A criterion for internality of some differential equations

Léo Jimenez, joint with Christine Eagles

September 12, 2024

Parametrizing solutions of differential equations

Consider two complex numbers a and b, and the very basic differential equations:

$$
y' = a
$$

$$
y' = by
$$

the solution sets can be parametrized as:

$$
\blacktriangleright \{y_0+c, c\in \mathbb{C}\}
$$

$$
\blacktriangleright \{cy_1, c \in \mathbb{C}\}
$$

where y_0 , y_1 are particular solutions of the equations. Or even:

$$
\begin{aligned}\n &\blacktriangleright \{at + c, c \in \mathbb{C}\} \\
 &\blacktriangleright \{ce^{bt}, c \in \mathbb{C}\}\n \end{aligned}
$$

Systems of equations

$$
\begin{cases}\ny'_1 = y_1 \\
y'_2 = iy_2 \\
z' = 6\n\end{cases} \Rightarrow \begin{cases}\ny_1 \in \{c_1 e^t, c_1 \in \mathbb{C}\} \\
y_2 \in \{c_2 e^{it}, c_2 \in \mathbb{C}\} \\
z \in \{6t + d, d \in \mathbb{C}\}\n\end{cases}
$$

Any three solutions are algebraically independent, so we get three independent parametrizations. Three particular solutions, e^t, e^{it} and t, are needed.

$$
\begin{cases}\ny'_1 = 2y_1 \\
y'_2 = 4y_2 \\
z'_1 = 3\n\end{cases}\n\Rightarrow\n\begin{cases}\ny_1 \in \{c_1e^{2t}, c_1 \in \mathbb{C}\} \\
y_2 \in \{c_2e^{4t}, c_2 \in \mathbb{C}\} \Rightarrow y_2 = \frac{c_2}{c_1^2}y_1^2 \\
z_1 \in \{3t + d_1, d_1 \in \mathbb{C}\} \\
z_2 \in \{6t + d_2, d_2 \in \mathbb{C}\} \Rightarrow z_2 = 2z_1 + d_2 - 2d_1\n\end{cases}
$$

Only two functions, e^t and t, are needed to parametrize the set of solutions.

More complicated example

$$
\begin{cases}\ny' = \frac{yz}{y+z} \\
z' = -\frac{yz}{y+z}\n\end{cases} \Rightarrow \begin{cases}\ny \in \left\{\frac{ce^x}{e^x - d}, c \in \mathbb{C}, d \in \mathbb{C}^*\right\} \\
z = c - y\n\end{cases}
$$

So we can still parametrize the solutions as rational functions of e^x , but not in a linear way. This is because this system is in (non-linear) bijection with a linear system:

$$
\begin{cases}\ny' = \frac{yz}{y+z} \\
z' = -\frac{yz}{y+z}\n\end{cases} \Rightarrow\n\begin{cases}\nu = \frac{y}{z} \\
v = y + z\n\end{cases} \Rightarrow\n\begin{cases}\nu' = u \\
v' = 0\n\end{cases}
$$

Our goal

Consider some system of differential equations of the general form:

$$
\begin{cases}\ny'_1 = f_1(y_1, \dots, y_n) \\
\vdots \\
y'_n = f_n(y_1, \dots, y_n)\n\end{cases}
$$

where $f_i \in \mathbb{C}(x_1, \dots, x_n)$.

What we saw: it is possible for solutions of such a system to be in rational bijection with solutions of a linear system. In that case, we obtain a rational parametrization by "transferring" the linear one.

What we'll do: the converse is true! If such a system has a parametrization using rational functions, then it must be in rational bijection with a linear system.

How a model theorist thinks about this

We want a convenient structure to work with differential equations.

Bare minimum: differential fields of characteristic zero, i.e. fields equipped with a differential δ that is additive and satisfies Leibniz's rule $\delta(ab) = \delta(a)b + a\delta(b)$. We will often denote $\delta(a) = a'$.

The theory of differential fields of characteristic zero has a model companion, which is the theory $\rm DCF_0$ of differentially closed fields.

