Canonical Models of Determinacy

Sandra Müller

April 6, 2023

Online Logic Seminar

Research supported by Austrian Science Fund (FWF) Elise Richter grant number V844, International Project I6087, and START Prize Y1498.
Not all questions in mathematics can be answered in ZFC

Abstractly: Gödel’s incompleteness theorems.

- There are statements that are independent of ZFC

Nowadays there are numerous concrete examples:

- Continuum Problem (set theory),
 (Gödel 1938, Cohen 1960s)
- Whitehead Problem (group theory),
 (Shelah 1974)
- Borel Conjecture (measure theory),
 (Laver, 1976)
- Kaplansky’s Conjecture on Banach algebras (analysis),
 (Dales-Eskenazi-Solovay, 1976)
- Brown-Douglas-Fillmore Problem (operator algebras),
 (Phillips-Weaver, 2006; Farah 2011)

We need to find “right axioms” that answer these questions.
The Continuum Problem

Let us focus on the Continuum Problem:

Question

Is there a set A such that $|\mathbb{N}| < |A| < |\mathbb{R}|$?

“How many reals are there?”

What are possible extensions of ZF? How do they decide it?

Determinacy Axioms

Large Cardinals

Forcing Axioms

CH holds, i.e., there is no such A

Don’t influence CH.

Actually, the picture is more complicated.

CH is false, in fact, there is exactly one such intermediate size.
Determinacy Axioms: Games in set theory

Fix a set $A \subseteq {}^\omega \omega$ ("= \mathbb{R}")

$$
\begin{array}{c|cc}
I & n_0 & n_2 \\
\hline
I & n_1 & n_3 \\
\end{array}
$$

Player I wins iff

$$(n_0, n_1, \ldots) \in A.$$

Or Player II wins.

A function $\sigma : \mathbb{N}^{<\omega} \to \mathbb{N}$ is a winning strategy for I in $G(A)$ iff

$$
\begin{array}{c|cc}
I & \sigma(\emptyset) & \sigma(\sigma(\emptyset), n) \\
\hline
I & n_1 & n_3 \\
\end{array}
$$

$$(n_1, n_3) \in A.
$$

Def: The set A is determined iff one of the players has a winning strategy.

The Axiom of Determinacy says:

Every set $A \subseteq {}^\omega \omega$ is determined.
Which games are determined?

- Open/closed: Gale-Stewart (1953), ZFC
Which games are determined?

- Gale-Stewart (1953), ZFC

- Martin (1975), ZFC

- Gale-Stewart (1953), ZFC
Which games are determined?

- Gale-Stewart (1953), ZFC
- Martin (1970), measurable cardinal
- Martin (1975), ZFC
- Gale-Stewart (1953), ZFC
Determinacy Axioms

Which games are determined?

- Gale-Stewart (1953), ZFC
 - open/closed Borel
- Martin (1975), ZFC
 - open/closed Borel analytic
- Martin (1970), measurable cardinal
- Martin-Steel (1985), Woodin cardinals and a measurable cardinal
- Martin (1975), ZFC
- Gale-Stewart (1953), ZFC

Hereditarily build complements & projections
Which games are determined?

- Martin-Steel (1985), Woodin cardinals and a measurable cardinal
- Martin (1970), measurable cardinal
- Martin (1975), ZFC
- Gale-Stewart (1953), ZFC
Determinacy Axioms

Which games are determined?

Martin-Steel (1985), Woodin cardinals and a measurable cardinal

Martin (1970), measurable cardinal

Martin (1975), ZFC

Gale-Stewart (1953), ZFC
How far are these axioms from ZFC?

"Steel's Program"

Consider hierarchies of these axioms and compare their strength.
How far are these axioms from ZFC? "Steel's Program"

Consider hierarchies of these axioms and compare their strength.

Determinacy
 - projective
 - analytic
 - AD

Large Cardinals
 - finitely many Woodins
 - measurable
 - infinitely many Woodins

Forcing Axioms
How far are these axioms from ZFC?

“Steel’s Program”

Consider hierarchies of these axioms and compare their strength.

