Z₂ (second-order arithmetic)
- :
- : \(\Pi^1_2\)-CA\(_0\) (comprehension for \(\Pi^1_2\)-formulas)
- : \(\Pi^1_1\)-CA\(_0\) (comprehension for \(\Pi^1_1\)-formulas)
- : ATR\(_0\) (arithmetical transfinite recursion)
- : ACA\(_0\) (arithmetical comprehension)

- WKL\(_0\) (weak König’s lemma)
- : RCA\(_0\) (recursive comprehension)
- : PRA (primitive recursive arithmetic)
- : bounded arithmetic
Gödel hierarchy

Strong

Zermelo-Fraenkel set theory with choice
aka ‘the’ foundation of mathematics

Hilbert-Bernays’s Grundlagen
der Mathematik

medium

Russell-Weyl-Feferman
predicative mathematics

The ‘Big Five’ of Reverse Mathematics

Hilbert’s finitary math

weak

weak

WKL₀ (weak König’s lemma)
RCA₀ (recursive comprehension)
PRA (primitive recursive arithmetic)
bounded arithmetic

Medium

Z₂ (second-order arithmetic)

Π₁²-CA₀ (comprehension for Π₁²-formulas)
Π₁¹-CA₀ (comprehension for Π₁¹-formulas)
ATR₀ (arithmetical transfinite recursion)
ACA₀ (arithmetical comprehension)

Weak

large cardinals

ZFC

ZC (Zermelo set theory)
simple type theory

PRA (primitive recursive arithmetic)

Bounded arithmetic
Gödel hierarchy

strong
- Zermelo-Fraenkel set theory with choice
 aka ‘the’ foundation of mathematics

medium
- Hilbert-Bernays’s Grundlagen der Mathematik
- Russell-Weyl-Feferman predicative mathematics
- The ‘Big Five’ of Reverse Mathematics
- Hilbert’s finitary math

weak
- WKL\(_0\) (weak König’s lemma)
- RCA\(_0\) (recursive comprehension)
- PRA (primitive recursive arithmetic)

simple type theory
- ZFC
- ZC (Zermelo set theory)
- bounded arithmetic

Π\(_1^1\)-CA\(_0\) (comprehension for Π\(_1^1\)-formulas)
- Π\(_1^1\)-CA\(_0\) (comprehension for Π\(_1^1\)-formulas)
- ATR\(_0\) (arithmetical transfinite recursion)
- ACA\(_0\) (arithmetical comprehension)

Π\(_1^2\)-CA\(_0\) (comprehension for Π\(_1^2\)-formulas)
- Z\(_2\) (second-order arithmetic)
- \(\vdots\)

large cardinals
- \(\vdots\)

Received view: **natural/important** systems form **linear** Gödel hierarchy
Received view: **natural/**important systems form linear Gödel hierarchy and 80/90% of ordinary mathematics is provable in $\text{ACA}_0/II^1_1\text{-CA}_0$.
Incomprehensible!

Recall that $Z_2 \equiv_{L_2} Z_2^\omega \equiv_{L_2} Z_2^\Omega$.
Recall that $Z_2 \equiv_{L^2} Z_2^\omega \equiv_{L^2} Z_2^\Omega$. The following \textit{third-order} theorems are provable in Z_2^Ω, but not in Z_2^ω.
Incomprehensible!

Recall that $Z_2 \equiv_{L_2} Z_2^\omega \equiv_{L_2} Z_2^\Omega$. The following \textit{third-order} theorems are provable in Z_2^Ω, but not in Z_2^ω.

1. Arzelà’s convergence theorem for Riemann integral (1885).
Incomprehensible!

Recall that \(Z_2 \equiv_{L^2} Z_2^\omega \equiv_{L^2} Z_2^\Omega \). The following third-order theorems are provable in \(Z_2^\Omega \), but not in \(Z_2^\omega \).

1. Arzelà’s convergence theorem for Riemann integral (1885).
Recall that $Z_2 \equiv_{L_2} Z_2^\omega \equiv_{L_2} Z_2^\Omega$. The following *third-order* theorems are provable in Z_2^Ω, but not in Z_2^ω.

1. Arzelà’s convergence theorem for Riemann integral (1885).
3. A countably-compact metric space $([0, 1], d)$ is separable.
Recall that $Z_2 \equiv_{L_2} Z_2^\omega \equiv_{L_2} Z_2^\Omega$. The following third-order theorems are provable in Z_2^Ω, but not in Z_2^ω.

1. Arzelà’s convergence theorem for Riemann integral (1885).
3. A countably-compact metric space $([0,1], d)$ is separable.
4. Baire category theorem (open sets as characteristic functions)
Incomprehensible!

Recall that $Z_2 \equiv_{L_2} Z_2^\omega \equiv_{L_2} Z_2^\Omega$. The following *third-order* theorems are provable in Z_2^Ω, but not in Z_2^ω.

1. Arzelà’s convergence theorem for Riemann integral (1885).
3. A countably-compact metric space $([0, 1], d)$ is separable.
4. Baire category theorem (open sets as characteristic functions)
5. There is a function $f : \mathbb{R} \to \mathbb{R}$ not in Baire class 2.
Recall that $Z_2 \equiv L_2 Z_2^\omega \equiv L_2 Z_2^\Omega$. The following third-order theorems are provable in Z_2^Ω, but not in Z_2^ω.

1. Arzelà’s convergence theorem for Riemann integral (1885).
3. A countably-compact metric space $([0, 1], d)$ is separable.
4. Baire category theorem (open sets as characteristic functions)
5. There is a function $f : \mathbb{R} \to \mathbb{R}$ not in Baire class 2.
6. Baire characterisation theorem for Baire class 1.
Incomprehensible!

Recall that $Z_2 \equiv_{L_2} Z_2^\omega \equiv_{L_2} Z_2^\Omega$. The following third-order theorems are provable in Z_2^Ω, but not in Z_2^ω.

1. Arzelà’s convergence theorem for Riemann integral (1885).
3. A countably-compact metric space ([0, 1], d) is separable.
4. Baire category theorem (open sets as characteristic functions)
5. There is a function $f : \mathbb{R} \to \mathbb{R}$ not in Baire class 2.
6. Baire characterisation theorem for Baire class 1.
Incomprehensible!

Recall that $Z_2 \equiv_{L_2} Z_2^\omega \equiv_{L_2} Z_2^\Omega$. The following third-order theorems are provable in Z_2^Ω, but not in Z_2^ω.

1. Arzelà’s convergence theorem for Riemann integral (1885).
3. A countably-compact metric space $([0, 1], d)$ is separable.
4. Baire category theorem (open sets as characteristic functions)
5. There is a function $f : \mathbb{R} \to \mathbb{R}$ not in Baire class 2.
6. Baire characterisation theorem for Baire class 1.
8. Basic Lebesgue measure/integral and gauge integral.
Recall that $Z_2 \equiv_{L_2} Z_2^\omega \equiv_{L_2} Z_2^\Omega$. The following third-order theorems are provable in Z_2^Ω, but not in Z_2^ω.

1. Arzelà’s convergence theorem for Riemann integral (1885).
3. A countably-compact metric space $([0, 1], d)$ is separable.
4. Baire category theorem (open sets as characteristic functions)
5. There is a function $f : \mathbb{R} \to \mathbb{R}$ not in Baire class 2.
6. Baire characterisation theorem for Baire class 1.
8. Basic Lebesgue measure/integral and gauge integral.
9. Unordered sums are countable (E.H. Moore)
Recall that $Z_2 \equiv_{L_2} Z_2^\omega \equiv_{L_2} Z_2^\Omega$. The following third-order theorems are provable in Z_2^Ω, but not in Z_2^ω.

1. Arzelà’s convergence theorem for Riemann integral (1885).
3. A countably-compact metric space $([0, 1], d)$ is separable.
4. Baire category theorem (open sets as characteristic functions).
5. There is a function $f : \mathbb{R} \to \mathbb{R}$ not in Baire class 2.
6. Baire characterisation theorem for Baire class 1.
8. Basic Lebesgue measure/integral and gauge integral.
9. Unordered sums are countable (E.H. Moore).
10. Convergence theorems for nets indexed by $\mathbb{N}^\mathbb{N}$ (Moore-Smith).
Incomprehensible!

Recall that $Z_2 \equiv_{L_2} Z_2^\omega \equiv_{L_2} Z_2^\Omega$. The following third-order theorems are provable in Z_2^Ω, but not in Z_2^ω.

1. Arzelà’s convergence theorem for Riemann integral (1885).
3. A countably-compact metric space ($[0, 1], d$) is separable.
4. Baire category theorem (open sets as characteristic functions).
5. There is a function $f : \mathbb{R} \rightarrow \mathbb{R}$ not in Baire class 2.
6. Baire characterisation theorem for Baire class 1.
8. Basic Lebesgue measure/integral and gauge integral.
9. Unordered sums are countable (E.H. Moore).
10. Convergence theorems for nets indexed by $\mathbb{N}^\mathbb{N}$ (Moore-Smith).
11. An open set in $[0, 1]$ is a countable union of open intervals.
Incomprehensible!

Recall that $Z_2 \equiv_{L_2} Z^\omega_2 \equiv_{L_2} Z^\Omega_2$. The following *third-order* theorems are provable in Z^Ω_2, but not in Z^ω_2.

1. Arzelà’s convergence theorem for Riemann integral (1885).
3. A countably-compact metric space $([0, 1], d)$ is separable.
4. Baire category theorem (open sets as characteristic functions)
5. There is a function $f : \mathbb{R} \to \mathbb{R}$ not in Baire class 2.
6. Baire characterisation theorem for Baire class 1.
7. Heine-Borel/Vitali/Lindelöf for *uncountable* coverings.
8. Basic Lebesgue measure/integral and gauge integral.
9. Unordered sums are countable (E.H. Moore)
10. Convergence theorems for nets indexed by $\mathbb{N}^\mathbb{N}$ (Moore-Smith).
11. An open set in $[0, 1]$ is a countable union of open intervals.
12. There is no injection from $[0, 1]$ to \mathbb{N} (Cantor, 1874).
The Riemann integral
The Riemann integral

The *convergence thms* show that the Lebesgue integral is *superior* to the Riemann integral.
The Riemann integral

The *convergence thms* show that the Lebesgue integral is superior to the Riemann integral. Such thms do exist for Riemann integrals:

Theorem (Arzela, 1885)

Let \(f_n : ([0, 1] \times \mathbb{N}) \to \mathbb{R} \) be a sequence such that

1. Each \(f_n \) is **Riemann integrable** on \([0, 1]\).
2. There is \(M > 0 \) such that \((\forall n \in \mathbb{N}, x \in [0, 1])(|f_n(x)| \leq M) \).
3. \(\lim_{n \to \infty} f_n = f \) exists and is **Riemann integrable**.

Then \(\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx \).
The Riemann integral

The convergence thms show that the Lebesgue integral is superior to the Riemann integral. Such thms do exist for Riemann integrals:

Theorem (Arzela, 1885)

Let $f_n : ([0, 1] \times \mathbb{N}) \to \mathbb{R}$ be a sequence such that

1. Each f_n is **Riemann integrable** on $[0, 1]$.
2. There is $M > 0$ such that $(\forall n \in \mathbb{N}, x \in [0, 1])(|f_n(x)| \leq M)$.
3. $\lim_{n \to \infty} f_n = f$ exists and is **Riemann integrable**.

Then $\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx$.

