The Biggest Five of Reverse Mathematics

Sam Sanders (jww Dag Normann)

Department of Philosophy II, RUB Bochum, Germany

Online Logic Seminar, Aug. 31st, 2023
This talk reports on my joint project with Dag Normann (U. of Oslo) on the Reverse Mathematics of the uncountable.
This talk reports on my joint project with Dag Normann (U. of Oslo) on the Reverse Mathematics of the uncountable.

Firstly, we introduce and greatly extend the Big Five phenomenon of Reverse Mathematics.
This talk reports on my joint project with Dag Normann (U. of Oslo) on the Reverse Mathematics of the uncountable.

Firstly, we introduce and greatly extend the Big Five phenomenon of Reverse Mathematics.

Secondly, we discuss the very different logical and mathematical limits of this extension. (chasm, abyss)
This talk reports on my joint project with Dag Normann (U. of Oslo) on the Reverse Mathematics of the uncountable.

Firstly, we introduce and greatly extend the Big Five phenomenon of Reverse Mathematics.

Secondly, we discuss the very different logical and mathematical limits of this extension. (chasm, abyss)

Thirdly, we may discuss foundational implications, though . . .
Reverse Mathematics
Reverse Mathematics

= finding the **minimal** axioms needed to **prove** a theorem of ordinary mathematics.
Reverse Mathematics

= finding the \textbf{minimal} axioms needed to \textit{prove} a theorem of ordinary mathematics.

Harvey Friedman & Steve Simpson (courtesy of MFO).
Reverse Mathematics

= finding the minimal axioms needed to prove a theorem of ordinary mathematics.
The Biggest Five of Reverse Mathematics

The Big Five

Reverse Mathematics = finding the minimal axioms needed to prove a theorem of ordinary mathematics.

One always assume the base theory RCA\(_0\), a weak system formalising 'computable mathematics'.

Big Five phenomenon = most/many theorems of ordinary mathematics are either provable in RCA\(_0\), or equivalent to one of the other 'Big Five' systems:

- (countable) Heine-Borel compactness: WKL\(_0\)
- Sequential compactness: ACA\(_0\)
- Transfinite recursion: ATR\(_0\)
- Some descriptive set theory: Π\(_1^1\)-comprehension.

Mummert: a few equivalences for Π\(_1^2\)-comprehension and topology.
The Big Five

Reverse Mathematics = finding the \textit{minimal} axioms needed to prove a theorem of ordinary mathematics.
The Big Five

Reverse Mathematics = finding the minimal axioms needed to prove a theorem of ordinary mathematics.

One always assume the base theory RCA₀, a weak system formalising ‘computable mathematics’.
The Big Five

Reverse Mathematics = finding the minimal axioms needed to prove a theorem of ordinary mathematics.

One always assume the base theory RCA_0, a weak system formalising ‘computable mathematics’.

Big Five phenomenon
The Big Five

Reverse Mathematics = finding the \textit{minimal} axioms needed to \textit{prove} a theorem of ordinary mathematics.

One always assume the \textit{base theory} RCA_0, a weak system formalising ‘computable mathematics’.

Big Five phenomenon

=most/many theorems of ordinary mathematics are either \textit{provable} in RCA_0,
The Big Five

Reverse Mathematics = finding the minimal axioms needed to prove a theorem of ordinary mathematics.

One always assume the base theory RCA_0, a weak system formalising ‘computable mathematics’.

Big Five phenomenon

= most/many theorems of ordinary mathematics are either provable in RCA_0, or equivalent to one of the other ‘Big Five’ systems:
The Big Five

Reverse Mathematics = finding the minimal axioms needed to prove a theorem of ordinary mathematics.

One always assume the base theory \(\text{RCA}_0 \), a weak system formalising ‘computable mathematics’.

Big Five phenomenon

=most/many theorems of ordinary mathematics are either provable in \(\text{RCA}_0 \), or equivalent to one of the other ‘Big Five’ systems:
 - (countable) Heine-Borel compactness: \(\text{WKL}_0 \),
The Big Five

Reverse Mathematics = finding the minimal axioms needed to prove a theorem of ordinary mathematics.

One always assume the base theory RCA_0, a weak system formalising ‘computable mathematics’.

Big Five phenomenon

=most/many theorems of ordinary mathematics are either provable in RCA_0, or equivalent to one of the other ‘Big Five’ systems:

- (countable) Heine-Borel compactness: WKL_0,
- Sequential compactness: ACA_0,
The Big Five

Reverse Mathematics = finding the **minimal** axioms needed to **prove** a theorem of ordinary mathematics.

One always assume the **base theory** RCA_0, a weak system formalising ‘computable mathematics’.

Big Five phenomenon

Most/many theorems of ordinary mathematics are either **provable** in RCA_0, or **equivalent** to one of the other ‘Big Five’ systems:

- (countable) Heine-Borel compactness: WKL_0,
- Sequential compactness: ACA_0,
- Transfinite recursion: ATR_0,
The Big Five

Reverse Mathematics = finding the **minimal** axioms needed to **prove** a theorem of ordinary mathematics.

One always assume the **base theory** RCA_0, a weak system formalising ‘computable mathematics’.

Big Five phenomenon

=most/many theorems of ordinary mathematics are either **provable** in RCA_0, or **equivalent** to one of the other ‘Big Five’ systems:

- (countable) Heine-Borel compactness: WKL_0,
- Sequential compactness: ACA_0,
- Transfinite recursion: ATR_0,
- Some descriptive set theory: Π^1_1-comprehension.
The Big Five

Reverse Mathematics = finding the minimal axioms needed to prove a theorem of ordinary mathematics.

One always assume the base theory RCA_0, a weak system formalising ‘computable mathematics’.

Big Five phenomenon

=most/many theorems of ordinary mathematics are either provable in RCA_0, or equivalent to one of the other ‘Big Five’ systems:

- (countable) Heine-Borel compactness: WKL_0,
- Sequential compactness: ACA_0,
- Transfinite recursion: ATR_0,
- Some descriptive set theory: Π^1_1-comprehension.

Mummert: a few equivalences for Π^1_2-comprehension and topology.
Higher-order Reverse Mathematics
Higher-order Reverse Mathematics

Kohlenbach introduces higher-order RM in RM2001.
Higher-order Reverse Mathematics

Kohlenbach introduces higher-order RM in RM2001.

Second-order RM only has variables $n \in \mathbb{N}$ and $X \subset \mathbb{N}$.
Higher-order Reverse Mathematics

Kohlenbach introduces higher-order RM in RM2001.

Second-order RM only has variables $n \in \mathbb{N}$ and $X \subseteq \mathbb{N}$. Functions on \mathbb{R}, metric spaces, etc have to be ‘represented’ or ‘coded’.
Higher-order Reverse Mathematics

Kohlenbach introduces higher-order RM in RM2001.

Second-order RM only has variables $n \in \mathbb{N}$ and $X \subseteq \mathbb{N}$. Functions on \mathbb{R}, metric spaces, etc have to be ‘represented’ or ‘coded’. Kohlenbach’s higher-order RM uses the richer language of all finite types.
Higher-order Reverse Mathematics

Kohlenbach introduces higher-order RM in RM2001.