Concretely, this means that if $K \models \mathrm{DCF}_0$ and some finite system of differential (in)equations, defined over some parameters $A \subset K$, has a solution in some differential field extension $K < L$, then it has a solution in K .

 DCF_0 has quantifier elimination: any formula is equivalent to a boolean combination of differential equation and inequations.

Types in DCF_0

It will be more convenient to work with types, instead of definable sets. Fix some $M \models \text{DCF}_0$.

Definition

Given $b \in M$ and $A \subset M$, the type of b over A is the set of all formulas, with parameters in A, that are satisfied by b. We denote it tp (b/A) . In general, a type p over A is a maximal consistent set of formulas with parameters in A. We let $S(A)$ be the set of types over A.

By quantifier elimination, tp(b/A) is just the set of differential equations and inequations, with parameters in A , satisfied by b .

An important example

We will care about systems of the form:

$$
\begin{cases}\ny'_1 = f_1(y_1, \dots, y_n) \\
\vdots \\
y'_n = f_n(y_1, \dots, y_n)\n\end{cases}
$$

where the f_i are rational functions.

Such a system has a generic type p : this is the type of some a_1, \dots, a_n satisfying these equations, but no other non-trivial differential equation.

Because the differential equations have order one, this means simply no polynomial equation.

Fixing some model

For the rest of the talk, I will fix some monster model $U \models \text{DCF}_0$, or equivalently, a model that is homogeneous and saturated in its own cardinality.

Concretely, if $A \subset U$ and $|A| < |U|$, then for any $p \in S(A)$:

- \triangleright the set of realizations of p in U, i.e. elements of U satisfying all formulas in p , is non-empty. We denote it $p(\mathcal{U})$, and write $a \models p$ for $a \in p(\mathcal{U})$.
- ▶ if $b \in p(\mathcal{U})$, then $p(\mathcal{U})$ is the orbit of b under the action of Aut (\mathcal{U}/A) .

To define what I mean by "parametrizing", I need the ∅-definable set of constants:

$$
\mathcal{C} = \{x \in \mathcal{U}, \delta(x) = 0\}
$$

Thinking $\mathcal{C} = \mathbb{C}$ is fine.

$Rational$ parametrization $=$ Internality

F will always be an algebraically closed differential field.

Definition A type $p \in S(F)$ is C-internal if there are \blacktriangleright a_1, \cdots, a_n realizations of p **•** an *F*-definable function $f(x_1, \dots, x_n, y_1, \dots, y_m)$ such that for all $a \models p$, there are $c_1, \dots, c_m \in \mathcal{C}$ with: $a = f(a_1, \dots, a_n, c_1, \dots, c_m)$

If we replace f with a one-to-finite correspondence, then we say p is almost C-internal.

What we want

Question

Is there a criterion to determine whether a type $p \in S(F)$ is almost C-internal?

We think of types as representing generic solutions of a differential equations. We will examine systems of the form:

$$
\begin{cases}\ny'_1 = f_1(y_1, \dots, y_n) \\
\vdots \\
y'_n = f_n(y_1, \dots, y_n)\n\end{cases}
$$

where the $f_i \in F(x_1, \dots, x_n)$ and F is a field of constants.

A general system may have some polynomial equations between the y_i . We will not deal with this more general case.

Binding groups

Internal types are structured by the following theorem:

Theorem

If $p \in S(F)$ is C-internal, then the group action of restrictions to $p(\mathcal{U})$ of automorphisms of $\mathcal U$ is isomorphic to an F-definable group action.

It is called the binding group of p, and denoted $Aut_F(p/\mathcal{C})$.

Moreover, the group $Aut_F (p/\mathcal{C})$ is definably isomorphic to $G(\mathcal{C})$, for some algebraic group G.

Key properties:

- \triangleright if Aut_F (p/C) acts transitively, we say p is weakly C-orthogonal.
- \triangleright if Aut_F (p/C) acts freely (i.e. without fixed point), we say p is fundamental.