This theorem, called **Arz**, is provable in \mathbb{Z}_2^Ω but not in \mathbb{Z}_2^ω.
The Riemann integral

The convergence thms show that the Lebesgue integral is superior to the Riemann integral. Such thms do exist for Riemann integrals:

Theorem (Arzela, 1885)

Let $f_n : ([0, 1] \times \mathbb{N}) \to \mathbb{R}$ be a sequence such that

1. Each f_n is Riemann integrable on $[0, 1]$.
2. There is $M > 0$ such that $(\forall n \in \mathbb{N}, x \in [0, 1])(|f_n(x)| \leq M)$.
3. $\lim_{n \to \infty} f_n = f$ exists and is Riemann integrable.

Then $\lim_{n \to \infty} \int_0^1 f_n(x)dx = \int_0^1 f(x)dx$.

This theorem, called Arz, is provable in \mathbb{Z}_2^Ω but not in \mathbb{Z}_2^ω.

Same for ‘term-by-term’ integration used by Dini-Ascoli starting 1872 (for functions with countably many discontinuities).
The Riemann integral

The *convergence thms* show that the Lebesgue integral is superior to the Riemann integral. Such thms do exist for Riemann integrals:

Theorem (Arzela, 1885)

Let \(f_n : ([0, 1] \times \mathbb{N}) \rightarrow \mathbb{R} \) be a sequence such that

1. Each \(f_n \) is *Riemann integrable* on \([0, 1]\.
2. There is \(M > 0 \) such that \(\forall n \in \mathbb{N}, x \in [0, 1] \), \(|f_n(x)| \leq M \).
3. \(\lim_{n \to \infty} f_n = f \) exists and is *Riemann integrable*.

Then \(\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx \).

This theorem, called *Arz*, is provable in \(\mathbb{Z}_2^\Omega \) but not in \(\mathbb{Z}_2^\omega \).

Same for *term-by-term* integration used by Dini-Ascoli starting 1872 (for functions with countably many discontinuities).

Riemann’s *Habilschrift* (1854) entrenched discontinuous functions in the mainstream.
Metric spaces

Separable metric spaces are represented/coded in L_2 via a countable dense subset.
Metric spaces

Separable metric spaces are represented/coded in L_2 via a countable dense subset.

How hard is to prove that such a subset exists?
Metric spaces

Separable metric spaces are represented/coded in L_2 via a countable dense subset.

How hard is to prove that such a subset exists?

A metric $d : [0, 1]^2 \to \mathbb{R}$ on the unit interval is a **third-order object** satisfying the usual properties of a metric.
Metric spaces

Separable metric spaces are represented/coded in L_2 via a countable dense subset.

How hard is to prove that such a subset exists?

A metric $d : [0, 1]^2 \rightarrow \mathbb{R}$ on the unit interval is a **third-order object** satisfying the usual properties of a metric.

Theorem

A countably-compact metric space $([0, 1], d)$ is separable.
Metric spaces

Separable metric spaces are represented/coded in L_2 via a countable dense subset.

How hard is to prove that such a subset exists?

A metric $d : [0, 1]^2 \rightarrow \mathbb{R}$ on the unit interval is a third-order object satisfying the usual properties of a metric.

Theorem

A countably-compact metric space $([0, 1], d)$ is separable.
Metric spaces

Separable metric spaces are represented/coded in L_2 via a countable dense subset.

How hard is to prove that such a subset exists?

A metric $d : [0, 1]^2 \rightarrow \mathbb{R}$ on the unit interval is a third-order object satisfying the usual properties of a metric.

Theorem

A countably-compact metric space $([0, 1], d)$ is separable.

This theorem is provable in \mathbb{Z}^Ω_2 but not in \mathbb{Z}^ω_2.
Metric spaces

Separable metric spaces are represented/coded in L_2 via a countable dense subset.

How hard is to prove that such a subset exists?

A metric $d : [0, 1]^2 \to \mathbb{R}$ on the unit interval is a third-order object satisfying the usual properties of a metric.

Theorem

A countably-compact metric space $([0, 1], d)$ is separable.

This theorem is provable in \mathbb{Z}_2^Ω but not in \mathbb{Z}_2^ω.

We use ‘totally bounded’ and ‘ separable’ in the sense of RM.
Baire category theorem

For this slide, we assume ‘open sets’ are given by (third-order) characteristic functions: ‘$x \in O$’ means $Y(x) = 1$ for some $Y : \mathbb{R} \to \{0, 1\}$;
Baire category theorem

For this slide, we assume ‘open sets’ are given by (third-order) characteristic functions: ‘$x \in O$’ means $Y(x) = 1$ for some $Y : \mathbb{R} \to \{0, 1\}$; ‘$x \in O$’ satisfies the usual property of open set.
Baire category theorem

For this slide, we assume ‘open sets’ are given by (third-order) characteristic functions: ‘$x \in O$’ means $Y(x) = 1$ for some $Y : \mathbb{R} \rightarrow \{0, 1\}$; ‘$x \in O$’ satisfies the usual property of open set.

Theorem (BCT)

A sequence of dense open sets $(O_n)_{n \in \mathbb{N}}$ in $[0, 1]$ satisfies $\cap_n O_n \neq \emptyset$.

Baire category theorem

For this slide, we assume ‘open sets’ are given by (third-order) characteristic functions: ‘\(x \in O \)’ means \(Y(x) = 1 \) for some \(Y : \mathbb{R} \to \{0, 1\} \); ‘\(x \in O \)’ satisfies the usual property of open set.

Theorem (BCT)

A sequence of dense open sets \((O_n)_{n \in \mathbb{N}}\) in \([0, 1]\) satisfies \(\bigcap_n O_n \neq \emptyset \).

This theorem is provable in \(Z_2^\Omega \) but not in \(Z_2^\omega \).
Baire category theorem

For this slide, we assume ‘open sets’ are given by (third-order) characteristic functions: ‘\(x \in O \)’ means \(Y(x) = 1 \) for some \(Y : \mathbb{R} \to \{0, 1\} \); ‘\(x \in O \)’ satisfies the usual property of open set.

Theorem (BCT)

A sequence of dense open sets \((O_n)_{n \in \mathbb{N}} \) in \([0, 1]\) satisfies \(\bigcap_n O_n \neq \emptyset \).

This theorem is provable in \(Z_2^\omega \) but not in \(Z_2^\omega \).

Proofs are very different from previous NS-proofs.
Baire category theorem

For this slide, we assume ‘open sets’ are given by (third-order) characteristic functions: ‘$x \in O$’ means $Y(x) = 1$ for some $Y : \mathbb{R} \to \{0, 1\}$; ‘$x \in O$’ satisfies the usual property of open set.

Theorem (BCT)

A sequence of dense open sets $(O_n)_{n \in \mathbb{N}}$ in $[0, 1]$ satisfies $\cap_n O_n \neq \emptyset$.

This theorem is provable in \mathbb{Z}_2^Ω but not in \mathbb{Z}_2^ω.

Proofs are very different from previous NS-proofs.

These ‘new’ proofs led us to...
Uncountability of \mathbb{R}
Uncountability of \mathbb{R}

Cantor (1874): for any sequence of reals $(x_n)_{n \in \mathbb{N}}$, there is $y \in \mathbb{R}$ such that $x_n \neq y$ for all $n \in \mathbb{N}$.
Uncountability of \mathbb{R}

Cantor (1874): for any sequence of reals $(x_n)_{n \in \mathbb{N}}$, there is $y \in \mathbb{R}$ such that $x_n \neq y$ for all $n \in \mathbb{N}$.

To avoid the anti-platonist ire of Kronecker-Weierstrass, Cantor (1874) only mentions that \mathbb{R} and \mathbb{N} are ‘therefore’ not one-to-one.
Uncountability of \mathbb{R}

Cantor (1874): for any sequence of reals $(x_n)_{n \in \mathbb{N}}$, there is $y \in \mathbb{R}$ such that $x_n \neq y$ for all $n \in \mathbb{N}$.

To avoid the anti-platonist ire of Kronecker-Weierstrass, Cantor (1874) only mentions that \mathbb{R} and \mathbb{N} are ‘therefore’ not one-to-one.

How hard is it to prove that there is no injection from $[0, 1]$ to \mathbb{N}?
Uncountability of \(\mathbb{R} \)

Cantor (1874): for any sequence of reals \((x_n)_{n \in \mathbb{N}}\), there is \(y \in \mathbb{R}\) such that \(x_n \neq y\) for all \(n \in \mathbb{N}\).

To avoid the anti-platonist ire of Kronecker-Weierstrass, Cantor (1874) only mentions that \(\mathbb{R}\) and \(\mathbb{N}\) are ‘therefore’ not one-to-one.

How hard is it to prove that there is no injection from \([0, 1]\) to \(\mathbb{N}\)?

Theorem (NIN)

For any \(Y : [0, 1] \to \mathbb{N}\), there are distinct \(x, y \in [0, 1]\) such that \(Y(x) = Y(y)\).
Uncountability of \(\mathbb{R} \)

Cantor (1874): for any sequence of reals \((x_n)_{n \in \mathbb{N}}\), there is \(y \in \mathbb{R}\) such that \(x_n \neq y\) for all \(n \in \mathbb{N}\).

To avoid the anti-platonist ire of Kronecker-Weierstrass, Cantor (1874) only mentions that \(\mathbb{R}\) and \(\mathbb{N}\) are ‘therefore’ not one-to-one.

How hard is it to prove that there is no injection from \([0, 1]\) to \(\mathbb{N}\)?

Theorem (NIN)

For any \(Y : [0, 1] \rightarrow \mathbb{N}\), there are distinct \(x, y \in [0, 1]\) such that \(Y(x) = Y(y)\).

This theorem is provable in \(Z_2^{\Omega}\) but not in \(Z_2^{\omega}\).
BY CONTRAST, KLEENE’S Z

COMPARING APPLES AND ORANGES, WE POINT OUT THAT THE FUNCTIONALS

DO NOT CHANGE IF WE ADD COUNTABLE CHOICE AS IN

WHERE

NOTE THAT

PUBLISHED IN 1885 (1), I.E. ORDINARY MATHEMATICS IF EVER THERE WAS SUCH.

DO POINT OUT THAT

IN SECTION 2 WHILE IMPLICATIONS NOT INVOLVING

OF (DISTINCT) REALS TO THE SAME NATURAL NUMBER. FURTHER DEFINITIONS CAN BE FOUND

IN PART BY WEIERSTRASS HIMSELF, IMPLY THE UNCOUNTABILITY OF

WEIERSTRASS SEEMS TO HAVE HELD THE BELIEF [20, P. 315]). A SIMILAR OBSERVATION CAN BE MADE FOR

BOREL, OF THE

THAT SUCH CLAIMS ARE INHERENTLY VAGUE. MOREOVER, A NUMBER OF EARLY CRITICS, INCLUDING

HABITUALLY USE THE FOLLOWING NOTATION TO DISTINGUISH BETWEEN INFINITE SETS (SEE [20, P. 184]), ALTHOUGH BASIC COMPACTNESS RESULTS, PIONEERED

WITTGENSTEIN, WOULD PROBABLY NOT HAVE CONSIDERED SUCH CLAIMS TO BE VAGUE.

HOWEVER, ANOTHER CRITIC, WEIERSTRASS, SEEMS TO HAVE HELD THE BELIEF [20, P. 185].