Second-order RM only has variables $n \in \mathbb{N}$ and $X \subseteq \mathbb{N}$. Functions on \mathbb{R}, metric spaces, etc have to be ‘represented’ or ‘coded’. Kohlenbach’s higher-order RM uses the richer language of all finite types. Thus, the use of codes or representations is seriously reduced.
Higher-order Reverse Mathematics

Kohlenbach introduces higher-order RM in RM2001.

Second-order RM only has variables $n \in \mathbb{N}$ and $X \subset \mathbb{N}$. Functions on \mathbb{R}, metric spaces, etc have to be ‘represented’ or ‘coded’. Kohlenbach’s higher-order RM uses the richer language of all finite types. Thus, the use of codes or representations is seriously reduced. E.g. discontinuous functions on \mathbb{R} are directly available.
The base theory RCA_0^ω

RCA_0^ω makes use of the language of finite types: $n \in \mathbb{N}$ or n^0, $f \in \mathbb{N}^{\mathbb{N}}$ or f^1, $Y : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ or Y^2, et cetera.
The base theory RCA_0

RCA_0 makes use of the language of finite types: $n \in \mathbb{N}$ or n^0, $f \in \mathbb{N}^\mathbb{N}$ or f^1, $Y : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}$ or Y^2, et cetera.

RCA_0 and RCA_ω prove the same second-order sentences (ECF).
The base theory RCA_0^ω

RCA_0^ω makes use of the language of finite types: $n \in \mathbb{N}$ or n^0, $f \in \mathbb{N}^{\mathbb{N}}$ or f^1, $Y : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ or Y^2, et cetera.

RCA_0 and RCA_0^ω prove the same second-order sentences (ECF).

RCA_0^ω has axioms for primitive recursion and induction (variation of RCA_0),
The base theory RCA_0

RCA_0^ω makes use of the language of finite types: $n \in \mathbb{N}$ or n^0, $f \in \mathbb{N}^{\mathbb{N}}$ or f^1, $Y : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ or Y^2, et cetera.

RCA_0 and RCA_0^ω prove the same second-order sentences (ECF).

RCA_0^ω has axioms for primitive recursion and induction (variation of RCA_0), axiom of function extensionality,
The base theory RCA_0^ω

RCA_0^ω makes use of the language of finite types: $n \in \mathbb{N}$ or n^0, $f \in \mathbb{N}^{\mathbb{N}}$ or f^1, $Y : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ or Y^2, et cetera.

RCA_0 and RCA_0^ω prove the same second-order sentences (ECF).

RCA_0^ω has axioms for primitive recursion and induction (variation of RCA_0), axiom of function extensionality, and QF-AC1,0:

$$(\forall f^1)(\exists n^0)(Y(f, n) = 0) \to (\exists G^2)(\forall f^1)(Y(f, G(f)) = 0),$$
The base theory RCA_0

RCA_0 makes use of the language of finite types: $n \in \mathbb{N}$ or n^0, $f \in \mathbb{N}^\mathbb{N}$ or f^1, $Y : \mathbb{N}^\mathbb{N} \to \mathbb{N}$ or Y^2, et cetera.

RCA_0 and RCA_0^ω prove the same second-order sentences (ECF).

RCA_0^ω has axioms for primitive recursion and induction (variation of RCA_0), axiom of function extensionality, and $\text{QF-AC}^{1,0}$:

$$(\forall f^1)(\exists n^0)(Y(f, n) = 0) \rightarrow (\exists G^2)(\forall f^1)(Y(f, G(f)) = 0),$$

which guarantees that second-order codes denote third-order functions.
The base theory RCA_0^ω

RCA_0^ω makes use of the language of finite types: $n \in \mathbb{N}$ or n^0, $f \in \mathbb{N}^\mathbb{N}$ or f^1, $Y : \mathbb{N}^\mathbb{N} \to \mathbb{N}$ or Y^2, et cetera.

RCA_0 and RCA_0^ω prove the same second-order sentences (ECF).

RCA_0^ω has axioms for primitive recursion and induction (variation of RCA_0), axiom of function extensionality, and $\text{QF-AC}^{1,0}$:

$$(\forall f^1)(\exists n^0)(Y(f, n) = 0) \rightarrow (\exists G^2)(\forall f^1)(Y(f, G(f)) = 0),$$

which guarantees that second-order codes denote third-order functions.

Real numbers and ‘$=_{\mathbb{R}}$’ defined as in RCA_0; $\mathbb{R} \to \mathbb{R}$-functions are $\mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$-functions extensional relative to ‘$=_{\mathbb{R}}$’.
Real analysis has been studied in second-order RM, mostly for \textit{continuous functions}.
The Biggest Five

Real analysis has been studied in second-order RM, mostly for continuous functions.

Coding continuous functions (on $\mathbb{N}^\mathbb{N}$ and \mathbb{R}) does not change the RM of the Big Five (Kleene, Kohlenbach, Normann, Sanders).
The Biggest Five

Real analysis has been studied in second-order RM, mostly for continuous functions.

Coding continuous functions (on \(\mathbb{N}^\mathbb{N}\) and \(\mathbb{R}\)) does not change the RM of the Big Five (Kleene, Kohlenbach, Normann, Sanders).

Recently, Dag Normann and I have obtained a plethora of equivalences (over RCA\(^0\)) between:

- **second-order** Big Five systems
- **third-order** theorems about (slightly) discontinuous functions.
Real analysis has been studied in second-order RM, mostly for
continuous functions.

Coding continuous functions (on $\mathbb{N}^\mathbb{N}$ and \mathbb{R}) does not change the
RM of the Big Five (Kleene, Kohlenbach, Normann, Sanders).

Recently, Dag Normann and I have obtained a plethora of
equivalences (over RCA$_0^\omega$) between:

- **second-order** Big Five systems
- **third-order** theorems about (slightly) discontinuous functions.

These **third-order theorems** are called **second-order-ish** for obvious
reasons.
The Biggest Five

Real analysis has been studied in second-order RM, mostly for continuous functions.

Coding continuous functions (on \(\mathbb{N}^\mathbb{N} \) and \(\mathbb{R} \)) does not change the RM of the Big Five (Kleene, Kohlenbach, Normann, Sanders).

Recently, Dag Normann and I have obtained a plethora of equivalences (over RCA\(_{\omega}^0 \)) between:

- **second-order** Big Five systems
- **third-order** theorems about (slightly) discontinuous functions.

These third-order theorems are called second-order-ish for obvious reasons. A similar phenomenon does not exist for first- and second-order theorems (AFAIK).
Weak König’s lemma

The following are equivalent to WKL_0 over RCA_0:
Weak König’s lemma

The following are equivalent to WKL₀ over RCA₀:

- A continuous function on [0, 1] is bounded.
- A bounded continuous function on [0, 1] has a supremum.
- A continuous function on [0, 1] attains a maximum.
- Cousin’s lemma for continuous functions.
Weak König’s lemma

The following are equivalent to WKL\(_0\) over \(\text{RCA}_0\):
- A \textbf{continuous} function on \([0, 1]\) is bounded.
- A bounded \textbf{continuous} function on \([0, 1]\) has a supremum.
- A \textbf{continuous} function on \([0, 1]\) attains a maximum.
- Cousin’s lemma for \textbf{continuous} functions.

