
Computing Non-Repetitive Sequences Using the

Lov�asz Local Lemma

Daniel Mourad

University of Connecticut

Daniel.Mourad@Uconn.edu

Online Logic Seminar

Southern Illinois University

05/04/2023

Introduction and Background

LLL Background

The Lov�asz local lemma (LLL) is a technique from the probabilistic

method for showing the existence of �nite objects.

The original LLL by Erd�os and Lov�asz (1975) is non-constructive.

Finite and non-constructive - at �rst, LLL does not seem useful for

computability theory.

Constructive LLL

Much e�ort was put into constructivising the LLL.

Moser and Tardos (2010) made a breakthrough with their

resampling algorithm.

Constructive but still �nite - one step closer being computable.

LLL Background

Rumyantsev and Shen (2014) used the Moser-Tardos algorithm to

prove an e�ective version of the LLL (CLLL).

CLLL has been used in the reverse math of combinatorial theorems

(Liu, Monin, and Patey, 2018; Csima, Dzhafarov, Hirschfeldt,

Jockusch, Solomon, and Westrick, 2019; Hirschfeldt and Reitzes,

2022)

Goals

What else can CLLL be used for?

Can generalizations of the LLL also be e�ectivised?

We will e�ectivise combinatorial theorems proven using LLL but which

fall outside of the scope of CLLL. To do this, we will use a \lefthanded"

version of the CLLL based on a \lefthanded" version of the LLL.

Lov�asz Local Lemma

Pr(A) � z(A)
∏

B2Γ(A)

(1� z(B)):

Figure: The main condition of the LLL (not important for this talk!).

The Probabilistic Method

The Probabilistic Method is a technique from combinatorics for

showing existence results.

Suppose you want to show that there is an X 2 F with the property

P. Then,
1 Specify a way to \randomly choose" a Y 2 F .

2 Show that the Pr(Y has property P) > 0.

3 Therefore, there is a X 2 F with property P.

Example: If F is the class of binary strings of size n, we can \randomly

choose" a Y 2 F by
ipping a coin for each entry of the string.

Mutually Independent Events

Suppose that A = fA1;A2; : : :Arg is a �nite set of \bad" events that we

wish to avoid.

If the bad events are mutually independent and each has positive

probability to be false, then they have positive probability to all be false.

Pr

(⋂
A2A

A

)
=
∏
A2A

Pr
(
A
)
> 0

In particular, Pr
(⋂

A2A(Ā)
)
> 0 implies that it is nonempty as a set.

The LLL generalizes this by allowing dependence within A in exchange

for stricter requirements on their probabilities.

Pr(A) � z(A)
∏

B2Γ(A)

(1� z(B)):

Mutually Independent Events

Suppose that A = fA1;A2; : : :Arg is a �nite set of \bad" events that we

wish to avoid.

If the bad events are mutually independent and each has positive

probability to be false, then they have positive probability to all be false.

Pr

(⋂
A2A

A

)
=
∏
A2A

Pr
(
A
)
> 0

In particular, Pr
(⋂

A2A(Ā)
)
> 0 implies that it is nonempty as a set.

The LLL generalizes this by allowing dependence within A in exchange

for stricter requirements on their probabilities.

Pr(A) � z(A)
∏

B2Γ(A)

(1� z(B)):

The Lov�asz Local Lemma

Lemma (Erd}os and Lov�asz, 1975)

Let A = fA1;A2; :::;Ang be events in an arbitrary probability space. Let

Γ(Ai) � A be such that Ai is mutually independent of all Aj 62 Γ(Ai).
If the probabilities of each Ai 2 A are small enough relative to the size

Γ(Ai), then

Pr

(⋂
A2A

A

)
> 0

Remark: To be precise, \small enough relative to the sizes of the Γ(A)",
means that there exists a function z : A ! R such that for each Ai 2 A,

Pr(Ai) � z(Ai)
∏

B2Γ(Ai)

(1� z(B)):

Satis�ability of Sentences in Conjunctive Normal Form

A crucial application of the LLL is to satis�ability of propositional

formulas in conjunctive normal form.

Fix propositional variables x1; x2; x3; ::: with values ranging over fT;Fg.

De�nition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF) if it is a (possibly

countable) conjunction of disjunctive clauses over the xi and :xi .

