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Title: Iteration problems in symbolic dynamics

Abstract: For X a Polish space, f : X −→ X continuous and k ∈ ω,
write fk for the kth iterate of f , so that for each x ∈ X , f0(x) = x and
fk+1(x) = f(fk(x)). Write ωf (x) for the set of accumulation points of
the forward orbit of x under f , including the periodic points.

Such ω-limit sets are closed in X and under f ; so

(*) y ∈ ωf (x) =⇒ ωf (y) ⊆ ωf (x).

Define Γf on subsets of X by

Γf (X) =
⋃
{ωf (x) | x ∈ X}.

For a ∈ X , define A0(a, f) = ωf (a);Aβ+1(a, f) = Γf (Aβ(a, f)).

By (*)A0(a, f) ⊇ A1(a, f) ⊇ A2(a, f) . . . so setAλ(a, f) =
⋂
ν<λA

ν(a, f)

for limit λ > 0; then for all ordinals α < β =⇒ Aα(a, f) ⊇ Aβ(a, f).

DEFINITION θ(a, f) =df the least θ with Aθ(a, f) = Aθ+1(a, f).

The question raised by the Dynamics Group in Barcelona in 1993 was :
what are the possible values of the function θ(a, f) ?

I showed in [2a] that for f the shift function defined in [1], all count-
able ordinals are possible values of θ(a, f), and whilst in Barcelona I
repeatedly attempted to prove that no uncountable ordinal is.

But a note from David Fremlin refuting a related conjecture of mine
showed me that I had been barking up the wrong tree, and starting from a
refinement of Fremlin’s argument, I was led in Réunion in 2001 to develop
an extremely difficult new iteration method which led to my proof that,
again for f the shift function, there are points a with θ(a, f) = ω1; indeed
there are recursive such a.

In today’s talk I shall recall ideas from [2a] and prepare the iteration
method of [2c]; next week I shall complete the construction of recursive a
with θ(a, f) = ω1, and then, to encourage young researchers to seek new
applications of my iteration method, I shall review related open questions.

Of the papers fully listed in the handout, central to these two talks are

[1] LL. ALSEDÀ, M. CHAS, J. SMÍTAL, The structure of the ω-limit sets
[2a] A. R. D. MATHIAS, Delays, recurrence and ordinals
[2c] A. R. D. MATHIAS, Analytic sets under attack

[6a, b, c] C. DELHOMMÉ, unpublished papers on the shift’s attacks.
[7] Andreas BLASS, Ultrafilters: where topological dynamics = algebra =

combinatorics. Topology Proc. 18 (1993), 33–56.



In 1993, I found it paid to define this binary relation, where d is the metric
of the space X :

xyf y ⇐⇒df ∀m > 0 ∃` > m d(f `(x), y) < 1
m .

Then ωf (x) = {y | xyf y}.
When f is fixed in a discussion, we write x y y for x yf y, and we

sometimes write y x x for xy y. We read xy y as “x attacks y”.

PROPOSITION If xy y and y y z then xy z.

DEFINITION The escape set or boundary is the union over all ordinals β
of the set of those points in ωf (a) eliminated at stage β of the iteration:

E(a, f) =df

⋃
β

(
Aβ(a, f) rAβ+1(a, f)

)
.

Here X r Y is the set-theoretic difference {x | x ∈ X and x /∈ Y }.
DEFINITION For x ∈ E(a, f), we write β(x, a, f) for the unique β with
x ∈ Aβ(a, f) rAβ+1(a, f).

In [2a] I used descriptive set theory to show that β(x, a, f) is always
countable. It follows that θ(a, f), the least ordinal θ with Aθ(a, f) =
Aθ+1(a, f), is at most ω1. We call θ(a, f) the f -score of a.

DEFINITION We writeA(a, f) forAθ(a,f)(a, f). We callA(a, f) the abode.

Thus E(a, f) = ωf (a)rA(a, f). We say that points in A(a, f) abide,
and points in E(a, f) escape.

We write N for Baire space, the space of infinite sequences of natural
numbers: for each finite such sequence r we have the basic open set {α |
α � `h(r) = r}. The (backward) shift function s : N −→ N is given by
s(α)(n) = α(n + 1). As in section 4 of Delays we write ζ . ξ, read ζ is
near to ξ, if ζ = sn(ξ) for some n > 0.

In [2a] I constructed for each α < ω1 a point in N of score exactly α.
Five years later, in [2c], when in Réunion, I constructed a recursive point
in N of score ω1.

My methods did not adapt well to s on the Cantor space and my
Réunionnais colleague Christian Delhommé in [6a, b, c] found a much
better treatment of the compact case.

Later my research student Cédric Machefert started to examine the
notion of uniform attack corresponding to the notion of uniform recur-
rence, but he died before he could finish. In studying that notion, the
paper [7] of Andreas Blass is hugely helpful.

My work often requires metrizability of the space but not compact-
ness; Blass often needs compactness but not metrizability.
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