There is \textbf{no mathematical need} to restrict to continuity here!
Weak König’s lemma

The following third-order thms are equivalent to WKL$_0$ over RCA$^\omega$:

- A regulated function on $[0, 1]$ is bounded.
- A bounded Baire 1 function on $[0, 1]$ has a supremum.
- A upper semi-continuous function on $[0, 1]$ attains a max.
- A bounded quasi-continuous function on $[0, 1]$ has a sup.
- Cousin’s lemma for quasi-continuous functions.

Regulated means: the left and right limits exist.
Baire 1 means: pointwise limit of continuous functions.
Upper semi-continuity means: . . . (Baire).
Quasi-continuity means: . . . (Baire and Volterra).

WILD: there are 2^c non-measurable quasi-continuous functions and 2^c non-Borel bounded and measurable quasi-continuous functions.
Weak König’s lemma

The following third-order thms are equivalent to WKL\(_0\) over RCA\(_0^\omega\):

- A regulated function on \([0, 1]\) is bounded.
- A bounded Baire 1 function on \([0, 1]\) has a supremum.
- A upper semi-continuous function on \([0, 1]\) attains a max.
- A bounded quasi-continuous function on \([0, 1]\) has a sup.
- Cousin’s lemma for quasi-continuous functions.
Weak König’s lemma

The following third-order thms are equivalent to WKL₀ over RCA_0^ω:

- A regulated function on $[0, 1]$ is bounded.
- A bounded Baire 1 function on $[0, 1]$ has a supremum.
- A upper semi-continuous function on $[0, 1]$ attains a max.
- A bounded quasi-continuous function on $[0, 1]$ has a sup.
- Cousin’s lemma for quasi-continuous functions.

Regulated means: the left and right limits exist.
Weak König’s lemma

The following third-order thms are equivalent to \(\text{WKL}_0 \) over \(\text{RCA}_0^\omega \):

- A regulated function on \([0, 1]\) is bounded.
- A bounded Baire 1 function on \([0, 1]\) has a supremum.
- A upper semi-continuous function on \([0, 1]\) attains a max.
- A bounded quasi-continuous function on \([0, 1]\) has a sup.
- Cousin’s lemma for quasi-continuous functions.

Regulated means: the left and right limits exist.
Baire 1 means: pointwise limit of continuous functions.
Weak König’s lemma

The following **third-order thms** are equivalent to WKL₀ over RCA₀:

- A **regulated** function on [0, 1] is bounded.
- A bounded **Baire 1** function on [0, 1] has a supremum.
- A **upper semi-continuous** function on [0, 1] attains a max.
- A bounded **quasi-continuous** function on [0, 1] has a sup.
- Cousin’s lemma for **quasi-continuous** functions.

Regulated means: the left and right limits exist.
Baire 1 means: pointwise limit of continuous functions.
Upper semi-continuity means: . . . (Baire).
Weak König’s lemma

The following third-order thms are equivalent to WKL_0 over RCA_0^ω:

- A regulated function on $[0, 1]$ is bounded.
- A bounded Baire 1 function on $[0, 1]$ has a supremum.
- A upper semi-continuous function on $[0, 1]$ attains a max.
- A bounded quasi-continuous function on $[0, 1]$ has a sup.
- Cousin’s lemma for quasi-continuous functions.

Regulated means: the left and right limits exist.
Baire 1 means: pointwise limit of continuous functions.
Upper semi-continuity means: . . . (Baire).
Quasi-continuity means: . . . (Baire and Volterra).
Weak König’s lemma

The following third-order thms are equivalent to WKL₀ over RCA^{ω}_0:

- A regulated function on $[0, 1]$ is bounded.
- A bounded Baire 1 function on $[0, 1]$ has a supremum.
- A upper semi-continuous function on $[0, 1]$ attains a max.
- A bounded quasi-continuous function on $[0, 1]$ has a sup.
- Cousin’s lemma for quasi-continuous functions.

Regulated means: the left and right limits exist.
Baire 1 means: pointwise limit of continuous functions.
Upper semi-continuity means: \ldots (Baire).
Quasi-continuity means: \ldots (Baire and Volterra).
WILD: there are 2^c non-measurable quasi-continuous functions and 2^c non-Borel bounded and measurable quasi-continuous functions.
Arithmetical comprehension

The following are equivalent to ACA$_0$ over RCA$_0$:

- Let $F : C \to \mathbb{R}$ be continuous where $C \subset [0, 1]$ is an RM-closed set. Then $\sup_{x \in C} F(x)$ exists.
- Let $F : C \to \mathbb{R}$ be continuous where $C \subset [0, 1]$ is an RM-closed set. Then F attains a maximum value on C.
- Jordan decomposition theorem restricted to codes.
Arithmetical comprehension

The following are equivalent to ACA\(_0\) over RCA\(_0\):

- Let \(F : C \to \mathbb{R} \) be continuous where \(C \subseteq [0, 1] \) is an RM-closed set. Then \(\sup_{x \in C} F(x) \) exists.

- Let \(F : C \to \mathbb{R} \) be continuous where \(C \subseteq [0, 1] \) is an RM-closed set. Then \(F \) attains a maximum value on \(C \).

Jordan decomposition theorem restricted to codes.

There is no mathematical need to restrict to continuity here!
Arithmetical comprehension

These third-order thms are equivalent to ACA\(_0\) over RCA\(_0^\omega\):

- Let \(F : C \to \mathbb{R} \) be cadlag where \(C \subset [0, 1] \) is an RM-closed set. Then \(\sup_{x \in C} F(x) \) exists.

- Let \(F : C \to \mathbb{R} \) be cadlag and upper semi-continuous where \(C \subset [0, 1] \) is an RM-closed set. Then \(F \) attains a maximum value on \(C \).

- Jordan decomposition theorem restricted to cadlag.

- Jordan decomposition theorem restricted to quasi-continuity.
Arithmetical comprehension

These third-order thms are equivalent to ACA\(_0\) over RCA\(_0\)\(^{\omega}\):

- Let \(F : C \to \mathbb{R} \) be cadlag where \(C \subset [0, 1] \) is an RM-closed set. Then \(\sup_{x \in C} F(x) \) exists.

- Let \(F : C \to \mathbb{R} \) be cadlag and upper semi-continuous where \(C \subset [0, 1] \) is an RM-closed set. Then \(F \) attains a maximum value on \(C \).

- Jordan decomposition theorem restricted to cadlag.

- Jordan decomposition theorem restricted to quasi-continuity.

Cadlag means: the continuous on the right with left limit.
Arithmetical comprehension

These third-order theorems are equivalent to ACA\(_0\) over RCA\(_0\):

- Let \(F : C \rightarrow \mathbb{R} \) be \textit{cadlag} where \(C \subset [0, 1] \) is an RM-closed set. Then \(\sup_{x \in C} F(x) \) exists.

- Let \(F : C \rightarrow \mathbb{R} \) be \textit{cadlag} and \textit{upper semi-continuous} where \(C \subset [0, 1] \) is an RM-closed set. Then \(F \) attains a maximum value on \(C \).

- Jordan decomposition theorem restricted to \textit{cadlag}.

- Jordan decomposition theorem restricted to \textit{quasi-continuity}.

Cadlag means: the \textit{continuous on the right with left limit}.