HE EXPRESSED THIS IN A LETTER TO MITTAG-LEFÉRY (SEE [20, P. 185]). A SIMILAR OBSERVATION CAN BE MADE FOR

BOREL, OF THE

THAT SUCH CLAIMS ARE INHERENTLY VAGUE. MOREOVER, A NUMBER OF EARLY CRITICS, INCLUDING

HABITUALLY USE THE FOLLOWING NOTATION TO DISTINGUISH BETWEEN INFINITE SETS (SEE [20, P. 184]), ALTHOUGH BASIC COMPACTNESS RESULTS, PIONEERED

WEIERSTRASS SEEMS TO HAVE HELD THE BELIEF [20, P. 315]). A SIMILAR OBSERVATION CAN BE MADE FOR

BOREL, OF THE

THAT SUCH CLAIMS ARE INHERENTLY VAGUE. MOREOVER, A NUMBER OF EARLY CRITICS, INCLUDING

BUT WEIERTSHOFFSilder INFLUENCE ON WITTGENSTEIN'S THOUGHTS ON MATHEMATICS. WITTGENSTEIN WAS INSPIRED BY

WEIERSTRASS'S WORK ON THE UNCOUNTABILITY OF

4 ON THE UNCOUNTABILITY OF R

AUDIENCE OF MATHEMATICIANS AS WE IDENTIFY SURPRISING RESULTS ABOUT A VERY WELL-

STUDIED TOPIC IN THE FOUNDATIONS OF MATHEMATICS, NAMELY THE GENESIS OF SET THEORY.

BEYOND THIS, WE HAVE FORMULATED THE BELOW PROOFS IN SUCH A WAY AS TO APPEAL TO AN

WIDEST POSSIBLE AUDIENCE. IN PARTICULAR, THE BELOW IS MEANT TO SHOWCASE THE

WIDER RELEVANCE OF THE RESULTS TO OTHER AREAS OF MATHEMATICS AND COMPUTER SCIENCE.

BEYOND THIS, WE HAVE FORMULATED THE BELOW PROOFS IN SUCH A WAY AS TO APPEAL TO AN

WIDEST POSSIBLE AUDIENCE. IN PARTICULAR, THE BELOW IS MEANT TO SHOWCASE THE

WIDER RELEVANCE OF THE RESULTS TO OTHER AREAS OF MATHEMATICS AND COMPUTER SCIENCE.

BEYOND THIS, WE HAVE FORMULATED THE BELOW PROOFS IN SUCH A WAY AS TO APPEAL TO AN

WIDEST POSSIBLE AUDIENCE. IN PARTICULAR, THE BELOW IS MEANT TO SHOWCASE THE

WIDER RELEVANCE OF THE RESULTS TO OTHER AREAS OF MATHEMATICS AND COMPUTER SCIENCE.

BEYOND THIS, WE HAVE FORMULATED THE BELOW PROOFS IN SUCH A WAY AS TO APPEAL TO AN

WIDEST POSSIBLE AUDIENCE. IN PARTICULAR, THE BELOW IS MEANT TO SHOWCASE THE

WIDER RELEVANCE OF THE RESULTS TO OTHER AREAS OF MATHEMATICS AND COMPUTER SCIENCE.

BEYOND THIS, WE HAVE FORMULATED THE BELOW PROOFS IN SUCH A WAY AS TO APPEAL TO AN

WIDEST POSSIBLE AUDIENCE. IN PARTICULAR, THE BELOW IS MEANT TO SHOWCASE THE

WIDER RELEVANCE OF THE RESULTS TO OTHER AREAS OF MATHEMATICS AND COMPUTER SCIENCE.
4 ON THE UNCOUNTABILITY OF \mathbb{R}

audience of mathematicians as we identify surprising results about a very well-studied topic in the foundations of mathematics, namely the genesis of set theory. Beyond this, we have formulated the below proofs in such a way as to appeal to an as broad as possible audience. In particular, the below is meant to showcase the techniques used to establish the results in [48–51], which are part of our ongoing project on the logical and computational properties of the uncountable. Indeed, NIN is implied by most of the (third-order) principles we have hitherto studied, e.g. the Lindelöf lemma (LIN), the Heine-Borel (HBU), Vitali (WHBU), and Baire category (BCT) theorems. Our results for NIN imply that all stronger principles behave in the same way, as depicted in Figure 1.

Moreover, our results have a number of interesting conceptual consequences. Indeed, NIN seems to be the weakest natural third-order statement not provable in Z_{2}^{ω}, a system conservative over second-order arithmetic Z_{2}. We admit that such claims are inherently vague. Moreover, a number of early critics, including Borel, of the Axiom of Choice actually implicitly used this axiom in their work (see [20, p. 315]). A similar observation can be made for NIN as follows: around 1874, Weierstrass seems to have held the belief that there cannot be essential differences between infinite sets (see [20, p. 184]), although basic compactness results, pioneered in part by Weierstrass himself, imply the uncountability of \mathbb{R}.

Finally, the following figure provides an overview of some of the results in this paper. Here, NIN^+ expresses that any $[0, 1] \rightarrow \mathbb{N}$-functional maps some sequence of (distinct) reals to the same natural number. Further definitions can be found in Section 2 while implications not involving NIN or NIN^+ are in [48–51, 57]. We do point out that Arz is Arzelà's convergence theorem for the Riemann integral, published in 1885 ([1]), i.e. ordinary mathematics if ever there was such.

Note that $\text{Z}_{2}^{\omega} \implies \text{RCA}_0$ and Z_{2}^{ω} are both conservative extensions of Z_{2}, and where IND is as above. The negative results in Figure 1 do not change if we add countable choice as in QF-AC_0 to Z_{2}^{ω}. Lest we be accused of comparing apples and oranges, we point out that the functionals S_k^2 used to define Z_{2}^{ω} are third-order and that NIN is part of the language of third-order arithmetic. By contrast, Kleene's K_3 used to define Z_{2}^{ω} is fourth-order.

4 Weierstrass seems to have changed his mind by 1885, which he expressed in a letter to Mittag-Leffler (see [20, p. 185]).

HBU: Heine-Borel theorem for uncountable coverings of $[0, 1]$.

WHBU: Vitali covering theorem for uncountable coverings of $[0, 1]$.

LIN$(\mathbb{N}^\mathbb{N})$: Lindelöf lemma for uncountable coverings of $\mathbb{N}^\mathbb{N}$.
4 ON THE UNCOUNTABILITY OF \mathbb{R}

audience of mathematicians as we identify surprising results about a very well-studied topic in the foundations of mathematics, namely the genesis of set theory. Beyond this, we have formulated the below proofs in such a way as to appeal to an as broad as possible audience. In particular, the below is meant to showcase the techniques used to establish the results in [48–51], which are part of our ongoing project on the logical and computational properties of the uncountable. Indeed, NIN is implied by most of the (third-order) principles we have hitherto studied, e.g. the Lindelöf lemma (LIN) and the Heine-Borel (HBU), Vitali (WHBU), and Baire category (BCT) theorems. Our results for NIN imply that all stronger principles behave in the same way, as depicted in Figure 1.

Moreover, our results have a number of interesting conceptual consequences. Indeed, NIN seems to be the weakest natural third-order statement not provable in \mathbb{Z}_2^ω, a system conservative over second-order arithmetic. We admit that such claims are inherently vague. Moreover, a number of early critics, including Borel, of the Axiom of Choice actually implicitly used this axiom in their work (see [20, p. 315]). A similar observation can be made for NIN as follows: around 1874, Weierstrass seems to have held the belief that there cannot be essential differences between infinite sets (see [20, p. 184]), although basic compactness results, pioneered in part by Weierstrass himself, imply the uncountability of \mathbb{R}.

Finally, the following figure provides an overview of some of the results in this paper. Here, NIN+ expresses that any $[0, 1]$ \mathbb{N}-functional maps some sequence of (distinct) reals to the same natural number. Further definitions can be found in Section 2 while implications not involving NIN or NIN+ are in [48–51, 57]. We do point out that Arz is Arzelà’s convergence theorem for the Riemann integral, published in 1885 ([1]), i.e. ordinary mathematics if ever there was such.

Figure 1. The landscape

Note that $\mathbb{Z}_\omega^{\Omega}$ and \mathbb{Z}_2^ω are both conservative extensions of \mathbb{Z}_2^ω, and where \uparrow_1^k-CA_0 is as above. The negative results in Figure 1 do not change if we add countable choice as in QF-AC to \mathbb{Z}_2^ω. Lest we be accused of comparing apples and oranges, we point out that the functionals S^k_2 used to define \mathbb{Z}_2^ω are third-order and that NIN is part of the language of third-order arithmetic. By contrast, Kleene’s \uparrow_3 used to define $\mathbb{Z}_\omega^{\Omega}$, is fourth-order.

\textbf{HBU}: Heine-Borel theorem for uncountable coverings of $[0, 1]$.
\textbf{WHBU}: Vitali covering theorem for uncountable coverings of $[0, 1]$.
$\textbf{LIN}(\mathbb{N}^\mathbb{N})$: Lindelöf lemma for uncountable coverings of $\mathbb{N}^\mathbb{N}$.
$\textbf{BOOT (\& SUM)}$: convergence theorems for nets (indexed by $\mathbb{N}^\mathbb{N}$).
ON THE UNCOUNTABILITY OF \(\mathbb{R} \)

Audience of mathematicians as we identify surprising results about a very well-studied topic in the foundations of mathematics, namely the genesis of set theory. Beyond this, we have formulated the below proofs in such a way as to appeal to an as broad as possible audience. In particular, the below is meant to showcase the techniques used to establish the results in [48–51], which are part of our ongoing project on the logical and computational properties of the uncountable. Indeed, \(\text{NIN} \) is implied by most of the (third-order) principles we have hitherto studied, e.g. the Lindelöf lemma (\(\text{LIN} \)) and the Heine-Borel (\(\text{HBU} \)), Vitali (\(\text{WHBU} \)), and Baire category (\(\text{BCT} \)) theorems. Our results for \(\text{NIN} \) imply that all stronger principles behave in the same way, as depicted in Figure 1.

Moreover, our results have a number of interesting conceptual consequences. Indeed, \(\text{NIN} \) seems to be the weakest natural third-order statement not provable in \(\mathbb{Z}^\omega \), a system conservative over second-order arithmetic \(\mathbb{Z}^2 \). We admit that such claims are inherently vague. Moreover, a number of early critics, including Borel, of the Axiom of Choice actually implicitly used this axiom in their work (see [20, p. 315]). A similar observation can be made for \(\text{NIN} \) as follows: around 1874, Weierstrass seems to have held the belief that there cannot be essential differences between infinite sets (see [20, p. 184]), although basic compactness results, pioneered in part by Weierstrass himself, imply the uncountability of \(\mathbb{R} \).

Finally, the following figure provides an overview of some of the results in this paper. Here, \(\text{NIN}^+ \) expresses that any \([0, 1] \rightarrow \mathbb{N} \)-functional maps some sequence of (distinct) reals to the same natural number. Further definitions can be found in Section 2 while implications not involving \(\text{NIN} \) or \(\text{NIN}^+ \) are in [48–51, 57]. We do point out that \(\text{Arz} \) is Arzelà's convergence theorem for the Riemann integral, published in 1885 ([1]), i.e. ordinary mathematics if ever there was such.

Diagram: (with definitions and implications)

- **HBU**: Heine-Borel theorem for uncountable coverings of \([0, 1]\).
- **WHBU**: Vitali covering theorem for uncountable coverings of \([0, 1]\).
- **LIN(\(\mathbb{N}^\mathbb{N} \))**: Lindelöf lemma for uncountable coverings of \(\mathbb{N}^\mathbb{N} \).
- **BOOT (& SUM)**: convergence theorems for nets (indexed by \(\mathbb{N}^\mathbb{N} \)).
- **NIN^+**: for any \(Y : [0, 1] \rightarrow \mathbb{N} \), there is a sequence \((x_n)_{n \in \mathbb{N}} \) mapping to the same number.
HBU: Heine-Borel theorem for uncountable coverings of $[0, 1]$.

WHBU: Vitali covering theorem for uncountable coverings of $[0, 1]$.