Example

C1 � (x3 _ :x7 _ x9 _ x10) ^ (:x1 _ x2 _ x3) ^ (:x9) is a CNF with three

clauses.

The length of a clause is the number of xi in the clause. If two clauses

share a variable, then they are called neighbors. A CNF is considered

satis�able if there is a valuation of the xi which makes it true.

CNF Examples

Example

C2 � (x1) ^ (:x1 _ x2) ^ (:x1 _ :x2) is a CNF that is not satis�able.

Example

C3 �
∧
1

n=1(x2n _ x2n+1 _ x2n+2) = (x2 _ x3 _ x4)^ (x4 _ x5 _ x6)^ : : : is a
CNF with countably many clauses, each with length 3 and, except for

the �rst clause, exactly 2 neighbors each.

Example

The compactness theorem of propositional logic states that any in�nite

non-satis�able CNF has a non-satis�able �nite initial segment.

CNFs and LLL

Example

Let m > 3. A �nite CNF such that each clause is of length at least m

and has at most 2m�2 many neighbors is satis�able.

Proof (sketch).

Let F be the set of valuations of the propositional variables.

Let Pr(xi) = 1=2 for each propositional variable xi .

Let Ai = fthe i 'th clause is falseg: Then, Pr(Ai) �
1
2m
:

Let Γ(Ai) = fAj : the i 'th and j 'th clauses are neighborsg.

To use the LLL, show that each Pr(Ai) is \small enough" compared

to the size (and probabilities) of its neighborhood.

The Resample Algorithm: Constructive and

Computable Lov�asz Local Lemma

Figure: Bad events are monochromatic triangles.

Local Lemma Setup (Variable Context)

Algorithmic versions of the LLL bene�t from a variable context, although

there are generalizations beyond it (Harvey and Vondrak, 2020).

The variable context consists of

The set A = fA1;A2; : : :Arg of \bad" events.

CNF: Ai is the event that the i 'th clause is false.

A set X = fx1; x2; : : : xM�1g of mutually independent discrete
random variables with �nite ranges.

CNF: xi is the i 'th propositional variable with

Pr(xi = T) = Pr(xi = F) = 1=2

For each Ai 2 A a variable set vbl(Ai) � X such that truth of Ai is
completely determined by the valuation of the variables in vbl(Ai).

CNF: vbl(Ai) is the set of variables present in the i 'th clause.

Ai 2 Γ(Aj) if the i 'th clause and the j 'th clause share a variable.

Moser-Tardos Algorithm

The resample algorithm tries to �nd a valuation of

X = fx0; x1; : : : ; xM�1g that makes each A 2 A false.

When A 2 A is true, the resample algorithm takes fresh new

samples of vbl(A) � X and keeps the other variables the same.

If multiple bad events are true, the decision of which gets resampled

�rst does not matter.

Once all of the bad events are false, the resample algorithm halts.

Example Stage

Suppose we are applying the resample algorithm to

C = (:x1 _ x2) ^ (x2 _ :x3) ^ (x1 _ x3):

Let Ai be the event that i 'th clause is false. We say that Ai is good if

the i 'th clause is true (so Ai is good if it is false).

Example

Suppose the initial valuation is (x1; x2; x3) = (F ;F ;T).
Then, A1 is good, A2 is bad, and A3 is good.

We resample one of the bad events: we can only pick A2.
vbl(A2) = fx2; x3g, so we
ip new coins for x2 and x3.

Suppose the result is (x1; x2; x3) = (F ;F ;F).
Now, A2 is now good!

However, A3 became bad. In the next stage, we will resample it.

Runtime

Theorem (Moser and Tardos, 2010)

If the set of events A satis�es the hypothesis of the LLL, then, with

probability 1, the resample algorithm halts on an assignment of the

x0; x1; : : : ; xM�1 that makes each A 2 A false.

Furthermore, the expected value of the halting time � for the resample

algorithm is \basically" linear in the size of A.

By \basically" linear, we mean that

E(�) �
∑
A2A

z(A)

1� z(A)

so it is linear if there is a maximum value on Pr(A).

Computable LLL

In�nite LLL

Theorem (Beck, 1984)

Let A, X = fx0; x1; : : : g form a variable context such that he variable

set vbl(A) is �nite for each A 2 A.