Upper semi-continuity means: \ldots (Baire).
Arithmetical comprehension

These third-order thms are equivalent to ACA$_0$ over RCA$_0^\omega$:

- Let $F : C \to \mathbb{R}$ be cadlag where $C \subset [0, 1]$ is an RM-closed set. Then $\sup_{x \in C} F(x)$ exists.
- Let $F : C \to \mathbb{R}$ be cadlag and upper semi-continuous where $C \subset [0, 1]$ is an RM-closed set. Then F attains a maximum value on C.
- Jordan decomposition theorem restricted to cadlag.
- Jordan decomposition theorem restricted to quasi-continuity.

Cadlag means: the continuous on the right with left limit.
Upper semi-continuity means: \ldots (Baire).
Quasi-continuity means: \ldots (Baire and Volterra).
Arithmetical Transfinite Recursion

These **third-order thms** are equivalent to ATR_0 over RCA_0^ω:

- Jordan decomposition theorem restricted to **arithmetical** (or: Σ^1_1) functions.
- A non-enumerable **arithmetical** set in \mathbb{R} has a limit point.
- Cousin’s lemma for **effectively Baire 2** functions.
Arithmetical Transfinite Recursion

These third-order thms are equivalent to ATR_0 over RCA_0^ω:

- Jordan decomposition theorem restricted to arithmetical (or: Σ^1_1) functions.
- A non-enumerable arithmetical set in \mathbb{R} has a limit point.
- Cousin’s lemma for effectively Baire 2 functions.

Baire 1 means: pointwise limit of continuous functions.
Arithmetical Transfinite Recursion

These third-order thms are equivalent to ATR\(_0\) over RCA\(_{0}^{\omega}\):

- Jordan decomposition theorem restricted to arithmetical (or: \(\Sigma^1_1\)) functions.
- A non-enumerable arithmetical set in \(\mathbb{R}\) has a limit point.
- Cousin’s lemma for effectively Baire 2 functions.

Baire 1 means: pointwise limit of continuous functions.
Baire 2 means: pointwise limit of Baire 1 functions.
Arithmetical Transfinite Recursion

These third-order thms are equivalent to ATR\(_0\) over RCA\(_0^\omega\):

- Jordan decomposition theorem restricted to arithmetical (or: \(\Sigma^1_1\)) functions.
- A non-enumerable arithmetical set in \(\mathbb{R}\) has a limit point.
- Cousin’s lemma for effectively Baire 2 functions.

Baire 1 means: pointwise limit of continuous functions.
Baire 2 means: pointwise limit of Baire 1 functions.
Effectively Baire 2 means: iterated limit of double sequence of continuous functions (\(\approx\) second-order codes for Baire 2).
Arithmetical Transfinite Recursion

These third-order thms are equivalent to ATR₀ over RCA₀:

- Jordan decomposition theorem restricted to arithmetical (or: \(\Sigma^1_1 \)) functions.
- A non-enumerable arithmetical set in \(\mathbb{R} \) has a limit point.
- Cousin’s lemma for effectively Baire 2 functions.

Baire 1 means: pointwise limit of continuous functions.

Baire 2 means: pointwise limit of Baire 1 functions.

Effectively Baire 2 means: iterated limit of double sequence of continuous functions (\(\approx \) second-order codes for Baire 2).

Baire (1905) notes that Baire 2 functions can be represented as iterated limits.
\(\Pi^1_1 \)-comprehension

These third-order thms are equivalent to \(\Pi^1_1 \)-CA\(_0\) over \(\text{RCA}_0^\omega + X \):

- For any \(x \in \mathbb{N}^\mathbb{N} \), any bounded \(\Sigma^1_1 \)-class in \(\mathbb{Q}^+ \) has a supremum.
- A bounded effectively Baire 2 \(f : [0, 1] \to \mathbb{R} \) has a supremum.
- For \(n \geq 2 \), a bounded and effectively Baire \(n \) \(f : [0, 1] \to \mathbb{R} \) has a supremum.
Π₁¹-comprehension

These **third-order thms** are equivalent to \(\Pi^1_1 \text{-CA}_0 \) over \(\text{RCA}_0^\omega + X \):

- For any \(x \in \mathbb{N}^\mathbb{N} \), any bounded \(\Sigma^1_1^x \)-class in \(\mathbb{Q}^+ \) has a supremum.
- A bounded **effectively Baire 2** \(f : [0, 1] \rightarrow \mathbb{R} \) has a supremum.
- For \(n \geq 2 \), a bounded and **effectively Baire n** \(f : [0, 1] \rightarrow \mathbb{R} \) has a supremum.

Effectively Baire 2 means: iterated limit of **double** sequence of continuous functions (\(\approx \) second-order codes for Baire 2).
Π₁¹-comprehension

These third-order thms are equivalent to Π₁¹-CA₀ over RCA₀⁺ X:

- For any \(x \in \mathbb{N}^\mathbb{N} \), any bounded \(\Sigma_{1}^{x} \)-class in \(\mathbb{Q}^+ \) has a supremum.
- A bounded effectively Baire 2 \(f : [0, 1] \to \mathbb{R} \) has a supremum.
- For \(n \geq 2 \), a bounded and effectively Baire \(n \) \(f : [0, 1] \to \mathbb{R} \) has a supremum.

Effectively Baire 2 means: iterated limit of double sequence of continuous functions (\(\approx \) second-order codes for Baire 2).

Baire (1905) notes that Baire 2 functions can be represented as iterated limits.
The Biggest Five phenomenon of higher-order RM

Recently, Dag Normann and I have obtained a plethora of equivalences (over RCA$_0^\omega$) between:

- **second-order** Big Five systems
- **third-order** theorems about (slightly) discontinuous functions.
The Biggest Five phenomenon of higher-order RM

Recently, Dag Normann and I have obtained a plethora of equivalences (over RCA_0) between:

- **second-order** Big Five systems
- **third-order** theorems about (slightly) discontinuous functions.

These third-order theorems are called **second-order-ish** for obvious reasons.
The Biggest Five phenomenon of higher-order RM

Recently, Dag Normann and I have obtained a plethora of equivalences (over RCA$_0^\omega$) between:

- **second-order** Big Five systems
- **third-order** theorems about (slightly) discontinuous functions.

These *third-order theorems* are called *second-order-ish* for obvious reasons.

There are a **gazillion** variations of the previous examples, as there are a **gazillion** function classes with **gazillion** different definitions.
The Biggest Five phenomenon of higher-order RM

Recently, Dag Normann and I have obtained a plethora of equivalences (over RCA_0^ω) between:

- **second-order** Big Five systems
- **third-order** theorems about (slightly) discontinuous functions.

These **third-order theorems** are called **second-order-ish** for obvious reasons.

There are a **gazillion** variations of the previous examples, as there are a **gazillion** function classes with **gazillion** different definitions.

There are however **hard limits** to the Biggest Five phenomenon, with interesting consequences.
The Biggest Five of Reverse Mathematics

Abyss? Abyss!

In ordinal analysis, the difference between the systems Π^1_1-CA_0 and Π^1_2-CA_0 has been described as an abyss or chasm by Michael Rathjen and Per Martin-Löf. The difference between Π^1_1-CA_0 and Σ^2_2 is therefore galactic in nature (about 12 parsecs?). Slight variations of the aforementioned second-order-ish theorems are not provable in RCA$_0^\omega$ and stronger systems. The mathematical difference between the original and the variation is infinitesimal.
Abyss? Abyss!