LIN($\mathbb{N}^\mathbb{N}$): Lindelöf lemma for uncountable coverings of $\mathbb{N}^\mathbb{N}$.

BOOT (& SUM): convergence theorems for nets (indexed by $\mathbb{N}^\mathbb{N}$).

NIN$: for any $Y : [0, 1] \to \mathbb{N}$, there is a sequence $(x_n)_{n \in \mathbb{N}}$ mapping to the same number.

Negative results do not change if we add QF-AC0,1 to Z_2^ω.

QF-AC0,1 is ‘weakest’ fragment of CC not provable in ZF.
4 ON THE UNCOUNTABILITY OF \(\mathbb{R} \)

Our results for \(\text{NIN} \) imply that all stronger principles behave in the same way, as depicted in Figure 1.

Moreover, our results have a number of interesting conceptual consequences. Indeed, \(\text{NIN} \) seems to be the weakest natural third-order statement not provable in \(\mathbb{Z}^2 \), a system conservative over second-order arithmetic. We admit that such claims are inherently vague. Moreover, a number of early critics, including Borel, of the Axiom of Choice actually implicitly used this axiom in their work (see [20, p. 315]). A similar observation can be made for \(\text{NIN} \) as follows: around 1874, Weierstrass seems to have held the belief that there cannot be essential differences between infinite sets (see [20, p. 184]), although basic compactness results, pioneered in part by Weierstrass himself, imply the uncountability of \(\mathbb{R} \).

Finally, the following figure provides an overview of some of the results in this paper. Here, \(\text{NIN}^+ \) expresses that any \([0, 1] \) functional maps some sequence of (distinct) reals to the same natural number. Further definitions can be found in Section 2 while implications not involving \(\text{NIN} \) or \(\text{NIN}^+ \) are in [48–51, 57]. We do point out that Arz is Arzelà’s convergence theorem for the Riemann integral, published in 1885 ([1]), i.e. ordinary mathematics if ever there was such.

Note that \(\mathbb{Z}^\omega \) and \(\mathbb{Z}^\omega \) are both conservative extensions of \(\mathbb{Z}^2 \), and where \(\text{IND} \) is as above. The negative results in Figure 1 do not change if we add countable choice as in \(\text{QF-AC}^0,1 \) to \(\mathbb{Z}^\omega \). Lest we be accused of comparing apples and oranges, we point out that the functionals \(\text{S}^2_k \) used to define \(\mathbb{Z}^\omega \) are third-order and that \(\text{NIN} \) is part of the language of third-order arithmetic. By contrast, Kleene’s \(\text{QF-AC}^0,1 \) used to define \(\mathbb{Z}^\omega \) is fourth-order.

HBU: Heine-Borel theorem for uncountable coverings of \([0, 1]\).

WHBU: Vitali covering theorem for uncountable coverings of \([0, 1]\).

LIN(\(\mathbb{N}^{\mathbb{N}} \)): Lindelöf lemma for uncountable coverings of \(\mathbb{N}^{\mathbb{N}} \).
ON THE UNCOUNTABILITY OF \mathbb{R}

Audience of mathematicians as we identify surprising results about a very well-studied topic in the foundations of mathematics, namely the genesis of set theory. Beyond this, we have formulated the below proofs in such a way as to appeal to an as broad as possible audience. In particular, the below is meant to showcase the techniques used to establish the results in [48–51], which are part of our ongoing project on the logical and computational properties of the uncountable. Indeed, NIN is implied by most of the (third-order) principles we have hitherto studied, e.g. the Lindelöf lemma ($LIN(N^N)$) and the Heine-Borel (HBU), Vitali ($WHBU$), and Baire category (BCT) theorems. Our results for NIN imply that all stronger principles behave in the same way, as depicted in Figure 1.

Moreover, our results have a number of interesting conceptual consequences. Indeed, NIN seems to be the weakest natural third-order statement not provable in \mathbb{Z}^2_κ, a system conservative over second-order arithmetic \mathbb{Z}^2. We admit that such claims are inherently vague. Moreover, a number of early critics, including Borel, of the Axiom of Choice actually implicitly used this axiom in their work (see [20, p. 315]). A similar observation can be made for NIN as follows: around 1874, Weierstrass seems to have held the belief that there cannot be essential differences between infinite sets (see [20, p. 184]), although basic compactness results, pioneered in part by Weierstrass himself, imply the uncountability of \mathbb{R}.

Finally, the following figure provides an overview of some of the results in this paper. Here, NIN^+ expresses that any $[0,1]$-functional maps some sequence of (distinct) reals to the same natural number. Further definitions can be found in Section 2 while implications not involving NIN or NIN^+ are in [48–51, 57]. We do point out that Arz is Arzelà’s convergence theorem for the Riemann integral, published in 1885 ([1]), i.e. ordinary mathematics if ever there was such.

Note that \mathbb{Z}^κ_ω and \mathbb{Z}^κ_2 are both conservative extensions of \mathbb{Z}^2, and where κ_{-CA^0} is as above. The negative results in Figure 1 do not change if we add countable choice as in $\mathbb{QF-AC}^0_0$ to \mathbb{Z}^κ_2. Lest we be accused of comparing apples and oranges, we point out that the functionals S^k_2 used to define \mathbb{Z}^κ_2 are third-order and that NIN is part of the language of third-order arithmetic. By contrast, Kleene’s κ_3 used to define \mathbb{Z}^κ_2, is fourth-order.

HBU: Heine-Borel theorem for uncountable coverings of $[0, 1]$.
WHBU: Vitali covering theorem for uncountable coverings of $[0, 1]$.
LIN(N^N): Lindelöf lemma for uncountable coverings of N^N.

Similar computational results: \exists^3 computes realiser Θ for HBU, which computes realiser for NIN; no ν_n computes a realiser for NIN.
HBU: Heine-Borel theorem for uncountable coverings of $[0, 1]$.

WHBU: Vitali covering theorem for uncountable coverings of $[0, 1]$.

LIN($\mathbb{N}^\mathbb{N}$): Lindelöf lemma for uncountable coverings of $\mathbb{N}^\mathbb{N}$.
HBU: Heine-Borel theorem for uncountable coverings of [0, 1].
WHBU: Vitali covering theorem for uncountable coverings of [0, 1].
LIN(\mathbb{N}^\mathbb{N}): Lindelöf lemma for uncountable coverings of \mathbb{N}^\mathbb{N}.

All these third-order theorems are provable in Z_2^\Omega + QF-AC^{0,1}, but not provable in Z_2^\omega + QF-AC^{0,1}, where Z_2 \equiv_{L_2} Z_2^\omega \equiv_{L_2} Z_2^\Omega.
4 ON THE UNCOUNTABILITY OF R
audience of mathematicians as we identify surprising results about a very well-
studied topic in the foundations of mathematics, namely the genesis of set theory.

Weierstrass seems to have held the belief
[20, p. 315]). A similar observation can be made for
Borel, of the
that such claims are inherently vague. Moreover, a number of early critics, including
Z

By contrast, Kleene's
comparing apples and oranges, we point out that the functionals
not change if we add countable choice as in
where
Note that

Finally, the following figure provides an overview of some of the results in this

All these third-order theorems are provable in Z
Ω
+ QF-AC
0,1
, but not provable in Z
ω
+ QF-AC
0,1
, where Z
2

Why do we need ‘crazy much’ comprehension for basic theorems?

HBU: Heine-Borel theorem for uncountable coverings of [0, 1].

WHBU: Vitali covering theorem for uncountable coverings of [0, 1].

LIN(\(\mathbb{N}^\mathbb{N}\)): Lindelöf lemma for uncountable coverings of \(\mathbb{N}^\mathbb{N}\).

All these third-order theorems are provable in \(Z_2^\Omega + QF-AC^{0,1}\), but not provable in \(Z_2^\omega + QF-AC^{0,1}\), where \(Z_2 \equiv_{L_2} Z_2^\omega \equiv_{L_2} Z_2^\Omega\).
HBU: Heine-Borel theorem for uncountable coverings of $[0, 1]$.

WHBU: Vitali covering theorem for uncountable coverings of $[0, 1]$.

LIN($\mathbb{N}^\mathbb{N}$): Lindelöf lemma for uncountable coverings of $\mathbb{N}^\mathbb{N}$.

All these third-order theorems are provable in $Z_2^\Omega + \text{QF-AC}^{0,1}$, but not provable in $Z_2^\omega + \text{QF-AC}^{0,1}$, where $Z_2 \equiv_{L_2} Z_2^\omega \equiv_{L_2} Z_2^\Omega$.

Why do we need ‘crazy much’ comprehension for basic theorems?

Because apples and oranges: the ‘comprehension functionals’ in Z_2^ω and Z_2^Ω are discontinuous, while the other theorems (HBU, NIN, etc) are consistent with Brouwer’s (continuity) theorem.
Brouwer and continuity to the rescue

L.E.J. Brouwer is (in)famous for his \textit{intuitionism}.
Brouwer and continuity to the rescue

L.E.J. Brouwer is (in)famous for his *intuitionism*. Intuitionistic mathematics is formalised using non-classical continuity axioms that have a (non-classical) weak counterpart.
Brouwer and continuity to the rescue

L.E.J. Brouwer is (in)famous for his *intuitionism*. Intuitionistic mathematics is formalised using non-classical continuity axioms that have a (non-classical) weak counterpart. The ‘weak’ counterpart yields the usual axiom via the classically valid Neighbourhood Function Principle (NFP).

\[
\text{Definition (NFP, 1970, Kreisel-Troelstra)}
\]

For any formula \(A\), we have

\[
\left(\forall f \in \mathbb{N}\right) \left(\exists n \in \mathbb{N}\right) A(f^n) \rightarrow \left(\exists \gamma \in K^0\right) \left(\forall f \in \mathbb{N}\right) A(f\gamma(f))
\]

where ‘\(\gamma \in K^0\)’ essentially means that \(\gamma\) is an RM-code/associate.

Note that \(f^n\) is the finite sequence \(<f(0), f(1),..., f(n-1)>\). NFP expresses that there are (many) continuous choice functions.
L.E.J. Brouwer is (in)famous for his *intuitionism*. Intuitionistic mathematics is formalised using non-classical continuity axioms that have a (non-classical) weak counterpart. The ‘weak’ counterpart yields the usual axiom via the classically valid Neighbourhood Function Principle (NFP).

Definition (NFP, 1970, Kreisel-Troelstra)

For any formula A, we have

$$(\forall f \in \mathbb{N}^{\mathbb{N}})(\exists n \in \mathbb{N})A(f^n) \rightarrow (\exists \gamma \in K_0)(\forall f \in \mathbb{N}^{\mathbb{N}})A(f^\gamma(f)),$$

where ‘$\gamma \in K_0$’ essentially means that γ is an RM-code/associate.

Note that f^n is the finite sequence $\langle f(0), f(1), \ldots, f(n-1) \rangle$.

Brouwer and continuity to the rescue

L.E.J. Brouwer is (in)famous for his *intuitionism*. Intuitionistic mathematics is formalised using non-classical continuity axioms that have a (non-classical) weak counterpart. The ‘weak’ counterpart yields the usual axiom via the classically valid Neighbourhood Function Principle (NFP).

Definition (NFP, 1970, Kreisel-Troelstra)

For any formula A, we have

$$(\forall f \in \mathbb{N}^\mathbb{N})(\exists n \in \mathbb{N})A(\overline{f}n) \rightarrow (\exists \gamma \in K_0)(\forall f \in \mathbb{N}^\mathbb{N})A(\overline{f}\gamma(f)),$$

where ‘$\gamma \in K_0$’ essentially means that γ is an RM-code/associate.

