
A criterion for internality of some differential
equations
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Parametrizing solutions of differential equations

Consider two complex numbers a and b, and the very basic
differential equations:

▶ y ′ = a

▶ y ′ = by

the solution sets can be parametrized as:

▶ {y0 + c , c ∈ C}
▶ {cy1, c ∈ C}

where y0, y1 are particular solutions of the equations. Or even:

▶ {at + c , c ∈ C}
▶ {cebt , c ∈ C}
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Systems of equations
y ′1 = y1

y ′2 = iy2

z ′ = 6

⇒


y1 ∈ {c1et , c1 ∈ C}
y2 ∈ {c2e it , c2 ∈ C}
z ∈ {6t + d , d ∈ C}

Any three solutions are algebraically independent, so we get three
independent parametrizations. Three particular solutions, et , e it

and t, are needed.


y ′1 = 2y1

y ′2 = 4y2

z ′1 = 3

z ′2 = 6

⇒


y1 ∈ {c1e2t , c1 ∈ C}
y2 ∈ {c2e4t , c2 ∈ C} ⇒ y2 =

c2
c21
y21

z1 ∈ {3t + d1, d1 ∈ C}
z2 ∈ {6t + d2, d2 ∈ C} ⇒ z2 = 2z1 + d2 − 2d1

Only two functions, et and t, are needed to parametrize the set of
solutions.
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More complicated example

{
y ′ = yz

y+z

z ′ = − yz
y+z

⇒

{
y ∈ { cex

ex−d , c ∈ C, d ∈ C∗}
z = c − y

So we can still parametrize the solutions as rational functions of
ex , but not in a linear way. This is because this system is in
(non-linear) bijection with a linear system:{

y ′ = yz
y+z

z ′ = − yz
y+z

⇒

{
u = y

z

v = y + z
⇒

{
u′ = u

v ′ = 0
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Our goal

Consider some system of differential equations of the general form:
y ′1 = f1(y1, · · · , yn)
...

y ′n = fn(y1, · · · , yn)

where fi ∈ C(x1, · · · , xn).

What we saw: it is possible for solutions of such a system to be in
rational bijection with solutions of a linear system. In that case, we
obtain a rational parametrization by ”transferring” the linear one.

What we’ll do: the converse is true! If such a system has a
parametrization using rational functions, then it must be in
rational bijection with a linear system.
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How a model theorist thinks about this

We want a convenient structure to work with differential equations.

Bare minimum: differential fields of characteristic zero, i.e. fields
equipped with a differential δ that is additive and satisfies Leibniz’s
rule δ(ab) = δ(a)b + aδ(b). We will often denote δ(a) = a′.

The theory of differential fields of characteristic zero has a model
companion, which is the theory DCF0 of differentially closed fields.

Concretely, this means that if K |= DCF0 and some finite system
of differential (in)equations, defined over some parameters A ⊂ K ,
has a solution in some differential field extension K < L, then it
has a solution in K .

DCF0 has quantifier elimination: any formula is equivalent to a
boolean combination of differential equation and inequations.
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Types in DCF0

It will be more convenient to work with types, instead of definable
sets. Fix some M |= DCF0.

Definition

Given b ∈ M and A ⊂ M, the type of b over A is the set of all
formulas, with parameters in A, that are satisfied by b. We denote
it tp(b/A).
In general, a type p over A is a maximal consistent set of formulas
with parameters in A. We let S(A) be the set of types over A.

By quantifier elimination, tp(b/A) is just the set of differential
equations and inequations, with parameters in A, satisfied by b.
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An important example

We will care about systems of the form:
y ′1 = f1(y1, · · · , yn)
...

y ′n = fn(y1, · · · , yn)

where the fi are rational functions.
Such a system has a generic type p: this is the type of some
a1, · · · , an satisfying these equations, but no other non-trivial
differential equation.

Because the differential equations have order one, this means
simply no polynomial equation.
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Fixing some model

For the rest of the talk, I will fix some monster model U |= DCF0,
or equivalently, a model that is homogeneous and saturated in its
own cardinality.

Concretely, if A ⊂ U and |A| < |U|, then for any p ∈ S(A):

▶ the set of realizations of p in U , i.e. elements of U satisfying
all formulas in p, is non-empty. We denote it p(U), and write
a |= p for a ∈ p(U).

▶ if b ∈ p(U), then p(U) is the orbit of b under the action of
Aut(U/A).

To define what I mean by ”parametrizing”, I need the ∅-definable
set of constants:

C = {x ∈ U , δ(x) = 0}

Thinking C = C is fine.
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Rational parametrization = Internality

F will always be an algebraically closed differential field.

Definition

A type p ∈ S(F ) is C-internal if there are

▶ a1, · · · , an realizations of p

▶ an F -definable function f (x1, · · · , xn, y1, · · · , ym)
such that for all a |= p, there are c1, · · · , cm ∈ C with:

a = f (a1, · · · , an, c1, · · · , cm)

If we replace f with a one-to-finite correspondence, then we say p
is almost C-internal.
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What we want

Question

Is there a criterion to determine whether a type p ∈ S(F ) is almost
C-internal?