In ordinal analysis, the difference between the systems Π^1_1-CA$_0$ and Π^1_2-CA$_0$ has been described as an abyss or chasm by Michael Rathjen and Per Martin-Löf.
Abyss? Abyss!

In ordinal analysis, the difference between the systems Π^1_1-CA$_0$ and Π^1_2-CA$_0$ has been described as an abyss or chasm by Michael Rathjen and Per Martin-Löf.

The difference between Π^1_1-CA$_0$ and \mathbb{Z}_2 is therefore galactic in nature.
Abyss? Abyss!

In ordinal analysis, the difference between the systems Π^1_1-CA$_0$ and Π^1_2-CA$_0$ has been described as an abyss or chasm by Michael Rathjen and Per Martin-Löf.

The difference between Π^1_1-CA$_0$ and Z$_2$ is therefore galactic in nature (about 12 parsecs?)
Abyss? Abyss!

In ordinal analysis, the difference between the systems Π^1_1-CA$_0$ and Π^1_2-CA$_0$ has been described as an abyss or chasm by Michael Rathjen and Per Martin-Löf.

The difference between Π^1_1-CA$_0$ and \mathcal{Z}_2 is therefore galactic in nature (about 12 parsecs?)

Slight variations of the aforementioned second-order-ish theorems are not provable in $\text{RCA}_0^\omega + \mathcal{Z}_2$ and stronger systems.
In ordinal analysis, the difference between the systems Π^1_1-CA_0 and Π^1_2-CA_0 has been described as an abyss or chasm by Michael Rathjen and Per Martin-Löf.

The difference between Π^1_1-CA_0 and \mathbb{Z}_2 is therefore galactic in nature (about 12 parsecs?)

Slight variations of the aforementioned second-order-ish theorems are not provable in $\text{RCA}_0^\omega + \mathbb{Z}_2$ and stronger systems.

The mathematical difference between the original and the variation is infinitesimal.
The abyss and Π^1_1-CA_0

This third-order thm is equivalent to Π^1_1-CA_0 over $\text{RCA}_0^\omega + X$:

An **effectively** Baire 2 function $F : [0, 1] \to [0, 1]$ has a supremum.
The abyss and Π^1_1-CA_0

This third-order thm is equivalent to Π^1_1-CA_0 over $\text{RCA}_0^\omega + X$:

An effectively Baire 2 function $F : [0, 1] \to [0, 1]$ has a supremum.

This third-order thm is not provable in $\text{RCA}_0^\omega + X + Z_2$:

A Baire 2 function $F : [0, 1] \to [0, 1]$ has a supremum.
The abyss and Π^1_1-CA_0

This third-order thm is equivalent to Π^1_1-CA_0 over $\text{RCA}_0^\omega + X$:

An effectively Baire 2 function $F : [0, 1] \rightarrow [0, 1]$ has a supremum.

This third-order thm is not provable in $\text{RCA}_0^\omega + X + Z_2$:

A Baire 2 function $F : [0, 1] \rightarrow [0, 1]$ has a supremum.

Baire 1 means: pointwise limit of continuous functions.
The abyss and Π^1_1-CA$_0$

This third-order thm is equivalent to Π^1_1-CA$_0$ over RCA$_0^\omega + X$:

An effectively Baire 2 function $F : [0, 1] \to [0, 1]$ has a supremum.

This third-order thm is not provable in RCA$_0^\omega + X + Z_2$:

A Baire 2 function $F : [0, 1] \to [0, 1]$ has a supremum.

Baire 1 means: pointwise limit of continuous functions.

Baire 2 means: pointwise limit of Baire 1 functions.
The abyss and Π^1_1-CA$_0$

This third-order thm is equivalent to Π^1_1-CA$_0$ over RCA$^\omega_0 + X$:

An effectively Baire 2 function $F : [0, 1] \to [0, 1]$ has a supremum.

This third-order thm is not provable in RCA$^\omega_0 + X + Z_2$:

A Baire 2 function $F : [0, 1] \to [0, 1]$ has a supremum.

Baire 1 means: pointwise limit of continuous functions.

Baire 2 means: pointwise limit of Baire 1 functions.

Effectively Baire 2 means: iterated limit of double sequence of continuous functions (\approx second-order codes for Baire 2).
The abyss and Π^1_1-CA$_0$

This third-order thm is equivalent to Π^1_1-CA$_0$ over RCA$_0^\omega + X$:

An effectively Baire 2 function $F : [0, 1] \to [0, 1]$ has a supremum.

This third-order thm is not provable in RCA$_0^\omega + X + Z_2$:

A Baire 2 function $F : [0, 1] \to [0, 1]$ has a supremum.

Baire 1 means: pointwise limit of continuous functions.
Baire 2 means: pointwise limit of Baire 1 functions.
Effectively Baire 2 means: iterated limit of double sequence of continuous functions (\approx second-order codes for Baire 2).
Nota Bene: AC is not the problem!
The abyss and arithmetical comprehension

The following is equivalent to ACA$_0$ over RCA$_0$:

Jordan decomposition theorem restricted to quasi-continuity.
The abyss and arithmetical comprehension

The following is equivalent to ACA\(_0\) over RCA\(_0^\omega\):

Jordan decomposition theorem restricted to quasi-continuity.

The following is not provable in RCA\(_0^\omega + Z_2\):

Jordan decomposition theorem restricted to cliquishness.
The abyss and arithmetical comprehension

The following is equivalent to ACA$_0$ over RCA$_0^\omega$:

Jordan decomposition theorem restricted to quasi-continuity.

The following is not provable in RCA$_0^\omega + \mathbb{Z}_2$:

Jordan decomposition theorem restricted to cliquishness.

Every cliquish function is the sum of two quasi-continuous functions (on the reals).
The abyss and arithmetical comprehension

The following is equivalent to ACA₀ over RCA₀⁺ω:

Jordan decomposition theorem restricted to quasi-continuity.

The following is not provable in RCA₀⁺ω + Z₂:

Jordan decomposition theorem restricted to cliquishness.

Every cliquish function is the sum of two quasi-continuous functions (on the reals).

\(f : [0, 1] \rightarrow \mathbb{R} \) is quasi-continuous if for all \(\epsilon > 0, N \in \mathbb{N}, x \in [0, 1] \), there is \((a, b) \subset B(x, \frac{1}{2^N})\) with \((\forall y \in (a, b))(|f(x) - f(y)| < \epsilon)\).
The abyss and arithmetical comprehension

The following is equivalent to ACA₀ over RCA₀⁻ω:

Jordan decomposition theorem restricted to quasi-continuity.

The following is not provable in RCA₀⁻ω + Z₂:

Jordan decomposition theorem restricted to cliquishness.

Every cliquish function is the sum of two quasi-continuous functions (on the reals).

\(f : [0, 1] \to \mathbb{R} \) is quasi-continuous if for all \(\epsilon > 0, N \in \mathbb{N}, x \in [0, 1] \), there is \((a, b) \subset B(x, \frac{1}{2^N}) \) with \((\forall y \in (a, b))(|f(x) - f(y)| < \epsilon) \).