Note that $\overline{f}n$ is the finite sequence $\langle f(0), f(1), \ldots, f(n - 1) \rangle$. NFP expresses that there are (many) continuous choice functions.
Brouwer and continuity to the rescue

Definition (NFP, 1970, Kreisel-Troelstra)

For any formula A, we have

$$(\forall f \in \mathbb{N}^\mathbb{N})(\exists n \in \mathbb{N})A(\bar{f}n) \rightarrow (\exists \gamma \in K_0)(\forall f \in \mathbb{N}^\mathbb{N})A(\bar{f}\gamma(f)),$$

where ‘$\gamma \in K_0$’ essentially means that γ is an RM-code/associate.

NFP has great properties (in contrast to comprehension):
Brouwer and continuity to the rescue

Definition (NFP, 1970, Kreisel-Troelstra)

For any formula A, we have

$$(\forall f \in \mathbb{N}^\mathbb{N})(\exists n \in \mathbb{N})A(\bar{f}n) \rightarrow (\exists \gamma \in K_0)(\forall f \in \mathbb{N}^\mathbb{N})A(\bar{f}\gamma(f)),$$

where ‘$\gamma \in K_0$’ essentially means that γ is an RM-code/associate.

NFP has great properties (in contrast to comprehension):
1) Theorems like BOOT, HBU, and the Lindelöf lemma are equivalent to natural fragments of NFP.
Brouwer and continuity to the rescue

Definition (NFP, 1970, Kreisel-Troelstra)

For any formula A, we have

$$(\forall f \in \mathbb{N}^\mathbb{N})(\exists n \in \mathbb{N}) A(\bar{f} n) \rightarrow (\exists \gamma \in K_0)(\forall f \in \mathbb{N}^\mathbb{N}) A(\bar{f} \gamma(f)),$$

where ‘$\gamma \in K_0$’ essentially means that γ is an RM-code/associate.

NFP has great properties (in contrast to comprehension):
1) Theorems like BOOT, HBU, and the Lindelöf lemma are equivalent to natural fragments of NFP.
2) The equivalences from 1) map to the Big Five equivalences, under the canonical embedding of HOA in SOA.
Brouwer and continuity to the rescue

Definition (NFP, 1970, Kreisel-Troelstra)

For any formula A, we have

$$(\forall f \in \mathbb{N}^\mathbb{N})(\exists n \in \mathbb{N}) A(f^n) \rightarrow (\exists \gamma \in K_0)(\forall f \in \mathbb{N}^\mathbb{N}) A(f^{\gamma}(f)),$$

where ‘$\gamma \in K_0$’ essentially means that γ is an RM-code/associate.

NFP has **great** properties (in contrast to comprehension):

1) Theorems like **BOOT**, **HBU**, and the Lindelöf lemma are equivalent to natural fragments of NFP.

2) The equivalences from 1) map **map** to the Big Five equivalences, under the canonical embedding of HOA in SOA. The second item reminds one of Plato’s allegory of the cave.
Plato and his -ism

Plato is well-known in (foundations of) mathematics for his eponymous philosophy platonism, i.e. the theory that mathematical objects are objective, timeless entities, independent of the physical world and the symbols that represent them. Plato's allegory of the cave provides a powerful visual: We can only know reflections/shadows/... of ideal objects.
Plato and his -ism

Plato is well-known in (foundations of) mathematics for his eponymous philosophy platonism, i.e.

the theory that mathematical objects are objective, timeless entities, independent of the physical world and the symbols that represent them.
Plato and his -ism

Plato is well-known in (foundations of) mathematics for his eponymous philosophy platonism, i.e.

the theory that mathematical objects are objective, timeless entities, independent of the physical world and the symbols that represent them.

Plato’s allegory of the cave provides a powerful visual:
Plato and his -ism

Plato is well-known in (foundations of) mathematics for his eponymous philosophy platonism, i.e.

the theory that mathematical objects are objective, timeless entities, independent of the physical world and the symbols that represent them.

Plato’s *allegory of the cave* provides a powerful visual:

We can only know reflections/shadows/… of ideal objects.
Plato and his -ism

Plato’s allegory of the cave provides a powerful visual:

We can only know reflections/shadows/… of ideal objects.
Plato and his -ism

Plato’s allegory of the cave provides a powerful visual:

![Illustration of Plato's allegory of the cave](image)

We can only know reflections/shadows/… of ideal objects.
What are the current foundations of mathematics reflections of?
Plato and his -ism

Plato’s *allegory of the cave* provides a powerful visual:

We can only know reflections/shadows/… of ideal objects.

What are the *current foundations of mathematics* reflections of?

Fragments of NFP and equivalences

Big Five and equivalences

ECF
Plato and his -ism

Plato’s allegory of the cave provides a powerful visual:

We can only know reflections/shadows/… of ideal objects.
What are the current foundations of mathematics reflections of?

Fragments of NFP and equivalences

Big Five and equivalences

ECF is canonical embedding of HOA into SOA (Kleene-Kreisel).
The Big Five as a reflection
The Big Five as a reflection

\[II_1^{1}-CA_0 \]

\[ATR_0 \]

\[ACA_0 \]

\[WKL_0 \]

\[RCA_0 \]
The Big Five as a reflection

- II_1^1-CA$_0$
- ATR$_0$
- ACA$_0$
- WKL$_0$
- RCA$_0$ proves Δ^0_1-comprehension
The Big Five as a reflection

\[II^1_1 \text{-CA}_0 \]
\[\text{ATR}_0 \]
\[\text{ACA}_0 \]
\[\text{WKL}_0 \leftrightarrow \text{Dini’s theorem.} \]
\[\leftrightarrow \text{countable Heine-Borel compactness} \]
\[\leftrightarrow \text{Riemann int. thms} \]
\[\text{RCA}_0 \text{ proves } \Delta^0_1 \text{-comprehension} \]
The Big Five as a reflection

- II^1_1-CA$_0$
- ATR$_0$
- ACA$_0$
 - \leftrightarrow range of $f : \mathbb{N} \to \mathbb{N}$ exists
 - \leftrightarrow Monotone conv. thm
 - \leftrightarrow Ascoli-Arzela
 - \leftrightarrow thms about closed sets
 (as countable unions)
- WKL$_0$
 - \leftrightarrow Dini’s theorem.
 - \leftrightarrow countable Heine-Borel compactness
 - \leftrightarrow Riemann int. thms
- RCA$_0$
 - proves Δ^0_1-comprehension
The Big Five as a reflection

\[I_1^{1\text{-CA}_0} \]

\[ATR_0 \leftrightarrow \text{perfect set theorem} \]

\[ACA_0 \leftrightarrow \text{range of } f : \mathbb{N} \to \mathbb{N} \text{ exists} \]

\[ATR_0 \leftrightarrow \text{range of } f : \mathbb{N} \to \mathbb{N} \text{ exists} \]

\[ACA_0 \leftrightarrow \text{Monotone conv. thm} \]

\[ACA_0 \leftrightarrow \text{Ascoli-Arzela} \]

\[ACA_0 \leftrightarrow \text{thms about closed sets} \]

\[ACA_0 \leftrightarrow \text{thms about closed sets (as countable unions)} \]

\[WKL_0 \leftrightarrow \text{Dini’s theorem.} \]

\[WKL_0 \leftrightarrow \text{countable Heine-Borel compactness} \]

\[WKL_0 \leftrightarrow \text{Riemann int. thms} \]

\[RCA_0 \text{ proves } \Delta_1^0\text{-comprehension} \]
The Big Five as a reflection

- \mathcal{II}_{1}^{1}-CA$_{0}$ \iff Cantor-Bendixson thm
- ATR$_{0}$ \iff perfect set theorem
 \iff range of $f : \mathbb{N} \to \mathbb{N}$ exists
- ACA$_{0}$ \iff Monotone conv. thm
 \iff Ascoli-Arzela
 \iff thms about closed sets
 (as countable unions)
- WKL$_{0}$ \iff Dini’s theorem.
 \iff countable Heine-Borel
 compactness
 \iff Riemann int. thms
- RCA$_{0}$ proves Δ_{1}^{0}-comprehension

SECOND-ORDER arithmetic
The Big Five as a reflection

\[II^1_1 \text{-CA}_0 \iff \text{Cantor-Bendixson thm} \]
\[ATR_0 \iff \text{perfect set theorem} \]
\[ACA_0 \iff \text{range of } f : \mathbb{N} \to \mathbb{N} \text{ exists} \]
\[\iff \text{Monotone conv. thm} \]
\[\iff \text{Ascoli-Arzelà} \]
\[\iff \text{thms about closed sets} \]
\[\text{(as countable unions)} \]
\[WKL_0 \iff \text{Dini’s theorem.} \]
\[\iff \text{countable Heine-Borel compactness} \]
\[\iff \text{Riemann int. thms} \]
\[\text{RCA}_0 \text{ proves } \Delta^0_1 \text{-comprehension} \]

SECOND-ORDER arithmetic

\[\text{BOOT}_2 \]
\[\Sigma \text{-TR} \]
\[\text{BOOT} \]
\[\text{WKL}^1 \]
\[\text{RCA}_0^\omega \]

HIGHER-ORDER arithmetic
The Big Five as a reflection

\[\Pi_1^1-CA_0 \iff \text{Cantor-Bendixson thm} \]
\[\text{ATR}_0 \iff \text{perfect set theorem} \]
\[\iff \text{range of } f : \mathbb{N} \to \mathbb{N} \text{ exists} \]
\[\iff \text{Monotone conv. thm} \]
\[\iff \text{Ascoli-Arzela} \]
\[\iff \text{thms about closed sets} \]
\[\text{(as countable unions)} \]
\[\text{WKL}_0 \iff \text{Dini’s theorem.} \]
\[\iff \text{countable Heine-Borel compactness} \]
\[\iff \text{Riemann int. thms} \]
\[\text{RCA}_0 \text{ proves } \Delta^0_1-\text{comprehension} \]

\[\text{SECOND-ORDER arithmetic} \]

\[\text{BOOT} \]
\[\Sigma-\text{TR} \]
\[\text{BOOT}_2 \]

\[\text{HIGHER-ORDER arithmetic} \]
\[\text{plus a fragment of countable choice} \]
The Big Five as a reflection

\[II_1^1 \text{-CA}_0 \iff \text{Cantor-Bendixson thm} \]
\[\text{ATR}_0 \iff \text{perfect set theorem} \]
\[\text{ACA}_0 \iff \begin{array}{l}
\text{range of } f : \mathbb{N} \to \mathbb{N} \text{ exists} \\
\text{Monotone conv. thm} \\
\text{Ascoli-Arzela} \\
\text{thms about closed sets (as countable unions)}
\end{array} \]
\[\text{WKL}_0 \iff \begin{array}{l}
\text{Dini’s theorem.} \\
\text{countable Heine-Borel compactness} \\
\text{Riemann int. thms}
\end{array} \]
\[\text{RCA}_0 \text{ proves } \Delta^0_1 \text{-comprehension} \]

\[\text{BOOT}_2 \]
\[\Sigma \text{-TR} \]
\[\text{BOOT} \]

\[\text{WKL}^1 \iff \begin{array}{l}
\text{Dini’s theorem for nets.} \\
\text{uncountable Heine-Borel compactness: HBU} \\
\text{gauge integral thms}
\end{array} \]
\[\text{RCA}_0^\omega \text{ plus a fragment of countable choice} \]