We think of types as representing generic solutions of a differential
equations. We will examine systems of the form:

y ′1 = f1(y1, · · · , yn)
...

y ′n = fn(y1, · · · , yn)

where the fi ∈ F (x1, · · · , xn) and F is a field of constants.

A general system may have some polynomial equations between
the yi . We will not deal with this more general case.
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Binding groups

Internal types are structured by the following theorem:

Theorem

If p ∈ S(F ) is C-internal, then the group action of restrictions to
p(U) of automorphisms of U is isomorphic to an F -definable group
action.
It is called the binding group of p, and denoted AutF (p/C).

Moreover, the group AutF (p/C) is definably isomorphic to G (C),
for some algebraic group G .

Key properties:

▶ if AutF (p/C) acts transitively, we say p is weakly
C-orthogonal.

▶ if AutF (p/C) acts freely (i.e. without fixed point), we say p is
fundamental.
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Weakly orthogonal and fundamental

Fact (Kolchin, model-theoretic translation by Jaoui-Moosa)

Let p ∈ S(F ) be a C-internal, weakly C-orthogonal and
fundamental type. Then there is an algebraic group G defined over
F ∩ C such that p is interdefinable (i.e. in F -definable bijection)
with the generic type q of the solution to a full logarithmic
differential equation on G over F .

AutF (p/C) must be definably isomorphic to G (C)

What we can do:

(A) reduce to weakly C-orthogonal and fundamental types

(B) control what G can appear as a binding group

(C) write concrete equations for the solution to a full logarithmic
differential equation

(D) use interdefinability to obtain an explicit condition for
internality
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(B) Linear binding groups are abelian

We will only need the two most basic algebraic groups:

▶ Ga(C) = (C,+),

▶ Gm(C) = (C \ {0}, ·).

Fact

Let F be a field of constants and p ∈ S(F ) be an internal, weakly
C-orthogonal type. If AutF (p/C) is linear, then it is isomorphic to
Gm(C)k × Ga(C)l , where k ∈ N and l ∈ {0, 1}.

The action of the binding group is always faithful, and a faithful
transitive action of an abelian group is always free, i.e. p must be
fundamental!
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(B) The binding group is linear

Consider p the generic type of some system:
y ′1 = f1(y1, · · · , yn)
...

y ′n = fn(y1, · · · , yn)

where the fi ∈ F (x1, · · · , xn) and F is a field of constants.
We see that:

▶ the action of AutF (p/C) is definably isomorphic to some
birational action of an algebraic group G (C) on the affine
space An(C)

▶ algebraic geometry ⇒ the binding group is linear

By the previous slide, if p is weakly C-orthogonal, then AutF (p/C)
is definably isomorphic to Gm(C)k × Ga(C)l for some k ∈ N and
l ∈ {0, 1}.
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(C) Logarithmic differential equations

To summarize: let F be a field of constants, and p ∈ S(F ) be a
C-internal, weakly C-orthogonal type. Then p is interdefinable with
the generic type of a full logarithmic differential equation on
(Gm)

k × (Ga)
l , with k ∈ N and l ∈ {0, 1}.

Such an equation can be expressed by (if l = 1):
z ′1 = λ1z1
...

z ′k = λkzk

z ′k+1 = 1

and fullness is equivalent to the λi being Q-linearly independent.

A dimension argument shows that it’s either (Gm)
n−1 × Ga or

(Gm)
n, i.e. k + 1 = n
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(D) What interdefinability gives
Assume we are in the (Gm)

n−1 × Ga case.


y ′1 = f1(y1, · · · , yn)
...

y ′n = fn(y1, · · · , yn)

F -definable bijection−−−−−−−−−−−−→


z ′1 = λ1z1
...

z ′n−1 = λn−1zn−1

z ′n = 1

By quantifier elimination:
the definable bijection is given by rational maps
g1, · · · , gn−1, h ∈ F (x1, · · · , xn) such that:

g1(y1, · · · , yn)′ = λ1g1(y1, · · · , yn)
...

gn−1(y1, · · · , yn)′ = λn−1gn−1(y1, · · · , yn)
h(y1, · · · , yn)′ = 1
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Main theorem in the weakly orthogonal case

Theorem (Eagles-J.)