\(f : [0, 1] \to \) is cliquish if for all \(\epsilon > 0, N \in \mathbb{N}, x \in [0, 1] \), there is \((a, b) \subset B(x, \frac{1}{2^N}) \) such that \((\forall y, z \in (a, b))(|f(z) - f(y)| < \epsilon) \).
The abyss and weak König’s lemma

This third-order thm is equivalent to WKL$_0$ over RCA$_0^\omega$:

A bounded Baire 1 function $F : [0, 1] \to \mathbb{R}$ has a supremum.
The abyss and weak König’s lemma

This third-order thm is equivalent to \(\text{WKL}_0 \) over \(\text{RCA}_0^\omega \):

A bounded Baire 1 function \(F : [0,1] \to \mathbb{R} \) has a supremum.

This third-order thm is not provable in \(\text{RCA}_0^\omega + \text{Z}_2 \):

A regulated function \(F : [0,1] \to \mathbb{R} \) has a supremum.
The abyss and weak König’s lemma

This third-order thm is equivalent to WKL₀ over RCA₀:

\[\text{A bounded Baire 1 function } F : [0, 1] \rightarrow \mathbb{R} \text{ has a supremum.} \]

This third-order thm is not provable in RCA₀ + Z₂:

\[\text{A regulated function } F : [0, 1] \rightarrow \mathbb{R} \text{ has a supremum.} \]

Classically, regulated functions are Baire 1, but this fact is only provable in certain strong systems.
The abyss and weak König’s lemma

This third-order thm is equivalent to WKL_0 over RCA_0:

A bounded Baire 1 function $F : [0, 1] \rightarrow \mathbb{R}$ has a supremum.

This third-order thm is not provable in $\text{RCA}_0 + Z_2$:

A regulated function $F : [0, 1] \rightarrow \mathbb{R}$ has a supremum.

Classically, regulated functions are Baire 1, but this fact is only provable in certain strong systems.

Many similar results: the classical hierarchy of function classes looks very different in weak (and some strong) systems.
On Kleene’s arithmetical quantifier \exists^2

The above was obtained based on the RM of Kleene’s \exists^2:

$$(\exists E)(\forall f \in \mathbb{N}^\mathbb{N})(E(f) = 0 \leftrightarrow (\exists n \in \mathbb{N})(f(n) = 0)).$$ (\exists^2)
On Kleene’s arithmetical quantifier \exists^2

The above was obtained based on the RM of Kleene’s \exists^2:

$$(\exists E)(\forall f \in \mathbb{N}^{\mathbb{N}})(E(f) = 0 \iff (\exists n \in \mathbb{N})(f(n) = 0)).$$

The system $\text{RCA}_0 + (\exists^2)$ is L_2-conservative over ACA$_0$.
On Kleene’s arithmetical quantifier \exists^2

The above was obtained based on the RM of Kleene’s \exists^2:

$$(\exists E) (\forall f \in \mathbb{N}^\mathbb{N}) (E(f) = 0 \leftrightarrow (\exists n \in \mathbb{N})(f(n) = 0)).$$

The system $\text{RCA}_0^\omega + (\exists^2)$ is L_2-conservative over ACA_0.

Over RCA_0^ω, the following are equivalent to (\exists^2):
On Kleene’s arithmetical quantifier \exists^2

The above was obtained based on the RM of Kleene’s \exists^2:

$$(\exists E)(\forall f \in \mathbb{N}^\mathbb{N})(E(f) = 0 \leftrightarrow (\exists n \in \mathbb{N})(f(n) = 0)). \quad (\exists^2)$$

The system $\text{RCA}_0^\omega + (\exists^2)$ is L_2-conservative over ACA_0. Over RCA_0^ω, the following are equivalent to (\exists^2):

- the existence of a discontinuous $\mathbb{R} \to \mathbb{R}$-function (Kohlenbach).
On Kleene's arithmetical quantifier \exists^2

The above was obtained based on the RM of Kleene's \exists^2:

$$(\exists E)(\forall f \in \mathbb{N}^\mathbb{N})(E(f) = 0 \leftrightarrow (\exists n \in \mathbb{N})(f(n) = 0)).$$

(\exists^2)

The system $\text{RCA}_0 + (\exists^2)$ is L_2-conservative over ACA_0.

Over RCA_0, the following are equivalent to (\exists^2):

- the existence of a discontinuous $\mathbb{R} \to \mathbb{R}$-function (Kohlenbach).
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not regulated.
On Kleene’s arithmetical quantifier \exists^2

The above was obtained based on the RM of Kleene’s \exists^2:

$$(\exists E)(\forall f \in \mathbb{N}^\mathbb{N})(E(f) = 0 \leftrightarrow (\exists n \in \mathbb{N})(f(n) = 0)). \quad (\exists^2)$$

The system $\text{RCA}_0^\omega + (\exists^2)$ is L_2-conservative over ACA_0.

Over RCA_0^ω, the following are equivalent to (\exists^2):

- the existence of a discontinuous $\mathbb{R} \rightarrow \mathbb{R}$-function (Kohlenbach).
- the existence of a $\mathbb{R} \rightarrow \mathbb{R}$-function that is not regulated.
- the existence of a $\mathbb{R} \rightarrow \mathbb{R}$-function that is not semi-continuous.
On Kleene’s arithmetical quantifier \exists^2

The above was obtained based on the RM of Kleene’s \exists^2:

$$(\exists E)(\forall f \in \mathbb{N}^\mathbb{N})(E(f) = 0 \iff (\exists n \in \mathbb{N})(f(n) = 0)). \quad (\exists^2)$$

The system $\text{RCA}_0^\omega + (\exists^2)$ is L_2-conservative over ACA$_0$.

Over RCA_0^ω, the following are equivalent to (\exists^2):

- the existence of a discontinuous $\mathbb{R} \to \mathbb{R}$-function (Kohlenbach).
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not regulated.
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not semi-continuous.
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not Riemann integrable.
On Kleene’s arithmetical quantifier \exists^2

The above was obtained based on the RM of Kleene’s \exists^2:

$$ (\exists E)(\forall f \in \mathbb{N}^\mathbb{N})(E(f) = 0 \iff (\exists n \in \mathbb{N})(f(n) = 0)). $$

(\exists^2)

The system $\text{RCA}_0^\omega + (\exists^2)$ is L_2-conservative over ACA_0.

Over RCA_0^ω, the following are equivalent to (\exists^2):

- the existence of a discontinuous $\mathbb{R} \to \mathbb{R}$-function (Kohlenbach).
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not regulated.
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not semi-continuous.
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not Riemann integrable.
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not Baire 1.
On Kleene’s arithmetical quantifier \exists^2

The above was obtained based on the RM of Kleene’s \exists^2:

$$(\exists E)(\forall f \in \mathbb{N}^\mathbb{N})(E(f) = 0 \leftrightarrow (\exists n \in \mathbb{N})(f(n) = 0)).$$

The system $\text{RCA}_0^\omega + (\exists^2)$ is L_2-conservative over ACA_0.

Over RCA_0^ω, the following are equivalent to (\exists^2):

- the existence of a discontinuous $\mathbb{R} \to \mathbb{R}$-function (Kohlenbach).
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not regulated.
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not semi-continuous.
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not Riemann integrable.
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not Baire 1.
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not effectively Baire 2.
- ...
On Kleene’s arithmetical quantifier \exists^2

The above was obtained based on the RM of Kleene’s \exists^2:

$$(\exists E)(\forall f \in \mathbb{N}^\mathbb{N})(E(f) = 0 \leftrightarrow (\exists n \in \mathbb{N})(f(n) = 0)). \quad (\exists^2)$$

The system $\text{RCA}_0^\omega + (\exists^2)$ is L_2-conservative over ACA_0.