Then, if each �nite subset of A satis�es the conditions of the LLL, we

have that there exists a valuation of X making each A 2 A false.

By the LLL, for each M, there is a valuation of

XM = fx0; x1; : : : ; xM�1g that makes each relevant A 2 A false

(relevant meaning that vbl(A) � XM).

These �nite valuations form an in�nite �nitely branching tree.

By K�onigs lemma, this tree has a path. This path is the required

valuation. By low basis theorem (Jockusch and Soare, 1972), there

is a path with low Turing degree.

Question

Is there an algorithm which e�ectivizes this use of K�onig's Lemma?

Computable Local Lemma Setup

Let X = fx1; x2; : : : g be a countable set of random variables with

�nite ranges.

Let A = fA1;A2; : : : g be a countable set of events such that

Each A 2 A is determined by a �nite set of variables vbl(A) � X .

? For each A 2 A, the set of neighbors

Γ(A) = fB 2 A : vbl(A) \ vbl(B) 6= ;g is �nite.

? For each xi , fAj : xi 2 vbl(Aj)g is �nite.

Along with some reasonable computability conditions (can you think of

what is required?).

Computable Lov�asz Local Lemma

Theorem (Computable Local Lemma (CLL) Rumyantsev and

Shen, 2014)

Under the previously stated conditions, if the neighborhoods of events in

A is small enough compared to their probabilities, then there is a

computable assignment of the x0; x1 : : : which makes each Ai 2 A false.

Proof Sketch: Computable Lov�asz Local Lemma

First, we note that the in�nitary resample algorithm behaves analogously

to the �nite case.

Lemma (Rumyantsev and Shen, 2014)

Given the conditions of the CLLL,

Pr(All xi are resampled �nitely many times each) = 1:

Furthermore, let yi be the �nal value of xi . Then,

Pr(The valuation y0; y1; y2 : : : makes each A 2 A false) = 1:

However, at a �xed stage s, we cannot guarantee that any xi does not

get resampled after stage s, so we cannot compute y0; y1; y2 : : : .

Proof Sketch: Computable Lov�asz Local Lemma

Lemma (Rumyantsev and Shen, 2014)

There is a computable function f : !2 ! Q such that

Pr(xi is resampled after stage s) � f (i ; s)

and lims!1 f (i ; s) = 0 for every i .

To compute initial segment y0; : : : ; yM�1 of a witness to the in�nite LLL,

Simulate the resample algorithm for every possible result of each

resampling of each xi up to the required use.

Do this for a large enough number of steps s to approximate the

probability distribution on the �nal values y0; : : : ; yM�1.

Pick a valuation of y0; : : : yM�1 that has approximate probability

greater than
∑M

i=1 f (i ; s).

Applications of CLLL

The CLLL has been used to show that there are computable colorings

c : ! ! f0; 1g such that (not simultaneously)

each HT=2 solution to c is DNC relative to 00 (CDHJSW, 2019).

each thin-HT=2 solution to c is DNC relative to 00 (Hirschfeldt and

Reitzes, 2022).

each OVW(2; 2)-solution to c is DNC relative to 00 (Liu, Monin, and

Patey, 2018), with c interpreted as coloring c : 2<! of �nite binary

strings.

Non-Repetitive Sequences

a0a1a2:::a11 = 011010010001;

Figure: An example of repetition in binary sequence.

Beck's Theorem

J�osef Beck (1984) used the in�nite LLL to prove the existence of certain

types of non-repetitive sequences.

Theorem (M.)

Beck's theorem is computably true.

Proof method:

CLLL is the natural �rst choice. However, Beck's theorem does not

satisfy the conditions.

We develop a lefthanded version of the CLLL based on Pegdens

(2011) lefthanded version of the LLL.

Repetition

Example

In the string

a0a1a2:::a11 = 011010010001;

the only pair of identical blocks of size 4 are [3; 7) and [6; 10).

Question

How non-repetitive can an in�nite binary sequence be?

Forced Repetition

Given any sequence, there is a hard minimum on how long you need to

look before you �nd two identical blocks of �xed length n.

Proof:

There are exactly 2n + 1 many blocks of length n between

[k ; k + n) and [k + 2n; k + 2n + n) .

: : :

ak ak+n ak+2n ak+2n+n

There are 2n many binary sequences of length n.

By pigeonhole principle, two of the blocks must be identical.