SECOND-ORDER arithmetic

HIGHER-ORDER arithmetic
The Big Five as a reflection

\[\Pi^1_1 - \text{CA}_0 \leftrightarrow \text{Cantor-Bendixson thm} \]

\[\text{ATR}_0 \leftrightarrow \text{perfect set theorem} \]
\[\leftrightarrow \text{range of } f : \mathbb{N} \rightarrow \mathbb{N} \text{ exists} \]
\[\leftrightarrow \text{Monotone conv. thm} \]
\[\leftrightarrow \text{Ascoli-Arzela} \]
\[\leftrightarrow \text{thms about closed sets} \]
\[\text{(as countable unions)} \]

\[\text{WKL}_0 \leftrightarrow \text{Dini’s theorem.} \]
\[\leftrightarrow \text{countable Heine-Borel compactness} \]
\[\leftrightarrow \text{Riemann int. thms} \]

\[\text{RCA}_0 \text{ proves } \Delta^0_1 - \text{comprehension} \]

SECOND-ORDER arithmetic

\[\text{BOOT}_2 \]

\[\Sigma - \text{TR} \]
\[\leftrightarrow \text{range of } Y : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N} \text{ exists} \]

\[\text{BOOT} \leftrightarrow \text{Mon. conv. thm for nets} \]
\[\leftrightarrow \text{Ascoli-Arzela for nets} \]
\[\leftrightarrow \text{thms about closed sets} \]
\[\text{(as uncountable unions)} \]

\[\text{WKL}^1_0 \leftrightarrow \text{Dini’s theorem for nets.} \]
\[\leftrightarrow \text{uncountable Heine-Borel compactness: HBU} \]
\[\leftrightarrow \text{gauge integral thms} \]

\[\text{RCA}_0^\omega \text{ plus a fragment of countable choice} \]

HIGHER-ORDER arithmetic
The Big Five as a reflection

- $II_1^{\mathcal{C}A_0} \iff$ Cantor-Bendixson thm
- $\mathcal{A}TR_0 \iff$ perfect set theorem
 - \iff range of $f : \mathbb{N} \to \mathbb{N}$ exists
 - \iff Monotone conv. thm
 - \iff Ascoli-Arzela
 - \iff thms about closed sets
 (as countable unions)
- $\mathcal{W}KL_0 \iff$ Dini’s theorem.
 - \iff countable Heine-Borel compactness
 - \iff Riemann int. thms
- $\mathcal{R}CA_0$ proves Δ^0_1-comprehension

SECOND-ORDER arithmetic

Cantor-Bendixson thm

- $\mathcal{B}OOT_2 \iff$ (uncountable unions)
- $\Sigma-\mathcal{TR} \iff$ range of $Y : \mathbb{N}^\mathbb{N} \to \mathbb{N}$ exists
- $\mathcal{B}OOT \iff$ Mon. conv. thm for nets
 - \iff Ascoli-Arzela for nets
 - \iff thms about closed sets
 (as uncountable unions)
- $\mathcal{W}KL_1 \iff$ Dini’s theorem for nets.
 - \iff uncountable Heine-Borel compactness: HBU
 - \iff gauge integral thms
- $\mathcal{R}CA^\omega_0 \iff$ plus a fragment of countable choice

HIGHER-ORDER arithmetic

- $\mathcal{E}CF \iff$ replaces uncountable objects by countable representations/RM-codes
- $\mathcal{E}CF \iff$ converts right-hand side to left-hand side, including equivalences!
The Big Five as a reflection

\[\begin{align*}
\Pi^1_1-C\text{A}_0 & \iff \text{Cantor-Bendixson thm} \\
\text{ATR}_0 & \iff \text{perfect set theorem} \\
\text{ACA}_0 & \iff \text{range of } f : \mathbb{N} \to \mathbb{N} \text{ exists} \\
& \quad \iff \text{Monotone conv. thm} \\
& \quad \iff \text{Ascoli-Arzelà} \\
& \quad \iff \text{thms about closed sets} \\
& \quad \quad \text{(as countable unions)} \\
\text{WKL}_0 & \iff \text{Dini’s theorem.} \\
& \quad \iff \text{countable Heine-Borel compactness} \\
& \quad \iff \text{Riemann int. thms} \\
\text{RCA}_0 & \text{proves } \Delta^0_1 \text{-comprehension} \\
\text{SECOND-ORDER arithmetic} & \quad \quad \\
\text{Cantor-Bendixson thm} & \text{BOOT}_2 \iff \text{(uncountable unions)} \\
\Sigma^{\text{-TR}} & \iff \text{perfect set thm (idem)} \\
\text{BOOT} & \iff \text{range of } Y : \mathbb{N}^{\mathbb{N}} \to \mathbb{N} \text{ exists} \\
& \quad \iff \text{Mon. conv. thm for nets} \\
& \quad \iff \text{Ascoli-Arzelà for nets} \\
& \quad \iff \text{thms about closed sets} \\
& \quad \quad \text{(as uncountable unions)} \\
\text{WKL}^1 & \iff \text{Dini’s theorem for nets.} \\
& \quad \iff \text{uncountable Heine-Borel compactness: HBU} \\
& \quad \iff \text{gauge integral thms} \\
\text{RCA}_0^\omega & \text{plus a fragment of countable choice} \\
\text{HIGHER-ORDER arithmetic} & \quad \\
\end{align*}\]
The Big Five as a reflection

ECF replaces uncountable objects by countable representations/RM-codes

- Π^1_1-CA$_0$ \iff Cantor-Bendixson thm
- ATR$_0$ \iff perfect set theorem
 \iff range of $f : \mathbb{N} \to \mathbb{N}$ exists
 \iff Monotone conv. thm
 \iff Ascoli-Arzelà
 \iff thms about closed sets (as countable unions)
- ACA$_0$ \iff Dini’s theorem.
 \iff countable Heine-Borel compactness
 \iff Riemann int. thms
- WKL$_0$ \iff Dini’s theorem for nets.
 \iff uncountable Heine-Borel compactness: HBU
 \iff gauge integral thms
- RCA$_0$ proves Δ^0_1-comprehension

SECOND-ORDER arithmetic

Cantor-Bendixson thm
- BOOT$_2$ \iff (uncountable unions)
- Σ-TR \iff perfect set thm (idem)
- BOOT \iff Mon. conv. thm for nets
 \iff Ascoli-Arzelà for nets
 \iff thms about closed sets (as uncountable unions)
- WKL$_1$ \iff Dini’s theorem for nets.
 \iff uncountable Heine-Borel compactness: HBU
 \iff gauge integral thms
- RCA$_0^\omega$ plus a fragment of countable choice

HIGHER-ORDER arithmetic

ECF
The Big Five as a reflection

ECF replaces uncountable objects by countable representations/RM-codes
ECF converts right-hand side to left-hand side, including equivalences!

\[\Pi^1_1\text{-CA}_0 \leftrightarrow \text{Cantor-Bendixson thm} \]
\[\text{ATR}_0 \leftrightarrow \text{perfect set theorem} \]
\[\text{ACA}_0 \leftrightarrow \text{range of } f : \mathbb{N} \rightarrow \mathbb{N} \text{ exists} \]
\[\leftrightarrow \text{Monotone conv. thm} \]
\[\leftrightarrow \text{Ascoli-Arzelà} \]
\[\leftrightarrow \text{thms about closed sets} \]
\[\text{(as countable unions)} \]
\[\text{WKL}_0 \leftrightarrow \text{Dini’s theorem.} \]
\[\leftrightarrow \text{countable Heine-Borel compactness} \]
\[\leftrightarrow \text{Riemann int. thms} \]
\[\text{RCA}_0 \text{ proves } \Delta^0_1\text{-comprehension} \]

SECOND-ORDER arithmetic

Cantor-Bendixson thm
\[\text{BOOT}_2 \leftrightarrow (\text{uncountable unions}) \]
\[\text{Σ-TR} \leftrightarrow \text{perfect set thm (idem)} \]
\[\leftrightarrow \text{range of } Y : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N} \text{ exists} \]
\[\leftrightarrow \text{Mon. conv. thm for nets} \]
\[\leftrightarrow \text{Ascoli-Arzelà for nets} \]
\[\leftrightarrow \text{thms about closed sets} \]
\[\text{(as uncountable unions)} \]
\[\text{WKL}^1 \leftrightarrow \text{Dini’s theorem for nets.} \]
\[\leftrightarrow \text{uncountable Heine-Borel compactness: HBU} \]
\[\leftrightarrow \text{gauge integral thms} \]
\[\text{RCA}_0^\omega \text{ plus a fragment of countable choice} \]

HIGHER-ORDER arithmetic
The Big Five as a reflection

ECF replaces uncountable objects by countable/continuous RM-codes

Kohlenbach’s RM: based on discontinuity; Plato hierarchy: based on continuity.

ECF

$I\!I^1_1$-CA$_0$ \iff Cantor-Bendixson thm

ATR$_0$ \iff perfect set theorem

\iff range of $f : \mathbb{N} \rightarrow \mathbb{N}$ exists

\iff Monotone conv. thm

\iff Ascoli-Arzela

\iff thms about closed sets (as countable unions)

WKL$_0$ \iff Dini’s theorem.

\iff countable Heine-Borel compactness

\iff Riemann int. thms

RCA$_0$ proves Δ^0_1-comprehension

SECOND-ORDER arithmetic

\iff range of $Y : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}$ exists

\iff Mon. conv. thm for nets

\iff Ascoli-Arzela for nets

\iff thms about closed sets (as uncountable unions)

\iff Dini’s theorem for nets

\iff uncountable Heine-Borel compactness: HBU

\iff gauge integral thms

\iff perfect set thm (idem)

Cantor-Bendixson thm

BOOT$_2$ \iff (uncountable unions)

\iff range of $f : \mathbb{N} \rightarrow \mathbb{N}$ exists

\iff Mon. conv. thm for nets

\iff Ascoli-Arzela for nets

\iff thms about closed sets (as countable unions)

\iff Dini’s theorem for nets

\iff uncountable Heine-Borel compactness: HBU

\iff gauge integral thms

\iff perfect set thm (idem)

\iff second-order arithmetic

\iff higher-order arithmetic

plus a fragment of countable choice

HIGHER-ORDER arithmetic

ECF

ECF

Kohlenbach’s RM: based on discontinuity; Plato hierarchy: based on continuity.
Beyond Riemann and Lebesgue: the gauge integral

The gauge integral was introduced in 1912 by Denjoy (in a different form) and generalises Lebesgue’s integral (1904).
Beyond Riemann and Lebesgue: the gauge integral

The gauge integral was introduced in 1912 by Denjoy (in a different form) and generalises Lebesgue’s integral (1904).

The development: Denjoy-Luzin-Perron-Henstock-Kurzweil
Beyond Riemann and Lebesgue: the gauge integral

The **gauge integral** was introduced in 1912 by Denjoy (in a different form) and generalises Lebesgue’s integral (1904).

The development: Denjoy-Luzin-Perron-Henstock-Kurzweil
Beyond Riemann and Lebesgue: the gauge integral

The gauge integral was introduced in 1912 by Denjoy (in a different form) and generalises Lebesgue’s integral (1904).

The development: Denjoy-Luzin-Perron-Henstock-Kurzweil

The first step in gauge integral literature is always HBU!
Beyond Riemann and Lebesgue: the gauge integral

The gauge integral was introduced in 1912 by Denjoy (in a different form) and generalises Lebesgue’s integral (1904).

The development: Denjoy-Luzin-Perron-Henstock-Kurzweil

The first step in gauge integral literature is always HBU!
Most general FTC, no improper integrals (measurability?!?)
Beyond Riemann and Lebesgue: the gauge integral

The **gauge integral** was introduced in 1912 by Denjoy (in a different form) and generalises Lebesgue’s integral (1904).