Over RCA_0^ω, the following are equivalent to (\exists^2):

- the existence of a discontinuous $\mathbb{R} \to \mathbb{R}$-function (Kohlenbach).
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not regulated.
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not semi-continuous.
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not Riemann integrable.
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not Baire 1.
- the existence of a $\mathbb{R} \to \mathbb{R}$-function that is not effectively Baire 2.
- ...

Not provable in $\text{RCA}_0^\omega + (\exists^2) + Z_2$ and stronger systems:

There is a $\mathbb{R} \to \mathbb{R}$-function that is not Baire 2.
Exploring the abyss: the uncountability of \mathbb{R}

Cantor’s first set theory paper (1874): uncountability of \mathbb{R}.

Cantor's first set theory paper (1874): uncountability of \mathbb{R}.

Cantor's theorem: there is no surjection from \mathbb{N} to $[0,1]$.

NIN: there is no injection from $[0,1]$ to \mathbb{N}.

NBI there is no bijection from $[0,1]$ to \mathbb{N}.

Many many many (third-order) mainstream theorems imply NIN or NBI.

However, NIN and NBI cannot be proved in RCA$_{\omega + 1}$ and stronger (higher-order) systems (see Normann-Sanders, JSL, 2022).
Exploring the abyss: the uncountability of \mathbb{R}

Cantor’s first set theory paper (1874): uncountability of \mathbb{R}.

- **Cantor’s theorem**: there is no surjection from \mathbb{N} to $[0, 1]$.
- **NIN**: there is no injection from $[0, 1]$ to \mathbb{N}.
- **NBI**: there is no bijection from $[0, 1]$ to \mathbb{N}.
Exploring the abyss: the uncountability of \mathbb{R}

Cantor’s first set theory paper (1874): uncountability of \mathbb{R}.

- Cantor’s theorem: there is no surjection from \mathbb{N} to $[0, 1]$.
- NIN: there is no injection from $[0, 1]$ to \mathbb{N}.
- NBI: there is no bijection from $[0, 1]$ to \mathbb{N}.

Many many many (third-order) mainstream theorems imply NIN or NBI.
Exploring the abyss: the uncountability of \mathbb{R}

Cantor’s first set theory paper (1874): uncountability of \mathbb{R}.

- Cantor’s theorem: there is no surjection from \mathbb{N} to $[0, 1]$.
- NIN: there is no injection from $[0, 1]$ to \mathbb{N}.
- NBI there is no bijection from $[0, 1]$ to \mathbb{N}.

Many many many (third-order) mainstream theorems imply NIN or NBI. However, NIN and NBI cannot be proved in $\text{RCA}_0^\omega + \text{Z}_2$ and stronger (higher-order) systems (see Normann-Sanders, JSL, 2022).
What causes this abyss?

A function class is *second-order-ish* if its definition allows one to approximate $f(x)$ for all $x \in \mathbb{R}$ given only $f(q)$ for all $q \in \mathbb{Q}$.
What causes this abyss?

A function class is **second-order-ish** if its definition allows one to approximate \(f(x) \) for all \(x \in \mathbb{R} \) given only \(f(q) \) for all \(q \in \mathbb{Q} \).

Examples: continuity, quasi-continuity, effectively Baire 2, Baire 1.
What causes this abyss?

A function class is second-order-ish if its definition allows one to approximate $f(x)$ for all $x \in \mathbb{R}$ given only $f(q)$ for all $q \in \mathbb{Q}$.

Examples: continuity, quasi-continuity, effectively Baire 2, Baire 1.

Non-examples: regulated, cliquish, Baire 2, upper semi-continuity.
What causes this abyss?

A function class is **second-order-ish** if its definition allows one to approximate $f(x)$ for all $x \in \mathbb{R}$ given only $f(q)$ for all $q \in \mathbb{Q}$.

Examples: continuity, quasi-continuity, effectively Baire 2, Baire 1.

Non-examples: regulated, cliquish, Baire 2, upper semi-continuity.

Theorems about **second-order-ish** function classes can generally be proved from second-order axioms.
What causes this abyss?

A function class is **second-order-ish** if its definition allows one to approximate \(f(x) \) for all \(x \in \mathbb{R} \) given only \(f(q) \) for all \(q \in \mathbb{Q} \).

Examples: continuity, quasi-continuity, effectively Baire 2, Baire 1.

Non-examples: regulated, cliquish, Baire 2, upper semi-continuity.

Theorems about **second-order-ish** function classes can generally be proved from second-order axioms.

Theorems about **NON-second-order-ish** function classes generally cannot be proved from second-order axioms (alone).
What causes this abyss?

A function class is second-order-ish if its definition allows one to approximate $f(x)$ for all $x \in \mathbb{R}$ given only $f(q)$ for all $q \in \mathbb{Q}$.

Examples: continuity, quasi-continuity, effectively Baire 2, Baire 1.

Non-examples: regulated, cliquish, Baire 2, upper semi-continuity.

Theorems about second-order-ish function classes can generally be proved from second-order axioms.

Theorems about NON-second-order-ish function classes generally cannot be proved from second-order axioms (alone).

Classically, regulated functions are Baire 1 but this fact is only provable in strong systems.
What causes this abyss?

A function class is **second-order-ish** if its definition allows one to approximate \(f(x) \) for all \(x \in \mathbb{R} \) given only \(f(q) \) for all \(q \in \mathbb{Q} \).

Examples: continuity, quasi-continuity, effectively Baire 2, Baire 1.

Non-examples: regulated, cliquish, Baire 2, upper semi-continuity.

Theorems about **second-order-ish** function classes can generally be proved from second-order axioms.

Theorems about **NON-second-order-ish** function classes generally cannot be proved from second-order axioms (alone).

Classically, **regulated functions are Baire 1** but this fact is only provable in **strong** systems.

Many similar results: the classical hierarchy of function classes looks **very different** in weak (and some strong) systems.
The state of the art

Recently, Dag Normann and I have obtained a plethora of equivalences (over RCA$_0^\omega$ or extensions) between:

(a) second-order Big Five systems
(b) third-order theorems about (slightly) discontinuous functions.
The state of the art

Recently, Dag Normann and I have obtained a plethora of equivalences (over RCA$_0^\omega$ or extensions) between:

(a) second-order Big Five systems

(b) third-order theorems about (slightly) discontinuous functions.

The theorems in (b) are called second-order-ish for obvious reasons.
The state of the art

Recently, Dag Normann and I have obtained a plethora of equivalences (over RCA\(^\omega_0\) or extensions) between:

(a) second-order Big Five systems

(b) third-order theorems about (slightly) discontinuous functions.

The theorems in (b) are called second-order-ish for obvious reasons.

There are a gazillion possible equivalences, warranting the name the Biggest Five phenomenon.
The state of the art

Recently, Dag Normann and I have obtained a plethora of equivalences (over RCA_0^ω or extensions) between:

(a) second-order Big Five systems
(b) third-order theorems about (slightly) discontinuous functions.

The theorems in (b) are called second-order-ish for obvious reasons.

There are a gazillion possible equivalences, warranting the name the Biggest Five phenomenon.