Hence there will always be a repetition of a block of length n within

distance 2n.

Beck's Theorem

If you only care about long sequences, these repetitions can be forced to

be almost as far apart as possible.

Theorem (Beck, 1984)

For each " > 0 there is an N" and an in�nite f0; 1g-valued sequence such

that any two identical blocks

[k ; k + n) and [`; `+ n)

of length n > N" have distance

`� k > (2� ")n:

: : :

ak ak+n a` a`+n

Proof Sketch

Theorem (Beck, 1984)

For each " > 0 there is an N" and an in�nite f0; 1g-valued sequence such

that any two identical blocks [k ; k + n) and [`; `+ n) of length n > N"

have distance `� k greater than (2� ")n.

Let Ak;`;n = A[k;k+n];[`;`+n) be the event that [k ; k + n) is identical
to [`; `+ n).

A[k;k+n);[`;`+m) 2 A if and only if k < ` < k + (2� ")n.

Let the random variable xi represent the value of the i 'th entry.

Pr(xi = 1) = Pr(xi = 0) = 1

2
for all i .

vbl(A[k;k+n);[`;`+n)) = [k ; k + n) [[`; `+ n).

Now apply the in�nite LLL.

To e�ectivise: try using CLLL.

Unsatis�ed Conditions

The conditions of the CLLL do not hold for Beck's theorem!

The CLLL requires that each xi can be resampled by �nitely many of the

A 2 A.

However, xi can be resampled in�nitely many events.

Fix k . The xk 2 vbl(A[k;k+n);[`;`+n)) for all n large enough relative to

`.

We do not have probability 1 that each xi is resampled �nitely many

times.

Idea: Why bother resampling [k ; k + n)?

Modi�ed Resample Algorithm: Lefthanded

Computable Local Lemma

Modi�ed Resample Algorithm for Non-repetitive

Sequences

We can �x this problem by only resampling the rightmost of a pair of

identical intervals; If A[k;k+n);[`;`+n) is true, only resample

rsp(A[k;k+n);[`;`+n)) := [`; `+ n):

011010010001

Figure: rsp
(
A[3;7);[6;10)

)
= [6; 10).

We also leverage the order of resampling.

At each stage, resample A[k0;k0+n0);[`0;`0+n0) 2 A such that `0 is minimal

among true A[k;k+n);[`;`+n) 2 A.

Example Stage (Lefthanded Resample Algorithm)

Recall that A[k;k+n);[`;`+n) denotes the \event" that [k ; k + n) and
[`; `+ n) are identical. A denotes the set of such events whose intervals

are too close together.

Example

Suppose that A[3;7);[10;14);A[0;4);[5;9) 2 A. If the current valuation is

a0; a1; :::; a13 = 01101001010100;

then A[3;7);[10;13) is true. So, the lefthanded resample algorithm takes

new random samples for each of the underlined entries. A possible result

(with probability 2�4) is

a0; a1; :::; a13 = 01101001010111:

Resampling A[3;7);[10;14) cannot cause A[0;4);[5;9) to go from false (good)

to true (bad).

Modi�ed Resample Algorithm: General Case

Start with the conditions of the computable LLL.

For each A 2 A, split vbl(A) into sets stc(A) and rsp(A) such that

max(stc(A)) < min(rsp(A)).

rsp(A) is an interval.

vbl(A) � (rsp(A) [stc(A)).

Prioritize the left-most true event. If

max(rsp(A)) < max(rsp(B))

then prioritize A before B.

When A is true and of maximal priority, only resample the

x 2 rsp(A) and keep the x 2 stc(A) the same.

De�ne Γrsp(A) = fB : rsp(A) \ rsp(B) 6= ;g.

Theorem (Lefthanded Computable Lov�asz Local Lemma (LCLLL))

Suppose all the conditions of the CLLL are true, with exceptions that

Need that xi in �nitely many rsp sets, instead of needing xi in �nitely

many vbl sets.
Replace the LLL condition by

P�(A) � �z(A)
∏

B2Γrsp(A)

(1� z(B))

for some function P�(A) such that for each valuation � of the

variables in stc(A),

P�(A) � Pr(Ajx = �(x) for all x 2 stc(A)):

Then, there is a computable assignment of the variables in X which

makes each event in A false.