Determinacy

Projective

Analytic

AD

Infinitely many Woodins

Finitely many Woodins

Measurable

Large Cardinals

Forcing Axioms

Determinacy Axioms

Sandra Müller (TU Wien)
Determinacy and large cardinals

Are large cardinals necessary for the determinacy of these sets of reals?

In some sense...

How can these large cardinals affect what happens with the sets of reals?
Determinacy Axioms

Equivalences for analytic and projective determinacy

Theorem (Harrington, Martin)

The following are equivalent.

1. All analytic sets are determined.
2. $x \#$ exists for all reals x.

Theorem (Neeman, Woodin)

The following are equivalent for all $n \geq 1$.

1. All Σ^1_{n+1} sets are determined.
2. For every real x the ω_1-iterable countable model of set theory with n Woodin cardinals $M_n^\#(x)$ exists.

For (1) \Rightarrow (2) see (M-Schindler-Woodin) “Mice with Finitely many Woodin Cardinals from Optimal Determinacy Hypotheses”, JML 2020.

For (2) \Rightarrow (1) see (Neeman) “Optimal proofs of determinacy II”, JML 2002.
How far are these axioms from ZFC?

Consider hierarchies of these axioms and compare their strength.

Determinacy Axioms

- AD
- Projective
- Analytic

Large Cardinals

- Infinitely many Woodins
- Finitely many Woodins
- Measurable

Forcing Axioms

"Steel's Program"
How far are these axioms from ZFC?

Consider hierarchies of these axioms and compare their strength.

Determinacy

- AD
- Projective
- Analytic

Large Cardinals

- Infinitely many Woodins
- Finitely many Woodins
- Measurable
- Large Cardinals

Forcing Axioms

- Proper Forcing Axiom (PFA)

"Steel's Program"
Not all questions in mathematics can be answered in ZFC

Abstractly: Gödel’s incompleteness theorems.

- There are statements that are independent from ZFC

Nowadays there are numerous concrete examples:

- Continuum Problem (set theory),
 (Gödel 1938, Cohen 1960’s)
- Whitehead Problem (group theory),
 No, there is a non-free Whitehead group (Shelah, 1974)
- Borel Conjecture (measure theory),
 Is false (Laver, 1976)
- Kaplansky’s Conjecture on Banach algebras (analysis),
 Is true (Todorčević, 1989) (Dales-Esposito, Solovay, 1976)
- Brown-Douglas-Fillmore Problem (operator algebras),
 Every automorphism of the Calkin algebra is inner (Phillips-Weaver, 2006; Farah, 2011)

We need to find the “right axioms” that answer these questions.
How far are these axioms from ZFC?

Consider hierarchies of these axioms and compare their strength.

Determinacy **→** Forcing Axioms

- AD
- Projective
- Analytic
- Infinitely many Woodins
- Finitely many Woodins
- Measurable
- Large Cardinals
- Proper Forcing Axiom (PFA)

"Steel's Program"
How far are these axioms from ZFC?

Consider hierarchies of these axioms and compare their strength.

Determinacy
- AD
 - projective
 - analytic

Forcing Axioms
- Martin's Maximum (MM)
- Proper Forcing Axiom (PFA)

Large Cardinals
- infinitely many Woodins
 - finitely many Woodins
 - measurable

Steel's Program
How far are these axioms from ZFC?

Consider hierarchies of these axioms and compare their strength.

Determinacy

Ad

Projective

Analytic

Large Cardinals

Infinetly many Woodins

Finitely many Woodins

Measurable

Supercompact

Woodin limit of Woodins

Martin’s Maximum (MM)

Proper Forcing Axiom (PFA)

Forcing Axioms

"Steel’s Program"
How far are these axioms from ZFC?

Consider hierarchies of these axioms and compare their strength.

"Steel's Program"

Determinacy Axioms

Determinacy
- projective
- analytic
- AD

Large Cardinals
- finitely many Woodins
- infinitely many Woodins
- supercompact

Forcing Axioms
- Martin's Maximum (MM)
- Proper Forcing Axiom (PFA)
How far are these axioms from ZFC?