Weakly orthogonal and fundamental

Fact (Kolchin, model-theoretic translation by Jaoui-Moosa)

Let $p \in S(F)$ be a C-internal, weakly C-orthogonal and fundamental type. Then there is an algebraic group G defined over $F \cap C$ such that p is interdefinable (i.e. in F-definable bijection) with the generic type q of the solution to a full logarithmic differential equation on G over F.

Aut_F(p/C) must be definably isomorphic to $G(C)$

What we can do:

- (A) reduce to weakly C-orthogonal and fundamental types
- (B) control what G can appear as a binding group
- (C) write concrete equations for the solution to a full logarithmic differential equation
- (D) use interdefinability to obtain an explicit condition for internality

(B) Linear binding groups are abelian

We will only need the two most basic algebraic groups:

$$
\blacktriangleright G_a(\mathcal{C})=(\mathcal{C},+),
$$

 \blacktriangleright $G_m(\mathcal{C}) = (\mathcal{C} \setminus \{0\}, \cdot).$

Fact

Let F be a field of constants and $p \in S(F)$ be an internal, weakly C-orthogonal type. If $Aut_F(p/\mathcal{C})$ is linear, then it is isomorphic to $G_m(\mathcal{C})^k \times G_a(\mathcal{C})^l$, where $k \in \mathbb{N}$ and $l \in \{0,1\}$.

The action of the binding group is always faithful, and a faithful transitive action of an abelian group is always free, i.e. p must be fundamental!

(B) The binding group is linear

Consider p the generic type of some system:

$$
\begin{cases}\ny_1' = f_1(y_1, \dots, y_n) \\
\vdots \\
y_n' = f_n(y_1, \dots, y_n)\n\end{cases}
$$

where the $f_i \in F(x_1, \dots, x_n)$ and F is a field of constants. We see that:

- \blacktriangleright the action of Aut_F (p/C) is definably isomorphic to some birational action of an algebraic group $G(\mathcal{C})$ on the affine space $\mathbb{A}^n(\mathcal{C})$
- $▶$ algebraic geometry \Rightarrow the binding group is linear

By the previous slide, if p is weakly C-orthogonal, then $Aut_F(p/\mathcal{C})$ is definably isomorphic to $\mathsf{G}_m(\mathcal{C})^k\times \mathsf{G}_{\mathsf{a}}(\mathcal{C})^l$ for some $k\in\mathbb{N}$ and $l \in \{0, 1\}.$

(C) Logarithmic differential equations

To summarize: let F be a field of constants, and $p \in S(F)$ be a C-internal, weakly C-orthogonal type. Then p is interdefinable with the generic type of a full logarithmic differential equation on $(\mathsf{G}_m)^k \times (\mathsf{G}_{\mathsf{a}})^l$, with $k \in \mathbb{N}$ and $l \in \{0,1\}.$

Such an equation can be expressed by (if $l = 1$):

$$
\begin{cases} z_1' = \lambda_1 z_1 \\ \vdots \\ z_k' = \lambda_k z_k \\ z_{k+1}' = 1 \end{cases}
$$

and fullness is equivalent to the λ_i being Q-linearly independent.

A dimension argument shows that it's either $(\mathit{G}_{m})^{n-1}\times \mathit{G}_{a}$ or $(G_m)^n$, i.e. $k + 1 = n$

(D) What interdefinability gives

Assume we are in the $(\mathit{G}_{m})^{n-1}\times \mathit{G}_{a}$ case.

$$
\begin{cases}\ny'_1 = f_1(y_1, \dots, y_n) \\
\vdots \\
y'_n = f_n(y_1, \dots, y_n)\n\end{cases}\n\xrightarrow{F\text{-definable bijection}\n\begin{cases}\nz'_1 = \lambda_1 z_1 \\
\vdots \\
z'_{n-1} = \lambda_{n-1} z_{n-1} \\
z'_n = 1\n\end{cases}
$$

By quantifier elimination:

the definable bijection is given by rational maps $g_1, \dots, g_{n-1}, h \in F(x_1, \dots, x_n)$ such that:

$$
\begin{cases}\ng_1(y_1,\dots,y_n)'=\lambda_1g_1(y_1,\dots,y_n) \\
\vdots \\
g_{n-1}(y_1,\dots,y_n)'=\lambda_{n-1}g_{n-1}(y_1,\dots,y_n) \\
h(y_1,\dots,y_n)'=1\n\end{cases}
$$

Main theorem in the weakly orthogonal case

Theorem (Eagles-J.)