The development: **Denjoy-Luzin-Perron-Henstock-Kurzweil**

![Diagram showing the relationship between Riemann integral, Lebesgue integral, and gauge integral](image)

The **first step** in gauge integral literature is always HBU!
Most general FTC, no improper integrals (measurability?!?)
Many basic thms about gauge integral are equivalent to HBU.
Beyond Riemann and Lebesgue: the gauge integral

The **gauge integral** was introduced in 1912 by **Denjoy** (in a different form) and generalises **Lebesgue’s integral** (1904).

The development: **Denjoy-Luzin-Perron-Henstock-Kurzweil**

The first step in gauge integral literature is always **HBU**! Most **general FTC**, no **improper** integrals (measurability?!?)

Many basic thms about gauge integral are equivalent to HBU. ECF maps these to thms about Riemann integral.
The gauge integral: Riemann’s cousin!
The gauge integral: Riemann’s cousin!

Definition (Riemann integral)

\[f : \mathbb{R} \to \mathbb{R} \text{ is Riemann integrable on } I \equiv [0, 1] \text{ with integral } A \in \mathbb{R}: \]

\[
(\forall \varepsilon > 0)(\exists \delta > 0)(\forall P)(\forall i \leq k)(|x_i - x_{i+1}| < \delta) \Rightarrow |S(P, f) - A| < \varepsilon
\]

\[P = (0, t_1, x_1 \ldots x_k, t_k, 1) \text{ partition } S(P, f) = \sum_i f(t_i)|x_{i+1} - x_i| \text{ Riemann sum} \]
The gauge integral: Riemann’s cousin!

Definition (Riemann integral)

$f : \mathbb{R} \rightarrow \mathbb{R}$ is **Riemann** integrable on $I \equiv [0, 1]$ with integral $A \in \mathbb{R}$:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall P)((\forall i \leq k)(|x_i - x_{i+1}| < \delta) \rightarrow |S(P, f) - A| < \varepsilon)$$

- P is ‘finer’ than δ
- $P = (0, t_1, x_1 \ldots x_k, t_k, 1)$ partition $S(P, f) = \sum_i f(t_i)|x_{i+1} - x_i|$ Riemann sum

Definition (Gauge integral)

$f : \mathbb{R} \rightarrow \mathbb{R}$ is **gauge** integrable on $I \equiv [0, 1]$ with integral $A \in \mathbb{R}$:

$$(\forall \varepsilon > 0)(\exists \delta : I \rightarrow \mathbb{R}^+) (\forall P)((\forall i \leq k)(|x_i - x_{i+1}| < \delta(t_i)) \rightarrow |S(P, f) - A| < \varepsilon)$$

- P is ‘finer’ than δ
- ‘gauge’ function
The gauge integral: Riemann’s cousin!

Definition (Riemann integral)

$f : \mathbb{R} \rightarrow \mathbb{R}$ is Riemann integrable on $I \equiv [0, 1]$ with integral $A \in \mathbb{R}$:

$$(\forall \varepsilon > 0)(\exists \; \delta > 0)(\forall P)((\forall i \leq k)(|x_i - x_{i+1}| < \delta) \rightarrow |S(P, f) - A| < \varepsilon)$$

$P = (0, t_1, x_1 \ldots x_k, t_k, 1)$ partition $S(P, f) = \sum_i f(t_i)|x_{i+1} - x_i|$ Riemann sum

Definition (Gauge integral)

$f : \mathbb{R} \rightarrow \mathbb{R}$ is gauge integrable on $I \equiv [0, 1]$ with integral $A \in \mathbb{R}$:

$$(\forall \varepsilon > 0)(\exists \; \delta : I \rightarrow \mathbb{R}^+)(\forall P)((\forall i \leq k)(|x_i - x_{i+1}| < \delta(t_i)) \rightarrow |S(P, f) - A| < \varepsilon)$$

If the gauge $\delta : I \rightarrow \mathbb{R}^+$ is continuous, then f is Riemann integrable.
The gauge integral: Riemann’s cousin!

Definition (Riemann integral)

\[f : \mathbb{R} \rightarrow \mathbb{R} \text{ is Riemann integrable on } I \equiv [0, 1] \text{ with integral } A \in \mathbb{R}: \]

\[(\forall \varepsilon > 0)(\exists \delta > 0)(\forall P)((\forall i \leq k)(|x_i - x_{i+1}| < \delta) \rightarrow |S(P, f) - A| < \varepsilon) \]

\[P = (0, t_1, x_1 \ldots x_k, t_k, 1) \text{ partition } S(P, f) = \sum_i f(t_i)|x_{i+1} - x_i| \text{ Riemann sum} \]

Definition (Gauge integral)

\[f : \mathbb{R} \rightarrow \mathbb{R} \text{ is gauge integrable on } I \equiv [0, 1] \text{ with integral } A \in \mathbb{R}: \]

\[(\forall \varepsilon > 0)(\exists \delta : I \rightarrow \mathbb{R}^+)(\forall P)((\forall i \leq k)(|x_i - x_{i+1}| < \delta(t_i)) \rightarrow |S(P, f) - A| < \varepsilon) \]

If the gauge \(\delta : I \rightarrow \mathbb{R}^+ \) is continuous, then \(f \) is Riemann integrable.

A function is \(f \) Lebesgue integrable IFF \(f \) and |\(f \)| are gauge integrable.
Higher-order WKL
Higher-order WKL

Kohlenbach: generalisations of WKL where tree-elementhood ‘$\sigma \in T$’ is not decidable (Feferman’s *festschrift*). Likewise:
Higher-order WKL

Kohlenbach: generalisations of WKL where tree-elementhood ‘\(\sigma \in T\)’ is not decidable (Feferman’s *festschrift*). Likewise:

Definition (WKL\(^1\))

Weak König’s lemma for binary trees \(T\) where ‘\(\sigma \in T\)’ is given by

\[
(\forall f \in 2^\mathbb{N})(Y(f, \sigma) = 0).
\]
Higher-order WKL

Kohlenbach: generalisations of WKL where tree-elementhood ‘\(\sigma \in T \)’ is not decidable (Feferman’s *festschrift*). Likewise:

Definition (WKL\(^1\))

Weak König’s lemma for binary trees \(T \) where ‘\(\sigma \in T \)’ is given by

\[
(\forall f \in 2^\mathbb{N})(Y(f, \sigma) = 0).
\]

\(\text{HBU} \Leftrightarrow \text{WKL}^1 \) needs some extra choice, which ECF maps to a triviality.
Today: a higher RM

ECF replaces **uncountable** objects by **countable/continuous** RM-codes

Kohlenbach’s RM: based on **discontinuity**; Plato hierarchy: based on **continuity**.

\[\mathbb{II}_1^1{-}\text{CA}_0 \iff \text{Cantor-Bendixson thm} \]

\[\mathbb{ATR}_0 \iff \text{perfect set theorem} \]

\[\mathbb{ACA}_0 \iff \text{range of } f : \mathbb{N} \to \mathbb{N} \text{ exists} \]

\[\iff \text{Monotone conv. thm} \]

\[\iff \text{Ascoli-Arzela} \]

\[\iff \text{thms about closed sets (as countable unions)} \]

\[\mathbb{WKL}_0 \iff \text{Dini’s theorem.} \]

\[\iff \text{countable Heine-Borel compactness} \]

\[\iff \text{Riemann int. thms} \]

\[\mathbb{RCA}_0 \text{ proves } \Delta^0_1{-}\text{comprehension} \]

\[\text{SECOND-ORDER arithmetic} \]

\[\iff \text{Cantor-Bendixson thm} \]

\[\mathbb{BOOT}_2 \iff \text{(uncountable unions)} \]

\[\mathbb{\Sigma{-}\text{TR}} \iff \text{perfect set thm (idem)} \]

\[\iff \text{range of } Y : \mathbb{N}^\mathbb{N} \to \mathbb{N} \text{ exists} \]

\[\iff \text{Mon. conv. thm for nets} \]

\[\iff \text{Ascoli-Arzela for nets} \]

\[\iff \text{thms about closed sets (as uncountable unions)} \]

\[\mathbb{WKL}_1 \iff \text{Dini’s theorem for nets}. \]

\[\iff \text{uncountable Heine-Borel compactness: HBU} \]

\[\iff \text{gauge integral thms} \]

\[\mathbb{RCA}_\omega \iff \text{plus } \Delta{-}\text{comprehension} \]

\[\text{HIGHER-ORDER arithmetic} \]

\[\iff \text{ECF} \]
Nets: Moore-Smith-Vietoris

Nets generalise the concept of sequence to (possibly) uncountable index sets. Nets capture topology where sequences fail to.
Nets: Moore-Smith-Vietoris

Nets generalise the concept of sequence to (possibly) uncountable index sets. Nets capture topology where sequences fail to.

Definition (Nets, ca. 1915)

A set $D \neq \emptyset$ with a binary relation `\leq' is directed if

- The relation `\leq' is transitive and reflexive.
- For $d, e \in D$, there is $f \in D$ such that $d \leq f \land e \leq f$.

For such (D, \leq) and topological space X, any $x : D \to X$ is a net.
Nets: Moore-Smith-Vietoris

Nets generalise the concept of sequence to (possibly) uncountable index sets. Nets capture topology where sequences fail to.

Definition (Nets, ca. 1915)

A set \(D \neq \emptyset \) with a binary relation ‘\(\preceq \)’ is directed if

\begin{itemize}
 \item [a] The relation ‘\(\preceq \)’ is transitive and reflexive.
 \item [b] For \(d, e \in D \), there is \(f \in D \) such that \(d \preceq f \land e \preceq f \).
\end{itemize}

For such \((D, \preceq)\) and topological space \(X \), any \(x : D \to X \) is a net.

Sequences are nets for \((D, \preceq) = (\mathbb{N}, \leq)\). We write \(x_d \) for \(x(d) \).
Definitions

Definition (Convergence of nets)
A net x_d converges to the limit $y = \lim_d x_d$ if for any neighborhood U of y, there is $d_0 \in D$ such that for all $e \succeq d_0$, $x_e \in U$.

If the topological space X has some order \leq_X:

Definition (Increasing nets)
A net $x_d : D \to X$ is increasing if $d \preceq e \to x_d \leq x_e$ for $d, e \in D$.

Most notions of convergence carry over to nets mutatis mutandis. We (only) study nets with $D \subseteq N$ and $\preceq_D \subseteq D \times D$. In this way, our nets are third-order objects with extra structure (D, \preceq). Nets yield same (lower type) convergence theory as filters (Bartle).
Definitions

Definition (Convergence of nets)

A net \(x_d \) converges to the limit \(y = \lim_d x_d \) if for any neighbourhood \(U \) of \(y \), there is \(d_0 \in D \) such that for all \(e \succeq d_0 \), \(x_e \in U \).
Definitions

Definition (Convergence of nets)
A net x_d converges to the limit $y = \lim_d x_d$ if for any neighbourhood U of y, there is $d_0 \in D$ such that for all $e \succeq d_0$, $x_e \in U$.

If the topological space X has some order \leq_X:

Definition (Increasing nets)
A net $x_d : D \to X$ is increasing if $d \preceq e \to x_d \leq_X x_e$ for $d, e \in D$.

Most notions of convergence carry over to nets mutatis mutandis. We (only) study nets with $D \subseteq \mathbb{N}$ and $\preceq_D \subseteq D \times D$. In this way, our nets are third-order objects with extra structure (D, \preceq_D) on the domain. Nets yield same (lower type) convergence theory as filters (Bartle).
Definitions

Definition (Convergence of nets)

A net x_d converges to the limit $y = \lim_d x_d$ if for any neighbourhood U of y, there is $d_0 \in D$ such that for all $e \succeq d_0$, $x_e \in U$.