Let F be an algebraically closed field of constants, some
f1, · · · fn ∈ F (x1, · · · , xn) and p the generic type of the system:

y ′1 = f1(y1, · · · , yn)
...

y ′n = fk(y1, · · · , yn)

Then p is almost C-internal and weakly C-orthogonal if and only if
there are rational functions g1, · · · , gn−1, h ∈ F (x1, · · · , xn),
Q-linearly independent λ1, · · · , λn−1 ∈ F with:

▶
n∑

i=1

∂gj
∂xi

fi = λjgj for all 1 ≤ j ≤ n − 1,

▶
n∑

i=1

∂h
∂xi

fi = 1.

or some similar equations for the (Gm)
n case.
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What about the non-weakly C-orthogonal case?
Example

The generic type of: {
y ′ = yz

y+z

z ′ = − yz
y+z

is internal, and not weakly C-orthogonal:
(y + z)′ = 0, so y + z ∈ C, which must be fixed by the binding
group ⇒ the binding group does not act transitively.

Non-weak C-orthogonality was witnessed by a definable function
(y , z) → y + z to C. This is true in general:

Lemma

Let F be an algebraically closed field of constants and p ∈ S(F ).
Then there is an F -definable map π : p → π(p) such that
π(p)(U) ⊂ C and for any a |= p, the type tp(a/π(a)F ) is
stationary and weakly C-orthogonal.
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(A) Reducing to weakly C-orthogonal: proof idea

Let F be an algebraically closed field of constants and some
internal type p ∈ S(F ).
Consider the map π from the previous slide, so for any a |= p:

▶ π(a) ∈ C
▶ tp(a/π(a)F ) is stationary and weakly C-orthogonal

Then:

▶ AutF (p/C) is linear ⇒ Autπ(a)F (tp(a/π(a)F )/C) is also linear

▶ tp(a/π(a)F ) is a type over constant parameters. We can
(modulo technicalities) apply our previous theorem to get
rational maps to logarithmic-differential equations on Gm or
Ga

▶ π is also given by rational maps, we can pick them to be
algebraically independent elements of F (x1, · · · , xn)
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Theorem (Eagles-J.)

The generic type p of the system:
y ′1 = f1(y1, · · · , yn)
...

y ′n = fk(y1, · · · , yn)

is almost C-internal if and only if there are rational functions
g1, · · · , gk−1, h,h1, · · · hn−k ∈ F (x1, · · · , xn), Q-linearly
independent λ1, · · · , λk−1 ∈ F with:

▶
n∑

i=1

∂gj
∂xi

fi = djgj for all 1 ≤ j ≤ k − 1 and
n∑

i=1

∂h
∂xi

fi = 1,

▶ the hj are algebraically independent over F and
n∑

i=1

∂hj
∂xi

fi = 0

for all 1 ≤ j ≤ n − k.

or some similar equations if the binding group is (Gm)
k .
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Orthogonality to the constants
What if they are no rational functions gj or hj? This corresponds
to the model-theoretic notion of orthogonality to the constants:

Theorem (Eagles-J.)

The generic type p of the system:
y ′1 = f1(y1, · · · , yn)
...

y ′n = fk(y1, · · · , yn)

is orthogonal to the constants if and only if there are no

g ∈ F (x1, · · · , xn) and γ ∈ F such that
n∑

i=1

∂g
∂xi

fi = γg or = γ.

Orthogonality to the constants implies that the generic solutions fi
are not Liouvillian: they cannot be constructed using elementary
functions, composition, and integration.
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An application: the classic Lotka-Volterra system

The Lotka-Volterra system models predator-prey populations:

▶ x represents the prey population,

▶ y represents the predator population,

and is given by: {
x ′ = ax − bxy

y ′ = −cy + dxy

For realism, one may ask that a, b, c , d are strictly positive real
numbers. We instead pick a, b, c, d ∈ C \ {0}.
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Graphs of (real) solutions{
x ′ = ax − bxy prey

y ′ = −cy + dxy predator

Credit: Ian Alexander (parameters, PNG version) Krishnavedala
(vectorisation), from wikipedia.
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Mostly not Liouvillian

Theorem (Eagles-J.)

Unless a = c , the generic solution of the Lotka-Volterra system:{
x ′ = ax + bxy

y ′ = cy + dxy

is not Liouvillian. If a = c it is elementary (proved by Varma [3]).

Using our theorem, it is enough to show that the partial differential
equations (where µ = a

c ):

c
∂g

∂x0
(µx0 + x0x1)+c

∂g

∂x1
(x1 + x0x1) =


0

1

λg (λ ∈ Q(a, b, c , d)alg)

have no rational solutions. We use Laurent series.
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Further work

▶ add polynomial equations. Issue: The binding group need not
be linear anymore. But the Chevalley decomposition should
help.

▶ work over non constant parameters.
▶ probably not as nice of a result: any algebraic group can

appear as a binding group.
▶ hope in low dimension. The case n = 1 has essentially been

solved by Jaoui-Moosa [2]. If n = 2, we are essentially
interested in connected algebraic groups acting on P2, which
were classified by Enriques [1].

▶ can model theory say anything about parametrizations by
non-rational functions? For example solutions of
y ′′y − (y ′)2 = 0 are {cedx : c, d ∈ C}. The generic type is not
almost C-internal, essentially because x → ex is not definable
in DCF0.
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Thank you!
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