Applications

The LCLLL allows us to e�ectivise Beck's Theorem.

Theorem (E�ective Version of Beck's Theorem)

There are witnesses to Beck's theorem uniformly computable in ". That

is, there is a computable function q such that Φq(n) computes a

non-repetitive sequence for " = 1=n.

Another Application

The LCLLL can also compute sequences whose adjacent intervals are

very di�erent. The following is an e�ective version of an exercise from

The Probabilistic Method by Alon, Spencer, and Erd}os.

Theorem

There is a computable function q such that Φq(n) computes a witness to

the following statement for " = 1=n.

For each " > 0, there is an N" and a computable f0; 1g-valued sequence

such that any two adjacent intervals of length n > N" have share at most

(1
2
� ")n many entries.

Runtime

We also get the following purely algorithmic extension of Moser and

Tardos' result.

Let � 0M be the �rst stage of the modi�ed resample algorithm at which

A1; : : : ;AM all false.

Theorem

Under the same conditions as the lefthanded computable local lemma,

the expected value of �M is �nite and \basically" linear in M.

Game Versions

Binary Sequence Games

Pegden (2011) studies two player game versions of Beck's theorem.

Binary sequence game:

Two players take turns selecting bits in a binary sequence.

The binary sequence game generates the sequence

a1a2a3a4a5a6 � � � = e1d2e3d4e5d6 : : :

The e's are chosen by player 1

The d 's are chosen by player 2.

Both players have knowledge of all previous bits before playing the

next one.

Strategies Which Force Non-Repetitiveness

Theorem (Pegden, 2011)

For every " > 0 there is an N" such that Player 1 has a strategy in the

binary sequence game ensuring that any two identical blocks of length

n > N" have distance at least f (n) = (2� ")n=2.

To prove this, Pegden develops a version of the LLL called the

lefthanded local lemma. The mechanism it uses and the problem it

solves are similar to LCLLL.

Computably Defeating a Strategy

The LCLLL e�ectivises Pegden's use of the lefthanded local lemma.

Theorem

For every " > 0 there is an N" such that for each player 2 strategy g in

the binary sequence game, there is a g-computable sequence e1e3e5::: of

player 1 moves that when played against g, any two identical blocks of

length n > N" in the resulting sequence have distance at least

f (n) = (2� ")n=2.

Full Strategies

However, Pegden uses these counter-strategies in a (open) determinacy

argument, showing that player 2 cannot have a winning strategy.

Therefore, player 1 has a winning strategy.

E�ectivising the determinacy argument is outside the scope of the

LCLLL.

Further Questions

Are strategies to Pegden's binary sequence games computable?

The determinacy argument can be replaced by a compactness

argument, so we at least know that they form a Π0

1
class.

Are there more applications of the CLLL and the LCLLL?

The LCLLL is a \lefthanded version of the computable local

lemma." Can we get a \computable version of the lefthanded local

lemma?"

E�ective Local Lemma Setup

Let X = fx1; x2; : : : g be a set of random variables with �nite ranges

and

uniformly computable

probability distributions.

Let A = fA1;A2; : : : g be a set of events such that

Each A 2 A is determined by a �nite set of variables vbl(A) � X

and

the truth of A is uniformly computable from any valuation of X

.

The

code numbers for

vbl(Ai)

are uniformly computable with respect

to i

.

For each A 2 A, the set of neighbors

Γ(A) = fB 2 A : vbl(A) \ vbl(B) 6= ;g is �nite.

For each xi , fAj : xi 2 vbl(Aj)g is �nite and

has code number

uniformly computable with respect to i

.

E�ective Local Lemma Setup

Let X = fx1; x2; : : : g be a set of random variables with �nite ranges

and uniformly computable probability distributions.

Let A = fA1;A2; : : : g be a set of events such that

Each A 2 A is determined by a �nite set of variables vbl(A) � X and

the truth of A is uniformly computable from any valuation of X .

The code numbers for vbl(Ai) are uniformly computable with respect

to i .

For each A 2 A, the set of neighbors

Γ(A) = fB 2 A : vbl(A) \ vbl(B) 6= ;g is �nite.

For each xi , fAj : xi 2 vbl(Aj)g is �nite and

has code number

uniformly computable with respect to i

.