Slight variations or generalisations of the theorems in (b) imply NIN and cannot be proved in $\text{RCA}_0^\omega + Z_2$ and stronger systems.
The state of the art

Recently, Dag Normann and I have obtained a plethora of equivalences (over RCA_0^ω or extensions) between:

(a) second-order Big Five systems

(b) third-order theorems about (slightly) discontinuous functions.

The theorems in (b) are called second-order-ish for obvious reasons.

There are a gazillion possible equivalences, warranting the name the Biggest Five phenomenon.

Slight variations or generalisations of the theorems in (b) imply NIN and cannot be proved in $\text{RCA}_0^\omega + \mathbb{Z}_2$ and stronger systems.
The state of the art

Recently, Dag Normann and I have obtained a plethora of equivalences (over RCA_0^ω or extensions) between:

(a) second-order Big Five systems
(b) third-order theorems about (slightly) discontinuous functions.

The theorems in (b) are called second-order-ish for obvious reasons.

There are a gazillion possible equivalences, warranting the name the Biggest Five phenomenon.

Slight variations or generalisations of the theorems in (b) imply NIN and cannot be proved in $\text{RCA}_0^\omega + \mathbb{Z}_2$ and stronger systems.

Similar results for WWKL, Vitali’s covering lemma, and Kleene’s (\exists^2).
The state of the art

Recently, Dag Normann and I have obtained a plethora of equivalences (over RCA_0^{ω} or extensions) between:

(a) **second-order** Big Five systems

(b) **third-order** theorems about (slightly) discontinuous functions.

The theorems in (b) are called **second-order-ish** for obvious reasons.

There are a **gazillion** possible equivalences, warranting the name the Biggest Five phenomenon.

Slight variations or generalisations of the theorems in (b) imply NIN and cannot be proved in $\text{RCA}_0^{\omega} + \text{Z}_2$ and stronger systems.

Similar results for **WWKL**, Vitali’s covering lemma, and Kleene’s (\exists^2).

Many equivalences for NIN and basic properties of **regulated** functions.
The state of the art

Recently, Dag Normann and I have obtained a plethora of equivalences (over RCA_0^ω or extensions) between:

(a) second-order Big Five systems
(b) third-order theorems about (slightly) discontinuous functions.

The theorems in (b) are called second-order-ish for obvious reasons.

There are a gazillion possible equivalences, warranting the name the Biggest Five phenomenon.

Slight variations or generalisations of the theorems in (b) imply NIN and cannot be proved in $\text{RCA}_0^\omega + \mathbb{Z}_2$ and stronger systems.

Similar results for WWKL, Vitali’s covering lemma, and Kleene’s (\exists^2).

Many equivalences for NIN and basic properties of regulated functions. Same for basic properties of measure and category and semi-continuity (Baire, Volterra, . . .).
Non-second-order-ish mathematics exhibits a number of interesting phenomena that are ‘miniature’ versions of well-known observations in set theory, including:
Foundational musings

Non-second-order-ish mathematics exhibits a number of interesting phenomena that are ‘miniature’ versions of well-known observations in set theory, including:

- the mercurial nature of the cardinality of \(\mathbb{R} \),
- basic properties of the Lebesgue measure and integral,
- the special role of the Axiom of Choice,
- the asymmetry between measure and category.
Foundational musings

Non-second-order-ish mathematics exhibits a number of interesting phenomena that are ‘miniature’ versions of well-known observations in set theory, including:
Foundational musings

Non-second-order-ish mathematics exhibits a number of interesting phenomena that are ‘miniature’ versions of well-known observations in set theory, including:

- the mercurial nature of the cardinality of \mathbb{R}:
Foundational musings

Non-second-order-ish mathematics exhibits a number of interesting phenomena that are ‘miniature’ versions of well-known observations in set theory, including:

- the mercurial nature of the cardinality of \mathbb{R}:
 - ZFC cannot prove the Continuum Hypothesis.
 - $\text{RCA}_0 + Z_2$ cannot prove: there is no injection from \mathbb{R} to \mathbb{N}.
Foundational musings

Non-second-order-ish mathematics exhibits a number of interesting phenomena that are ‘miniature’ versions of well-known observations in set theory, including:

- the mercurial nature of the cardinality of \(\mathbb{R} \):
 - ZFC cannot prove the Continuum Hypothesis.
 - RCA_0^\omega + Z_2 cannot prove: there is no injection from \(\mathbb{R} \) to \(\mathbb{N} \).

- basic properties of the integral
 - ZF cannot prove that \(\int_{[0,1]} f \, d\lambda = 0 \) implies \(f(x) = 0 \) a.e. for \(f : [0,1] \to [0,1] \) for the Lebesgue integral.
Foundational musings

Non-second-order-ish mathematics exhibits a number of interesting phenomena that are ‘miniature’ versions of well-known observations in set theory, including:

- the mercurial nature of the cardinality of \mathbb{R}:
 - ZFC cannot prove the Continuum Hypothesis.
 - $\text{RCA}_0 + Z_2$ cannot prove: there is no injection from \mathbb{R} to \mathbb{N}.
- basic properties of the integral
 - ZF cannot prove that $\int_{[0,1]} f \, d\lambda = 0$ implies $f(x) = 0$ a.e. for $f : [0, 1] \to [0, 1]$ for the Lebesgue integral.
 - $\text{RCA}_0 + Z_2$ cannot prove $\int_0^1 f(x) \, dx = 0$ implies $f(x) = 0$ a.e. for $f : [0, 1] \to [0, 1]$ for the Riemann integral.
Non-second-order-ish mathematics exhibits a number of interesting phenomena that are ‘miniature’ versions of well-known observations in set theory, including:

- the mercurial nature of the cardinality of \mathbb{R}:
 - ZFC cannot prove the Continuum Hypothesis.
 - RCA$_0^\omega$ + Z$_2$ cannot prove: there is no injection from \mathbb{R} to \mathbb{N}.

- basic properties of the integral
 - ZF cannot prove that $\int_{[0,1]} f \, d\lambda = 0$ implies $f(x) = 0$ a.e. for $f : [0, 1] \to [0, 1]$ for the Lebesgue integral.
 - RCA$_0^\omega$ + Z$_2$ cannot prove $\int_0^1 f(x)dx = 0$ implies $f(x) = 0$ a.e. for $f : [0, 1] \to [0, 1]$ for the Riemann integral.

Non-second-order-ish mathematics exhibits a number of interesting phenomena that are ‘miniature’ versions of well-known observations in set theory, including:

- the mercurial nature of the cardinality of \mathbb{R}:
 - ZFC cannot prove the Continuum Hypothesis.
 - $\text{RCA}_0^\omega + \text{Z}_2$ cannot prove: there is no injection from \mathbb{R} to \mathbb{N}.

- basic properties of the integral
 - ZF cannot prove that $\int_{[0,1]} f \ d\lambda = 0$ implies $f(x) = 0$ a.e. for $f : [0, 1] \to [0, 1]$ for the Lebesgue integral.
 - $\text{RCA}_0^\omega + \text{Z}_2$ cannot prove $\int_{0}^{1} f(x)dx = 0$ implies $f(x) = 0$ a.e. for $f : [0, 1] \to [0, 1]$ for the Riemann integral.

- basic properties of measure (zero) and category.
Thanks!

Questions?

Funded by the Klaus Tschira Foundation, German DFG, and RUB Bochum.