Let F be an algebraically closed field of constants, some $f_1, \dots, f_n \in F(x_1, \dots, x_n)$ and p the generic type of the system:

$$
\begin{cases}\ny'_1 = f_1(y_1, \dots, y_n) \\
\vdots \\
y'_n = f_k(y_1, \dots, y_n)\n\end{cases}
$$

Then p is almost C -internal and weakly C -orthogonal if and only if there are rational functions $g_1, \dots, g_{n-1}, h \in F(x_1, \dots, x_n)$, \mathbb{O} -linearly independent $\lambda_1, \cdots, \lambda_{n-1} \in F$ with:

$$
\sum_{i=1}^{n} \frac{\partial g_{i}}{\partial x_{i}} f_{i} = \lambda_{j} g_{j} \text{ for all } 1 \leq j \leq n-1,
$$

$$
\sum_{i=1}^{n} \frac{\partial h}{\partial x_{i}} f_{j} = 1.
$$

or some similar equations for the $(G_m)^n$ case.

What about the non-weakly C -orthogonal case?

Example

The generic type of:

$$
\begin{cases}\ny' = \frac{yz}{y+z} \\
z' = -\frac{yz}{y+z}\n\end{cases}
$$

is internal, and not weakly C -orthogonal: $(y + z)' = 0$, so $y + z \in \mathcal{C}$, which must be fixed by the binding group \Rightarrow the binding group does not act transitively.

Non-weak C -orthogonality was witnessed by a definable function $(y, z) \rightarrow y + z$ to C. This is true in general:

Lemma

Let F be an algebraically closed field of constants and $p \in S(F)$. Then there is an F-definable map π : $p \to \pi(p)$ such that $\pi(p)(\mathcal{U}) \subset \mathcal{C}$ and for any $a \models p$, the type tp $(a/\pi(a)\mathcal{F})$ is stationary and weakly C-orthogonal.

(A) Reducing to weakly C-orthogonal: proof idea

Let F be an algebraically closed field of constants and some internal type $p \in S(F)$.

Consider the map π from the previous slide, so for any $a \models p$.

$$
\blacktriangleright \pi(a) \in \mathcal{C}
$$

 \blacktriangleright tp($a/\pi(a)\digamma$) is stationary and weakly C-orthogonal

Then:

- ▶ Aut $_F(p/C)$ is linear \Rightarrow Aut $_{\pi(a)F}(tp(a/\pi(a)F)/C)$ is also linear
- \blacktriangleright tp($a/\pi(a)\digamma$) is a type over constant parameters. We can (modulo technicalities) apply our previous theorem to get rational maps to logarithmic-differential equations on G_m or G_{a}
- $\blacktriangleright \pi$ is also given by rational maps, we can pick them to be algebraically independent elements of $F(x_1, \dots, x_n)$

Theorem (Eagles-J.)

The generic type p of the system:

$$
\begin{cases}\ny_1' = f_1(y_1, \dots, y_n) \\
\vdots \\
y_n' = f_k(y_1, \dots, y_n)\n\end{cases}
$$

is almost C -internal if and only if there are rational functions $g_1, \dots, g_{k-1}, h, h_1, \dots h_{n-k} \in F(x_1, \dots, x_n)$, \mathbb{Q} -linearly independent $\lambda_1, \cdots, \lambda_{k-1} \in F$ with:

$$
\triangleright \sum_{i=1}^n \frac{\partial g_i}{\partial x_i} f_i = d_j g_j \text{ for all } 1 \leq j \leq k-1 \text{ and } \sum_{i=1}^n \frac{\partial h}{\partial x_i} f_i = 1,
$$

 \blacktriangleright the h_j are algebraically independent over F and \sum^{n} $i=1$ ∂h^j $\frac{\partial n_j}{\partial x_i}f_i=0$ for all $1 \leq i \leq n-k$.

or some similar equations if the binding group is $(\mathit{G}_{m})^{k}.$

Orthogonality to the constants

What if they are no rational functions g_i or h_i ? This corresponds to the model-theoretic notion of orthogonality to the constants:

Theorem (Eagles-J.)