E�ective Local Lemma Setup

Let X = fx1; x2; : : : g be a set of random variables with �nite ranges

and uniformly computable probability distributions.

Let A = fA1;A2; : : : g be a set of events such that

Each A 2 A is determined by a �nite set of variables vbl(A) � X and

the truth of A is uniformly computable from any valuation of X .

The code numbers for vbl(Ai) are uniformly computable with respect

to i .

For each A 2 A, the set of neighbors

Γ(A) = fB 2 A : vbl(A) \ vbl(B) 6= ;g is �nite.

For each xi , fAj : xi 2 vbl(Aj)g is �nite and has code number

uniformly computable with respect to i .

Thank you!

References I

Alon, Noga, Joel Spencer, and Paul Erd}os (1992). The Probabilistic

Method. John Wiley & Sons. ISBN: 0-471-53588-5.

Beck, J�ozef (1984). \an Application of Lovasz Local Lemma: There

Exists an In�nite 01-Sequence Containing No Near Identical

Intervals". In: Finite and In�nite Sets 37, pp. 103{107. DOI:

10.1016/b978-0-444-86893-0.50011-5.

Csima, Barbara, Damir Dzhafarov, Denis Hirschfeldt, Carl Jockusch,

Reed Solomon, and Linda Westrick (2019). \The reverse

mathematics of Hindman's Theorem for sums of exactly two

elements". In: Computability 8 (3-4), pp. 253{263. ISSN: 22113576.

DOI: 10.3233/COM-180094.

Erd}os, P. and L. Lov�asz (1975). \Problems and results on

3-chromatic hypergraphs and some related questions". In: In�nite and

�nite sets 2 (2), pp. 609{627.

https://doi.org/10.1016/b978-0-444-86893-0.50011-5
https://doi.org/10.3233/COM-180094

References II

Harvey, Nicholas J.A. and Jan Vondrak (2020). \An algorithmic proof

of the lovasz local lemma via resampling oracles". In: SIAM Journal

on Computing 49 (2), pp. 394{428. ISSN: 10957111. DOI:

10.1137/18M1167176.

Hirschfeldt, Dennis and Sarah Reitzes (2022). \Thin Set Versions of

Hindman's Theorem". In: Submitted.

Jockusch, Carl G. and Robert I. Soare (1972). \
∏0

1 Classes and

Degrees of Theories". In: Transactions of the American Mathematical

Society 173, pp. 33{56. ISSN: 00029947. (Visited on 01/05/2023).

Liu, Lu, Benoit Monin, and Ludovic Patey (2018). \A computable

analysis of variable words theorems". In: Proceedings of the American

Mathematical Society 147 (2), pp. 823{834. ISSN: 0002-9939. DOI:

10.1090/proc/14269.

Moser, Robin A. and G�abor Tardos (2010). \A constructive proof of

the general lov�asz local lemma". In: Journal of the ACM 57 (2),

pp. 1{12. ISSN: 00045411. DOI: 10.1145/1667053.1667060.

https://doi.org/10.1137/18M1167176
https://doi.org/10.1090/proc/14269
https://doi.org/10.1145/1667053.1667060

References III

Pegden, Wesley (2011). \Highly nonrepetitive sequences: Winning

strategies from the local lemma". In: Random Structures &

Algorithms 38 (1-2), pp. 140{161. DOI:

https://doi.org/10.1002/rsa.20354. URL: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20354.

Rumyantsev, Andrei and Alexander Shen (May 2014). \Probabilistic

constructions of computable objects and a computable version of

Lov�asz local lemma". In: Fundamenta Informaticae 132 (1),

pp. 1{14. ISSN: 01692968. DOI: 10.3233/FI-2014-1029. URL:

http://arxiv.org/abs/1305.1535.

https://doi.org/https://doi.org/10.1002/rsa.20354
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20354
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20354
https://doi.org/10.3233/FI-2014-1029
http://arxiv.org/abs/1305.1535

	Introduction and Background
	Lovász Local Lemma
	The Resample Algorithm: Constructive and Computable Lovász Local Lemma
	Computable LLL
	Non-Repetitive Sequences
	Modified Resample Algorithm: Lefthanded Computable Local Lemma
	Game Versions
	References
	General Lovász Local Lemma
	Analysis of the Moser-Tardos Algorithm
	Modifying the Resample Algorithm
	Outlook
	References