Consider hierarchies of these axioms and compare their strength.

"Steel's Program"
How far are these axioms from ZFC?

Consider hierarchies of these axioms and compare their strength.

Determinacy Axioms

"Steel's Program"

- Determinacy
 - AD
 - Projective
 - Analytic
 - Large Cardinals
 - Measurable
 - Finitely many Woodins
 - Infinitely many Woodins
 - Supercompact
 - Woodin limit of Woodins
 - Proper Forcing Axiom (PFA)
 - Martin's Maximum (MM)
Strong axioms of determinacy

Keep playing games of length ω and impose additional structural properties on the model.
AD + all sets of reals are Suslin

Being Suslin is a generalization of being analytic. More precisely, a set of reals is *Suslin* if it is the projection of a tree on $\omega \times \kappa$ for some ordinal κ.
Being Suslin is a generalization of being analytic. More precisely, a set of reals is Suslin if it is the projection of a tree on $\omega \times \kappa$ for some ordinal κ.

Theorem (Woodin, Derived model construction, 1980’s)

Suppose there is a cardinal λ that is

- a limit of Woodin cardinals, and
- a limit of $<\lambda$-strong cardinals.

Then there is a model of

\[\text{“AD + all sets of reals are Suslin”}. \]

Is this optimal?
AD + all sets of reals are Suslin

Being Suslin is a generalization of being analytic. More precisely, a set of reals is Suslin if it is the projection of a tree on $\omega \times \kappa$ for some ordinal κ.

Theorem (Woodin, Derived model construction, 1980's)

Suppose there is a cardinal λ that is
- a limit of Woodin cardinals, and
- a limit of $<\lambda$-strong cardinals.

Then there is a model of

"AD + all sets of reals are Suslin".

Theorem (Steel, 2008)

This is optimal.
A further strengthening: universally Baire sets

Definition (Schilling-Vaught, Feng-Magidor-Woodin)
A subset A of a topological space Y is universally Baire if $f^{-1}(A)$ has the property of Baire in any topological space X, where $f: X \to Y$ is continuous.
A further strengthening: universally Baire sets

Definition (Schilling-Vaught, Feng-Magidor-Woodin)

A subset A of a topological space Y is universally Baire if $f^{-1}(A)$ has the property of Baire in any topological space X, where $f: X \to Y$ is continuous.

Being universally Baire is a strengthening of being Suslin:
A further strengthening: universally Baire sets

Definition (Schilling-Vaught, Feng-Magidor-Woodin)
A subset A of a topological space Y is universally Baire if $f^{-1}(A)$ has the property of Baire in any topological space X, where $f : X \to Y$ is continuous.

Being universally Baire is a strengthening of being Suslin:

Definition
Let (S, T) be trees on $\omega \times \kappa$ for some ordinal κ and let Z be any set. We say (S, T) is Z-absolutely complementing iff $p[S] = \omega \omega \setminus p[T]$ in every $\text{Col}(\omega, Z)$-generic extension of V.
A further strengthening: universally Baire sets

Definition (Schilling-Vaught, Feng-Magidor-Woodin)
A subset A of a topological space Y is universally Baire if $f^{-1}(A)$ has the property of Baire in any topological space X, where $f : X \to Y$ is continuous.

Being universally Baire is a strengthening of being Suslin:

Definition
Let (S, T) be trees on $\omega \times \kappa$ for some ordinal κ and let Z be any set. We say (S, T) is Z-absolutely complementing iff $p[S] = \omega \omega \setminus p[T]$ in every $\text{Col}(\omega, Z)$-generic extension of V.

Definition (Feng-Magidor-Woodin)
A set of reals A is universally Baire (uB) if for every Z, there are Z-absolutely complementing trees (S, T) with $p[S] = A$.
Can all sets be universally Baire?

Is there a model of determinacy in which all sets are universally Baire?
Can all sets be universally Baire?

Is there a model of determinacy in which all sets are universally Baire?