If the topological space X has some order \leq_X:

Definition (Increasing nets)

A net $x_d : D \rightarrow X$ is increasing if $d \leq e \rightarrow x_d \leq_X x_e$ for $d, e \in D$.

Most notions of convergence carry over to nets *mutatis mutandis*.
Definitions

Definition (Convergence of nets)

A net x_d converges to the limit $y = \lim_{d} x_d$ if for any neighbourhood U of y, there is $d_0 \in D$ such that for all $e \geq d_0$, $x_e \in U$.

If the topological space X has some order \leq_X:

Definition (Increasing nets)

A net $x_d : D \to X$ is increasing if $d \leq e \rightarrow x_d \leq_X x_e$ for $d, e \in D$.

Most notions of convergence carry over to nets *mutatis mutandis*. We (only) study nets with $D \subseteq \mathbb{N}^\mathbb{N}$ and $\leq_D \subseteq D \times D$.
Definitions

Definition (Convergence of nets)

A net \(x_d \) converges to the limit \(y = \lim_d x_d \) if for any neighbourhood \(U \) of \(y \), there is \(d_0 \in D \) such that for all \(e \geq d_0 \), \(x_e \in U \).

If the topological space \(X \) has some order \(\leq_X \):

Definition (Increasing nets)

A net \(x_d : D \to X \) is increasing if \(d \leq e \to x_d \leq_X x_e \) for \(d, e \in D \).

Most notions of convergence carry over to nets *mutatis mutandis*. We (only) study nets with \(D \subseteq \mathbb{N}^\mathbb{N} \) and \(\leq_D \subseteq D \times D \). In this way, our nets are third-order objects with extra structure \((D, \leq)\) on the domain.
Definitions

Definition (Convergence of nets)

A net x_d converges to the limit $y = \lim_d x_d$ if for any neighbourhood U of y, there is $d_0 \in D$ such that for all $e \succeq d_0$, $x_e \in U$.

If the topological space X has some order \leq_X:

Definition (Increasing nets)

A net $x_d : D \rightarrow X$ is increasing if $d \leq e \rightarrow x_d \leq_X x_e$ for $d, e \in D$.

Most notions of convergence carry over to nets *mutatis mutandis*. We (only) study nets with $D \subseteq \mathbb{N}^\mathbb{N}$ and $\preceq_D \subseteq D \times D$.

In this way, our nets are third-order objects with extra structure (D, \preceq) on the domain.

Nets yield same (lower type) convergence theory as filters (Bartle).
Monotone convergence

The central object of study in domain theory is the directed complete partial order (dcpo), formulated using nets.
Monotone convergence

The central object of study in domain theory is the directed complete partial order (dcpo), formulated using nets. Any increasing net converges to its supremum in a dcpo.
Monotone convergence

The central object of study in domain theory is the directed complete partial order (dcpo), formulated using nets. Any increasing net converges to its supremum in a dcpo. In this light, let us study the most basic version of monotone convergence:

Definition (MCT_{net})

For $D \subseteq \mathbb{N}^{\mathbb{N}}$, an increasing net $x_d : D \rightarrow [0, 1]$ converges.
Monotone convergence

The central object of study in domain theory is the directed complete partial order (dcpo), formulated using nets. Any increasing net converges to its supremum in a dcpo. In this light, let us study the most basic version of monotone convergence:

Definition (MCT\textsubscript{net})

For $D \subseteq \mathbb{N}^\mathbb{N}$, an increasing net $x_d : D \to [0, 1]$ converges.

MCT\textsubscript{net} is equivalent to BOOT, as follows.

$$(\forall Y^2)(\exists X^1)(\forall n^0)[n \in X \leftrightarrow (\exists f^1)(Y(f, n) = 0)].$$

(BOOT)
Monotone convergence

The central object of study in domain theory is the directed complete partial order (dcpo), formulated using nets. Any increasing net converges to its supremum in a dcpo. In this light, let us study the most basic version of monotone convergence:

Definition (MCT\textsubscript{net})

For $D \subseteq \mathbb{N}^\mathbb{N}$, an increasing net $x_d : D \rightarrow [0, 1]$ converges.

MCT\textsubscript{net} is equivalent to BOOT, as follows.

\[
(\forall Y^2)(\exists X^1)(\forall n^0)[n \in X \leftrightarrow (\exists f^1)(Y(f, n) = 0)]. \tag{BOOT}
\]

Many theorems for nets imply (are equivalent to) BOOT: Ascoli-Arzela, anti-Specker, Bolzano-Weierstrass, Cauchy nets, ...
Monotone convergence

The central object of study in domain theory is the directed complete partial order (dcpo), formulated using nets. Any increasing net converges to its supremum in a dcpo. In this light, let us study the most basic version of monotone convergence:

Definition (MCT\textsubscript{net})

For $D \subseteq \mathbb{N}^\mathbb{N}$, an increasing net $x_d : D \to [0, 1]$ converges.

MCT\textsubscript{net} is equivalent to BOOT, as follows.

$$(\forall Y^2)(\exists X^1)(\forall n^0)[n \in X \leftrightarrow (\exists f^1)(Y(f, n) = 0)].$$

(BOOT)

Many theorems for nets imply (are equivalent to) BOOT: Ascoli-Arzela, anti-Specker, Bolzano-Weierstrass, Cauchy nets, ... Adding a modulus of convergence to MCT\textsubscript{net} yields equivalence to BOOT + QF-AC0,1.
Monotone convergence

The central object of study in domain theory is the directed complete partial order (dcpo), formulated using nets. Any increasing net converges to its supremum in a dcpo. In this light, let us study the most basic version of monotone convergence:

Definition (MCT\textsubscript{net})

For \(D \subseteq \mathbb{N}^\mathbb{N} \), an increasing net \(x_d : D \to [0, 1] \) converges.

\(\text{MCT}_{\text{net}} \) is equivalent to BOOT, as follows.

\[
(\forall Y^2)(\exists X^1)(\forall n^0)[n \in X \leftrightarrow (\exists f^1)(Y(f, n) = 0)]. \quad \text{(BOOT)}
\]

Many theorems for nets imply (are equivalent to) BOOT: Ascoli-Arzela, anti-Specker, Bolzano-Weierstrass, Cauchy nets, . . . Adding a modulus of convergence to \(\text{MCT}_{\text{net}} \) yields equivalence to \(\text{BOOT} + \text{QF-AC}^{0,1} \). Non-uniqueness and ECF!
A higher RM

ECF replaces uncountable objects by countable/continuous RM-codes

Kohlenbach’s RM: based on discontinuity; Plato hierarchy: based on continuity.

II_1^1-CA$_0$ \iff Cantor-Bendixson thm

ATR$_0$ \iff perfect set theorem

\iff range of $f : \mathbb{N} \to \mathbb{N}$ exists

\iff Monotone conv. thm

\iff Ascoli-Arzela

\iff thms about closed sets (as countable unions)

WKL$_0$ \iff Dini’s theorem.

\iff countable Heine-Borel compactness

\iff Riemann int. thms

RCA$_0$ proves Δ^0_1-comprehension

SECOND-ORDER arithmetic

ECF

RCA$_0^\omega$ plus Δ-comprehension or countable choice

HIGHER-ORDER arithmetic

BOOT$_2$ \iff (uncountable unions)

\iff range of $Y : \mathbb{N}^\mathbb{N} \to \mathbb{N}$ exists

\iff Mon. conv. thm for nets

\iff Ascoli-Arzela for nets

\iff thms about closed sets (as uncountable unions)

WKL$_1$ \iff Dini’s theorem for nets.

\iff uncountable Heine-Borel compactness: HBU

\iff gauge integral thms

Σ-TR \iff perfect set thm (idem)

BOOT \iff perfect set thm (idem)

\iff range of $f : \mathbb{N} \to \mathbb{N}$ exists

\iff Monotone conv. thm

\iff Ascoli-Arzela

\iff thms about closed sets (as countable unions)

Cantor-Bendixson thm

ECF

Kohlenbach’s RM: based on discontinuity; Plato hierarchy: based on continuity.
Why...

should I do third-order arithmetic?
Why... should I do third-order arithmetic? Because RM ‘malfunctions’ in second-order arithmetic.
Why should I do third-order arithmetic? Because RM ‘malfunctions’ in second-order arithmetic.

RM seeks to classify theorems of ordinary mathematics ‘as they stand’ according to the minimal axioms needed for a proof.
Why...

should I do third-order arithmetic? Because RM ‘malfunsions’ in second-order arithmetic.

RM seeks to classify theorems of ordinary mathematics ‘as they stand’ according to the minimal axioms needed for a proof.

The Tietze, Weierstrass, and Heine theorems for continuous functions on separably closed sets; the various versions of the Ekeland variational principle; other extension theorems.
Why... should I do third-order arithmetic? Because RM ‘malfunctions’ in second-order arithmetic.

RM seeks to classify theorems of ordinary mathematics ‘as they stand’ according to the minimal axioms needed for a proof.

The Tietze, Weierstrass, and Heine theorems for continuous functions on separably closed sets; the various versions of the Ekeland variational principle; other extension theorems.

Two possible meanings of continuous function, namely:

1. second-order RM code for a continuous function.
2. third-order function that satisfies the ε-δ-definition.

See my latest arXiv paper.
Why... should I do third-order arithmetic? Because RM ‘malfunctions’ in second-order arithmetic.

RM seeks to classify theorems of ordinary mathematics ‘as they stand’ according to the minimal axioms needed for a proof.

The Tietze, Weierstrass, and Heine theorems for continuous functions on separably closed sets; the various versions of the Ekeland variational principle; other extension theorems.

Two possible meanings of continuous function, namely:

1. second-order RM code for a continuous function.
2. third-order function that satisfies the ε-δ-definition

Above theorems are much weaker when using (2) instead of (1).
Why... should I do third-order arithmetic? Because RM ‘malfunctions’ in second-order arithmetic.

RM seeks to classify theorems of ordinary mathematics ‘as they stand’ according to the minimal axioms needed for a proof.

The Tietze, Weierstrass, and Heine theorems for continuous functions on separably closed sets; the various versions of the Ekeland variational principle; other extension theorems.

Two possible meanings of continuous function, namely:

1. second-order RM code for a continuous function.
2. third-order function that satisfies the ε-δ-definition

Above theorems are much weaker when using (2) instead of (1). See my latest arxiv paper.
Final Thoughts
Final Thoughts

The revolution is not an apple that falls when it is ripe. You have to make it fall. (AN & CG)
Final Thoughts

The revolution is not an apple that falls when it is ripe. You have to make it fall. (AN & CG)

The safest general characterisation of the European philosophical tradition is that it consists of a series of footnotes to Plato. (A.N. Whitehead)
Final Thoughts

The revolution is not an apple that falls when it is ripe. You have to make it fall. (AN & CG)

The safest general characterisation of the European philosophical tradition is that it consists of a series of footnotes to Plato. (A.N. Whitehead)

We thank DFG, TU Darmstadt, John Templeton Foundation, and Alexander Von Humboldt Foundation for their generous support!
Final Thoughts

The revolution is not an apple that falls when it is ripe. You have to make it fall. (AN & CG)

The safest general characterisation of the European philosophical tradition is that it consists of a series of footnotes to Plato. (A.N. Whitehead)

We thank DFG, TU Darmstadt, John Templeton Foundation, and Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!
Final Thoughts

The revolution is not an apple that falls when it is ripe. You have to make it fall. (AN & CG)

The safest general characterisation of the European philosophical tradition is that it consists of a series of footnotes to Plato. (A.N. Whitehead)

We thank DFG, TU Darmstadt, John Templeton Foundation, and Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!

Any (content) questions?