The generic type p of the system:

$$
\begin{cases}\ny'_1 = f_1(y_1, \dots, y_n) \\
\vdots \\
y'_n = f_k(y_1, \dots, y_n)\n\end{cases}
$$

is orthogonal to the constants if and only if there are no $g \in F(x_1, \dots, x_n)$ and $\gamma \in F$ such that $\sum_{n=1}^{n}$ $i=1$ ∂g $\frac{\partial g}{\partial x_i}f_i = \gamma g$ or $= \gamma$.

Orthogonality to the constants implies that the generic solutions f_i are not Liouvillian: they cannot be constructed using elementary functions, composition, and integration.

An application: the classic Lotka-Volterra system

The Lotka-Volterra system models predator-prey populations:

 \blacktriangleright x represents the prey population,

 \blacktriangleright y represents the predator population, and is given by:

$$
\begin{cases}\nx' = ax - bxy \\
y' = -cy + dxy\n\end{cases}
$$

For realism, one may ask that a, b, c, d are strictly positive real numbers. We instead pick a, b, c, $d \in C \setminus \{0\}$.

Graphs of (real) solutions

 $\overline{}$

$$
\begin{cases}\nx' = ax - bxy & \text{prey} \\
y' = -cy + dxy & \text{predator}\n\end{cases}
$$

Credit: Ian Alexander (parameters, PNG version) Krishnavedala (vectorisation), from wikipedia.

Mostly not Liouvillian

Theorem (Eagles-J.)

Unless $a = c$, the generic solution of the Lotka-Volterra system:

$$
\begin{cases}\nx' = ax + bxy \\
y' = cy + dxy\n\end{cases}
$$

is not Liouvillian. If $a = c$ it is elementary (proved by Varma [\[3\]](#page-27-0)). Using our theorem, it is enough to show that the partial differential equations (where $\mu = \frac{a}{c}$ $\frac{a}{c}$):

$$
c\frac{\partial g}{\partial x_0}(\mu x_0 + x_0 x_1) + c\frac{\partial g}{\partial x_1}(x_1 + x_0 x_1) = \begin{cases} 0 \\ 1 \\ \lambda g \ (\lambda \in \mathbb{Q}(a, b, c, d)^{\text{alg}} \end{cases}
$$

have no rational solutions. We use Laurent series

Further work

- ▶ add polynomial equations. Issue: The binding group need not be linear anymore. But the Chevalley decomposition should help.
- ▶ work over non constant parameters.
	- ▶ probably not as nice of a result: any algebraic group can appear as a binding group.
	- ▶ hope in low dimension. The case $n = 1$ has essentially been solved by Jaoui-Moosa [\[2\]](#page-27-1). If $n = 2$, we are essentially interested in connected algebraic groups acting on \mathbb{P}^2 , which were classified by Enriques [\[1\]](#page-27-2).
- ▶ can model theory say anything about parametrizations by non-rational functions? For example solutions of $(y''y-(y')^2=0$ are $\{ce^{dx}:c,d\in\mathbb{C}\}$. The generic type is not almost C-internal, essentially because $x \rightarrow e^x$ is not definable in $DCF₀$.

Thank you!

Bibliography

量

Federigo Enriques.

Sui gruppi continui di trasformazioni cremoniane nel piano. Tip. della R. Accademia dei Lincei, 1893.

歸 Rémi Jaoui and Rahim Moosa.

Abelian reduction in differential-algebraic and bimeromorphic geometry.

To appear in Annales de l'Institut Fourier, 2022.

VS Varma.

Exact solutions for a special prey-predator or competing species system.

Bulletin of Mathematical Biology, 39:619–622, 1977.