Theorem (Larson-Sargsyan-Wilson, 2014)

Suppose there is a cardinal λ that is
- a limit of Woodin cardinals, and
- a limit of (fully) strong cardinals.

Then there is a model of

“$\text{AD} + \text{ all sets of reals are universally Baire}$”.

Sandra Müller (TU Wien)
Can all sets be universally Baire?

Is there a model of determinacy in which all sets are universally Baire?

Theorem (Larson-Sargsyan-Wilson, 2014)

Suppose there is a cardinal λ that is

- a limit of Woodin cardinals, and
- a limit of (fully) strong cardinals.

Then there is a model of

"AD + all sets of reals are universally Baire".

Conjecture (Sargsyan)

This is optimal.
Sargsyan’s conjecture holds

Theorem (M, 2021)

Suppose there is a proper class model of

“\(\text{AD} \ + \ \text{all sets of reals are universally Baire} \)”.

Then there is a transitive model \(\mathcal{M} \) of ZFC containing all ordinals such that \(\mathcal{M} \) has a cardinal \(\lambda \) that is

- a limit of Woodin cardinals, and
- a limit of (fully) strong cardinals.
Sargsyan’s conjecture holds

Theorem (M, 2021)

Suppose there is a proper class model of

“\(\text{AD} + \) all sets of reals are universally Baire”.

Then there is a transitive model \(\mathcal{M} \) of ZFC containing all ordinals such that \(\mathcal{M} \) has a cardinal \(\lambda \) that is

- a limit of Woodin cardinals, and
- a limit of (fully) strong cardinals.

The proof is based on a new translation procedure to translate iteration strategies in hybrid mice into large cardinals. This extends work of Steel, Zhu, and Sargsyan.
How far are these axioms from ZFC?

Consider hierarchies of these axioms and compare their strength.

Determinacy

Analytic → Measurable → Finitely Many Woodins

Projective → Infinitely Many Woodins → Limit of Woodins + Strong

AD → Supercompact → Martin's Maximum (MM)

AD + All Sets nB → Proper Forcing Axiom (PFA)

Large Cardinals

Forcing Axioms

"Steel's Program"
How far are these axioms from ZFC?

Consider hierarchies of these axioms and compare their strength.

Determinacy Axioms

Steel's Program

How do we construct models of determinacy?

- AD
- Projective
- Analytic
- AD + all sets nB

Determinacy

- Supercompact
- Woodin limit of Woodins
- Martin's Maximum (MM)
- Proper Forcing Axiom (PFA)

Large Cardinals

- Limit of Woodins + strongs
- Infinitely many Woodins

Forcing Axioms

- Finitely many Woodins
- Measurable
Derived models of determinacy

We say a model M is a derived model if it is of the following form:

\[
\bigcup_{d<\omega} \mathcal{R} \cap \mathcal{V}(\mathcal{G}(\alpha))
\]

\[
\Hom_{\gamma} = \{ A \subseteq \omega \mid A \text{ is non-surj} \}
\]

\[
\Hom^* = \{ A^x \mid x \in 2 \gamma \} \quad A \in (\text{Hom}_{\omega})_{\text{reg}}
\]

In this setting, $L(\mathcal{R}^*, \Hom^*) = AD^+$
Woodin showed that all models of AD^+ are elementarily equivalent to a model of AD^+ that can be obtained as a derived model.
Woodin showed that all models of AD^+ are elementarily equivalent to a model of AD^+ that can be obtained as a derived model.

To useful representation for the uB sets.

Theorem (Sargsyan-M, 2022)

Let κ be a supercompact cardinal and suppose there is a proper class of Woodin cardinals. Let $g \subseteq \text{Col}(\omega, 2^\kappa)$ be V-generic, h be $V[g]$-generic and $k \subseteq \text{Col}(\omega, 2^\omega)$ be $V[g \ast h]$-generic. Then, in $V[g \ast h \ast k]$, there is $j : V \to M$ such that $j(\kappa) = \omega_1^{M[g \ast h]}$ and $L(\Gamma_{g \ast h}^\infty, R_{g \ast h})$ is a derived model of M, i.e., for some M-generic $G \subseteq \text{Col}(\omega, <\omega_1^{V[g \ast h]})$,

$$L(\Gamma_{g \ast h}^\infty, R_{g \ast h}) = (L(\text{Hom}^*, R^*))^{M[G]}.$$
Why is this useful?

Definition (Woodin)
Sealing is the conjunction of the following statements.

1. For every set generic g over V, $L(\Gamma^\infty_g, \mathbb{R}_g) \models \text{AD}^+$ and $\mathcal{P}(\mathbb{R}_g) \cap L(\Gamma^\infty_g, \mathbb{R}_g) = \Gamma^\infty_g$.

2. For every set generic g over V and set generic h over $V[g]$, there is an elementary embedding $j: L(\Gamma^\infty_g, \mathbb{R}_g) \rightarrow L(\Gamma^\infty_{g*h}, \mathbb{R}_{g*h})$ such that for every $A \in \Gamma^\infty_g$, $j(A) = A_h$.

Woodin showed this in VEG, $g \in \text{Col}(\omega, \mathbb{R})^+$ + supercompact and.

"Sealing the theory of the uB sets" Our DM-representation gives sealing also for stronger models of determinacy.
Supercompactness in models of determinacy

Conjecture

The following theories are equiconsistent:

1. $\text{ZFC} + \text{there is a Woodin cardinal that is a limit of Woodin cardinals.}$
2. $\text{AD}^R + \Theta \text{ is regular} + \omega_1 \text{ is supercompact.}$
Supercompactness in models of determinacy

Conjecture

The following theories are equiconsistent:

1. $\text{ZFC} + \text{there is a Woodin cardinal that is a limit of Woodin cardinals.}$
2. $\text{AD}_R + \Theta$ is regular $+ \omega_1$ is supercompact.

Theorem (Woodin)

Suppose there is a proper class of Woodin cardinals that are limits of Woodin cardinals. Then there is a model of “$\text{AD}_R + \omega_1$ is supercompact.”
Conjecture

The following theories are equiconsistent:

1. \(\text{ZFC} + \) there is a Woodin cardinal that is a limit of Woodin cardinals.
2. \(\text{AD}_\mathbb{R} + \Theta \text{ is regular } + \omega_1 \text{ is supercompact.} \)

Theorem (Woodin)

Suppose there is a proper class of Woodin cardinals that are limits of Woodin cardinals. Then there is a model of “\(\text{AD}_\mathbb{R} + \omega_1 \text{ is supercompact.} \)”

Theorem (Gappo-M-Sargsyan, 2023)

Suppose there is a Woodin cardinal that is a limit of Woodin cardinals. Then there is a model of “\(\text{AD}_\mathbb{R} + \Theta \text{ is regular } + \omega_1 \text{ is } < \delta_\infty \text{-supercompact} \)” for some \(\delta_\infty > \Theta \).
Chang-type models

Possibilities for strong models of determinacy:

\[
L(C(R))^w, \quad L(A,R) \quad \forall \text{uB set}, \quad L(C(R)[\mu]), \quad L(C(R)\models \text{all uB sets})
\]

\[
L(\text{Ord}^w), \quad L(\text{Ord}^w, \Gamma^w), \quad L(\text{Ord}^w, \Gamma^w, \Gamma^w) \quad \Gamma^w \models \text{Ord}
\]

Conjecture

These models can be represented as derived models (i.e., canonical models of determinacy).
My vision

The connection between determinacy and inner models should continue throughout the large cardinal hierarchy.
The connection between determinacy and inner models should continue throughout the large cardinal hierarchy. It should for example ultimately also yield the exact consistency strength of the Proper Forcing Axiom (PFA).
The Inner Model Program

My vision

The connection between determinacy and inner models should continue throughout the large cardinal hierarchy.

It should for example ultimately also yield the exact consistency strength of the Proper Forcing Axiom (PFA).

The main barrier we are currently facing is a Woodin limit of Woodin cardinals.
Links to the images: