What generic automorphisms of the random poset look like

Dakota Thor Ihli
University of Illinois at Urbana-Champaign

Online Logic Seminar
4 Mar 2021
What are “generic automorphisms”?

Definition

For a Polish group G, an element $g \in G$ is called generic if it lies in a (necessarily unique) comeagre conjugacy class.

If K is a countable (first-order) structure, its automorphism group $\text{Aut}(K)$ is a Polish group with the pointwise convergence topology. Thus, a generic automorphism of K is a generic element of $\text{Aut}(K)$.
What are “generic automorphisms”?

Definition

For a Polish group G, an element $g \in G$ is called **generic** if it lies in a (necessarily unique) comeagre conjugacy class.
What are “generic automorphisms”?

Definition

For a Polish group G, an element $g \in G$ is called *generic* if it lies in a (necessarily unique) comeagre conjugacy class.

If K is a countable (first-order) structure, its automorphism group $\text{Aut}(K)$ is a Polish group with the pointwise convergence topology.
For a Polish group G, an element $g \in G$ is called **generic** if it lies in a (necessarily unique) comeagre conjugacy class.

If K is a countable (first-order) structure, its automorphism group $\text{Aut}(K)$ is a Polish group with the pointwise convergence topology.

Thus, a **generic automorphism** of K is a generic element of $\text{Aut}(K)$.

What structures do we care about here?

Definition
Fix a relational language L, and let K be a countable structure.

- A partial automorphism of K is an isomorphism between substructures of K.
- Let $\text{Aut}^{<\omega}(K)$ denote the set of finite partial automorphisms of K.
- For each $p \in \text{Aut}^{<\omega}(K)$, let $[p]$ denote the set of $f \in \text{Aut}(K)$ extending p.

- K is ultrahomogeneous if every finite partial automorphism of K extends to a (full) automorphism of K.
- Equivalently, if $[p]$ is non-empty for all $p \in \text{Aut}^{<\omega}(K)$.

- If K is a class of L-structures, K is universal for K if every structure in K embeds into K.
What structures do we care about here?

Definition

Fix a relational language L, and let K be a countable structure.

- A partial automorphism of K is an isomorphism between sub-structures of K.
- Let $\text{Aut}_{<\omega}(K)$ denote the set of finite partial automorphisms of K.
- For each $p \in \text{Aut}_{<\omega}(K)$, let $[p]$ denote the set of $f \in \text{Aut}(K)$ extending p.
- K is ultrahomogeneous if every finite partial automorphism of K extends to a (full) automorphism of K.
- Equivalently, if $[p]$ is non-empty for all $p \in \text{Aut}_{<\omega}(K)$.
- If K is a class of L-structures, K is universal for K if every structure in K embeds into K.

What structures do we care about here?

Definition

Fix a relational language L, and let K be a countable structure.

- A **partial automorphism** of K is an isomorphism between substructures of K.

- K is **ultrahomogeneous** if every finite partial automorphism of K extends to a (full) automorphism of K.

- If K is a class of L-structures, K is **universal** for K if every structure in K embeds into K.
What structures do we care about here?

Definition

Fix a relational language L, and let K be a countable structure.

- A **partial automorphism** of K is an isomorphism between substructures of K. Let $\text{Aut}_{<\omega}(K)$ denote the set of finite partial automorphisms of K.

- K is **ultrahomogeneous** if every finite partial automorphism of K extends to a (full) automorphism of K.

- If K is a class of L-structures, K is **universal** for K if every structure in K embeds into K.

What structures do we care about here?

Definition

Fix a relational language L, and let K be a countable structure.

- A **partial automorphism** of K is an isomorphism between substructures of K. Let $\text{Aut}_{<\omega}(K)$ denote the set of finite partial automorphisms of K. For each $p \in \text{Aut}_{<\omega}(K)$, let $[p]$ denote the set of $f \in \text{Aut}(K)$ extending p.

- K is **ultrahomogeneous** if every finite partial automorphism of K extends to a (full) automorphism of K.

- If K is a class of L-structures, K is **universal** for K if every structure in K embeds into K.
What structures do we care about here?

Definition

Fix a relational language L, and let K be a countable structure.

- A **partial automorphism** of K is an isomorphism between substructures of K. Let $\text{Aut}_{<\omega}(K)$ denote the set of finite partial automorphisms of K. For each $p \in \text{Aut}_{<\omega}(K)$, let $[p]$ denote the set of $f \in \text{Aut}(K)$ extending p.

- K is **ultrahomogeneous** if every finite partial automorphism of K extends to a (full) automorphism of K.

What structures do we care about here?

Definition

Fix a relational language L, and let K be a countable structure.

- A **partial automorphism** of K is an isomorphism between sub-structures of K. Let $\text{Aut}_{<\omega}(K)$ denote the set of finite partial automorphisms of K. For each $p \in \text{Aut}_{<\omega}(K)$, let $[p]$ denote the set of $f \in \text{Aut}(K)$ extending p.

- K is **ultrahomogeneous** if every finite partial automorphism of K extends to a (full) automorphism of K. Equivalently, if $[p]$ is non-empty for all $p \in \text{Aut}_{<\omega}(K)$.
What structures do we care about here?

Definition

Fix a relational language L, and let K be a countable structure.

- A **partial automorphism** of K is an isomorphism between substructures of K. Let $\text{Aut}_{<\omega}(K)$ denote the set of finite partial automorphisms of K. For each $p \in \text{Aut}_{<\omega}(K)$, let $[p]$ denote the set of $f \in \text{Aut}(K)$ extending p.

- K is **ultrahomogeneous** if every finite partial automorphism of K extends to a (full) automorphism of K. Equivalently, if $[p]$ is non-empty for all $p \in \text{Aut}_{<\omega}(K)$.

- If \mathcal{R} is a class of L-structures, K is **universal** for \mathcal{R} if every structure in \mathcal{R} embeds into K.

What structures do we care about here?

We are interested in **Fraïssé structures**: ultrahomogeneous countable structures which are universal for a coherent class of finite structures called a **Fraïssé class**.
What structures do we care about here?

We are interested in **Fraïssé structures**: ultrahomogeneous countable structures which are universal for a coherent class of finite structures called a **Fraïssé class**.

Examples

<table>
<thead>
<tr>
<th>Fraïssé class</th>
<th>Fraïssé structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>{finite sets}</td>
<td>{finite linear orders}</td>
</tr>
<tr>
<td>(\mathbb{Q},<)</td>
<td>{finite (undirected) graphs}</td>
</tr>
<tr>
<td>{finite partial orders}</td>
<td>{finite partial orders}</td>
</tr>
</tbody>
</table>
What structures do we care about here?

We are interested in **Fraïssé structures**: ultrahomogeneous countable structures which are universal for a coherent class of finite structures called a **Fraïssé class**.

<table>
<thead>
<tr>
<th>Fraïssé class</th>
<th>Fraïssé structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>{finite sets}</td>
<td></td>
</tr>
</tbody>
</table>
What structures do we care about here?

We are interested in **Fraïssé structures**: ultrahomogeneous countable structures which are universal for a coherent class of finite structures called a **Fraïssé class**.

Examples

<table>
<thead>
<tr>
<th>Fraïssé class</th>
<th>Fraïssé structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>{finite sets}</td>
<td>(\omega)</td>
</tr>
</tbody>
</table>
What structures do we care about here?

We are interested in **Fraïssé structures**: ultrahomogeneous countable structures which are universal for a coherent class of finite structures called a **Fraïssé class**.

<table>
<thead>
<tr>
<th>Fraïssé class</th>
<th>Fraïssé structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>{finite sets}</td>
<td>(\omega)</td>
</tr>
<tr>
<td>{finite linear orders}</td>
<td></td>
</tr>
</tbody>
</table>
What structures do we care about here?

We are interested in **Fraïssé structures**: ultrahomogeneous countable structures which are universal for a coherent class of finite structures called a **Fraïssé class**.

Examples

<table>
<thead>
<tr>
<th>Fraïssé class</th>
<th>Fraïssé structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>{finite sets}</td>
<td>ω</td>
</tr>
<tr>
<td>{finite linear orders}</td>
<td>$(\mathbb{Q}, <)$</td>
</tr>
</tbody>
</table>
We are interested in **Fraïssé structures**: ultrahomogeneous countable structures which are universal for a coherent class of finite structures called a **Fraïssé class**.

Examples

<table>
<thead>
<tr>
<th>Fraïssé class</th>
<th>Fraïssé structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>{finite sets}</td>
<td>(\omega)</td>
</tr>
<tr>
<td>{finite linear orders}</td>
<td>((\mathbb{Q}, <))</td>
</tr>
<tr>
<td>{finite (undirected) graphs}</td>
<td></td>
</tr>
</tbody>
</table>
What structures do we care about here?

We are interested in **Fraïssé structures**: ultrahomogeneous countable structures which are universal for a coherent class of finite structures called a **Fraïssé class**.

Examples

<table>
<thead>
<tr>
<th>Fraïssé class</th>
<th>Fraïssé structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>{finite sets}</td>
<td>ω</td>
</tr>
<tr>
<td>{finite linear orders}</td>
<td>$(\mathbb{Q}, <)$</td>
</tr>
<tr>
<td>{finite (undirected) graphs}</td>
<td>The random graph</td>
</tr>
</tbody>
</table>
What structures do we care about here?

We are interested in **Fraïssé structures**: ultrahomogeneous countable structures which are universal for a coherent class of finite structures called a **Fraïssé class**.

Examples

<table>
<thead>
<tr>
<th>Fraïssé class</th>
<th>Fraïssé structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>{finite sets}</td>
<td>(\omega)</td>
</tr>
<tr>
<td>{finite linear orders}</td>
<td>((\mathbb{Q}, <))</td>
</tr>
<tr>
<td>{finite (undirected) graphs}</td>
<td>The random graph</td>
</tr>
<tr>
<td>{finite partial orders}</td>
<td></td>
</tr>
</tbody>
</table>
What structures do we care about here?

We are interested in **Fraïssé structures**: ultrahomogeneous countable structures which are universal for a coherent class of finite structures called a **Fraïssé class**.

Examples

<table>
<thead>
<tr>
<th>Fraïssé class</th>
<th>Fraïssé structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>{finite sets}</td>
<td>ω</td>
</tr>
<tr>
<td>{finite linear orders}</td>
<td>$(\mathbb{Q}, <)$</td>
</tr>
<tr>
<td>{finite (undirected) graphs}</td>
<td>The random graph</td>
</tr>
<tr>
<td>{finite partial orders}</td>
<td>The random poset</td>
</tr>
</tbody>
</table>
What structures do we care about here?

We are interested in **Fraïssé structures**: ultrahomogeneous countable structures which are universal for a coherent class of finite structures called a **Fraïssé class**.

Examples

<table>
<thead>
<tr>
<th>Fraïssé class</th>
<th>Fraïssé structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>{finite sets}</td>
<td>(\omega)</td>
</tr>
<tr>
<td>{finite linear orders}</td>
<td>((\mathbb{Q},<))</td>
</tr>
<tr>
<td>{finite (undirected) graphs}</td>
<td>The random graph</td>
</tr>
<tr>
<td>{finite partial orders}</td>
<td>The random poset =: P</td>
</tr>
</tbody>
</table>
Their automorphism groups:

Remark All the examples on the previous slide admit generic automorphisms. (That is, their automorphism groups have comeagre conjugacy classes.)

What might generic automorphisms look like? For example:

Theorem (Truss, 1991)

Let $f \in S_\infty$. Then f is generic if and only if:

• f has no infinite orbits;
• For every n, f has infinitely many orbits of length n.

Remark Generic automorphisms of $\langle \mathbb{Q}, < \rangle$ and the random graph admit similar kinds of descriptions.
Their automorphism groups:

Remark

All the examples on the previous slide admit generic automorphisms. (That is, their automorphism groups have comeagre conjugacy classes.)
Their automorphism groups:

Remark

All the examples on the previous slide admit generic automorphisms. (That is, their automorphism groups have comeagre conjugacy classes.)

What might generic automorphisms look like? For example:

Theorem (Truss, 1991)

Let $f \in S_\infty$.
Remark
All the examples on the previous slide admit generic automorphisms. (That is, their automorphism groups have comeagre conjugacy classes.)

What might generic automorphisms look like? For example:

Theorem (Truss, 1991)

Let $f \in S_\infty$. Then f is generic if and only if:
Remark

All the examples on the previous slide admit generic automorphisms. (That is, their automorphism groups have comeagre conjugacy classes.)

What might generic automorphisms look like? For example:

Theorem (Truss, 1991)

Let $f \in S_{\infty}$. Then f is generic if and only if:

- f has no infinite orbits;
Their automorphism groups:

Remark
All the examples on the previous slide admit generic automorphisms. (That is, their automorphism groups have comeagre conjugacy classes.)

What might generic automorphisms look like? For example:

Theorem (Truss, 1991)

Let $f \in S_\infty$. Then f is generic if and only if:

- f has no infinite orbits;
- For every n, f has infinitely many orbits of length n.
Remark

All the examples on the previous slide admit generic automorphisms. (That is, their automorphism groups have comeagre conjugacy classes.)

What might generic automorphisms *look like*? For example:

Theorem (Truss, 1991)

Let \(f \in S_\infty \). Then \(f \) is generic if and only if:

- \(f \) has no infinite orbits;
- For every \(n \), \(f \) has infinitely many orbits of length \(n \).

Remark

Generic automorphisms of \((\mathbb{Q}, <)\) and the random graph admit similar kinds of descriptions.
What about the random poset?

Theorem (Kuske–Truss, 2000)

The random poset \(P \) admits generic automorphisms.
What about the random poset?

Theorem (Kuske–Truss, 2000)

The random poset \mathcal{P} admits generic automorphisms.

Goal

Find an explicit description of generic automorphisms of \mathcal{P}.
Definition
Let (P, \leq) be any poset, and let $f \in \text{Aut}(P)$.

- The **spiral length** of x, denoted $\text{sp}(x, f)$, is the least $n \geq 1$ for which x and $f^n(x)$ are comparable, or ∞ if no such n exists.

- The **parity** of x is given by:

 $$
 \text{par}(x, f) = \begin{cases}
 +1 & \text{if } \text{sp}(x, f) = n < \infty \text{ and } x < f^n(x) \\
 -1 & \text{if } \text{sp}(x, f) = n < \infty \text{ and } x > f^n(x) \\
 0 & \text{otherwise}
 \end{cases}
 $$

 \text{par}(x, f) = \begin{cases}
 +1 & \text{if } \text{sp}(x, f) = n < \infty \text{ and } x < f^n(x) \\
 -1 & \text{if } \text{sp}(x, f) = n < \infty \text{ and } x > f^n(x) \\
 0 & \text{otherwise}
 \end{cases}
 $$
Definition

Let \((P, \prec)\) be any poset, and let \(f \in \text{Aut}(P)\).
Definition

Let \((P, <)\) be any poset, and let \(f \in \text{Aut}(P)\).

- The **spiral length** of \(x\), denoted \(\text{sp}(x, f)\),
Tools for describing automorphisms’ actions

Definition

Let \((P, <)\) be any poset, and let \(f \in \text{Aut}(P)\).

- The **spiral length** of \(x\), denoted \(\text{sp}(x, f)\), is the least \(n \geq 1\) for which \(x\) and \(f^n(x)\) are comparable,
Tools for describing automorphisms’ actions

Definition
Let \((P, <)\) be any poset, and let \(f \in \text{Aut}(P)\).

- The **spiral length** of \(x\), denoted \(\text{sp}(x, f)\), is the least \(n \geq 1\) for which \(x\) and \(f^n(x)\) are comparable, or \(\infty\) if no such \(n\) exists.
Tools for describing automorphisms’ actions

Definition

Let \((P, <)\) be any poset, and let \(f \in \text{Aut}(P)\).

- The **spiral length** of \(x\), denoted \(\text{sp}(x, f)\), is the least \(n \geq 1\) for which \(x\) and \(f^n(x)\) are comparable, or \(\infty\) if no such \(n\) exists.
- The **parity** of \(x\)
Tools for describing automorphisms’ actions

Definition

Let \((P, <)\) be any poset, and let \(f \in \text{Aut}(P)\).

- The **spiral length** of \(x\), denoted \(\text{sp}(x, f)\), is the least \(n \geq 1\) for which \(x\) and \(f^n(x)\) are comparable, or \(\infty\) if no such \(n\) exists.
- The **parity** of \(x\) is given by:

\[
\text{par}(x, f) := \begin{cases}
+1 & \text{if } \text{sp}(x, f) = n < \infty \text{ and } x < f^n(x); \\
-1 & \text{if } \text{sp}(x, f) = n < \infty \text{ and } x > f^n(x); \\
0 & \text{otherwise.}
\end{cases}
\]
Tools for describing automorphisms’ actions

Example: suppose $\text{sp}(x, f) = 3$ and $\text{par}(x, f) = +1$.

\[
\begin{array}{ccc}
 f^3(x) & f(x) & f^2(x) \\
 x & f(x) & f^2(x)
\end{array}
\]
Example: suppose $sp(x, f) = 3$ and $par(x, f) = +1$. Since f is an automorphism, $f^k(x) < f^{k+3}(x)$ for all $k \in \mathbb{Z}$.
Tools for describing automorphisms' actions

Example: Suppose \(\text{sp}(x, f) = 3 \) and \(\text{par}(x, f) = +1 \).
Since \(f \) is an automorphism, \(f^k(x) < f^{k+3}(x) \) for all \(k \in \mathbb{Z} \).
This breaks the orbit \(f^\mathbb{Z}(x) \) into "rails".
Tools for describing automorphisms’ actions

Example: suppose \(\text{sp} (x, f) = 3 \) and \(\text{par} (x, f) = +1 \).

Since \(f \) is an automorphism, \(f^k (x) < f^{k+3} (x) \) for all \(k \in \mathbb{Z} \).

This breaks the orbit \(f^\mathbb{Z} (x) \) into “rails”, but there may be other relations too.
Tools for describing automorphisms’ actions

Example: suppose $\text{sp}(x, f) = 3$ and $\text{par}(x, f) = +1$.

Since f is an automorphism, $f^k(x) < f^{k+3}(x)$ for all $k \in \mathbb{Z}$.

This breaks the orbit $f^\mathbb{Z}(x)$ into “rails”, but there may be other relations too.
More tools for describing automorphisms’ actions

Definition

Let \((P, <)\) be any poset, and let \(f \in \text{Aut}(P)\).

- Define
 \(x \sim f y \iff \exists i, j \in \mathbb{Z} \left(f^i(x) \leq y \leq f^j(x) \right) \).

- \(\sim_f\) is an equivalence relation.

Let the quotient map be denoted by
\(O_f : P \to P/\sim_f\).

- The equivalence classes \(O_f(x)\) are called orbitals.

- The quotient \(O_f[P]\) is called the orbital quotient.
More tools for describing automorphisms’ actions

Definition

Let \((P, <)\) be any poset, and let \(f \in \text{Aut}(P)\).

- Define \(x \sim_f y \iff \exists i, j \in \mathbb{Z} (f^i(x) \leq y \leq f^j(x))\).
More tools for describing automorphisms’ actions

Definition
Let \((P, <)\) be any poset, and let \(f \in \text{Aut}(P)\).

- Define \(x \sim_f y \iff \exists i, j \in \mathbb{Z} \ (f^i(x) \leq y \leq f^j(x))\).
- \(\sim_f\) is an equivalence relation.
- The quotient \(O_f : P \to P/\sim_f\) is called the orbital quotient.
Definition

Let \((P, <)\) be any poset, and let \(f \in \text{Aut}(P)\).

- Define \(x \sim_f y \iff \exists i, j \in \mathbb{Z} (f^i(x) \leq y \leq f^j(x))\).
- \(\sim_f\) is an equivalence relation. Let the quotient map be denoted by \(\mathcal{O}_f : P \to P / \sim_f\).
More tools for describing automorphisms’ actions

Definition

Let \((P, <)\) be any poset, and let \(f \in \text{Aut}(P)\).

- Define \(x \sim_f y \iff \exists i, j \in \mathbb{Z} \left(f^i(x) \leq y \leq f^j(x) \right) \).
- \(\sim_f\) is an equivalence relation. Let the quotient map be denoted by \(\mathcal{O}_f : P \rightarrow P/\sim_f\).
- The equivalence classes \(\mathcal{O}_f(x)\) are called **orbitals**.
More tools for describing automorphisms’ actions

Definition

Let \((P, <)\) be any poset, and let \(f \in \text{Aut}(P)\).

- Define \(x \sim_f y \overset{\text{def}}{\iff} \exists i, j \in \mathbb{Z} \ (f^i(x) \leq y \leq f^j(x))\).
- \(\sim_f\) is an equivalence relation. Let the quotient map be denoted by \(\mathcal{O}_f : P \to P/\sim_f\).
- The equivalence classes \(\mathcal{O}_f(x)\) are called orbitals.
- The quotient \(\mathcal{O}_f[P]\) is called the orbital quotient.
More tools for describing automorphisms’ actions

Orbitals are the “convex hulls” of orbits.
More tools for describing automorphisms’ actions

Orbitals are the “convex hulls” of orbits.
More tools for describing automorphisms’ actions

Facts

- $f(Z(x)) \subseteq O(f(x))$, and equality holds whenever $\text{par}(x, f) = 0$.
- Parity is orbital-invariant; that is, $x \sim f(y)$ implies $\text{par}(x, f) = \text{par}(y, f)$.
- Spiral length need not be orbital-invariant (unless $\text{par}(x, f) = 0$).
More tools for describing automorphisms’ actions

Facts

• $f^\mathbb{Z}(x) \subseteq O_f(x)$, and equality holds whenever $\text{par}(x, f) = 0$.

Parity is orbital-invariant; that is, $x \sim_f y$ implies $\text{par}(x, f) = \text{par}(y, f)$.

Spiral length need not be orbital-invariant (unless $\text{par}(x, f) = 0$).
More tools for describing automorphisms’ actions

Facts

- \(f^\mathbb{Z} (x) \subseteq O_f (x) \), and equality holds whenever \(\text{par} (x, f) = 0 \).
- Parity is orbital-invariant; that is, \(x \sim_f y \) implies \(\text{par} (x, f) = \text{par} (y, f) \).
More tools for describing automorphisms’ actions

Facts

- \(f^\mathbb{Z} (x) \subseteq O_f (x) \), and equality holds whenever \(\text{par} (x, f) = 0 \).
- Parity is orbital-invariant; that is, \(x \sim_f y \) implies \(\text{par} (x, f) = \text{par} (y, f) \).
- Spiral length need not be orbital-invariant (unless \(\text{par} (x, f) = 0 \)).
Example in \mathbb{Q}:

Let $f(x) := \begin{cases} 2x + 3 & x \leq -2, \\ \frac{x}{2} & -2 \leq x \leq 2, \\ 2x - 3 & 2 \leq x. \end{cases}$
Example in \(\mathbb{Q} \):

Let \(f(x) := \begin{cases}
2x + 3 & x \leq -2, \\
\frac{x}{2} & -2 \leq x \leq 2, \\
2x - 3 & 2 \leq x.
\end{cases} \)

Then there are seven orbitals: three of parity 0, two each of parity \(-1\) and \(+1\).
Orbitals inherit order structure from P!

Definition

Define two orders on $\mathcal{O}_f [P]$ — one strong and one weak:

- $\mathcal{O}_f (x) < s f \mathcal{O}_f (y) \iff x' < y'$ for all $x' \sim_f x$ and $y' \sim_f y$.
- $\mathcal{O}_f (x) \leq w f \mathcal{O}_f (y) \iff x' \leq y'$ for some $x' \sim_f x$ and $y' \sim_f y$.

Remark

If P is linearly ordered, these orders agree and are linear orders themselves.
Orbitals inherit order structure from \mathbf{P}!

Definition

Define two orders on $\mathcal{O}_f [\mathbf{P}]$ — one **strong** and one weak:

$$\mathcal{O}_f (x) \lesssim^s_{f} \mathcal{O}_f (y) \iff x' < y' \text{ for all } x' \sim_f x \text{ and } y' \sim_f y,$$

$$\mathcal{O}_f (x) \lesssim^w_{f} \mathcal{O}_f (y) \iff x' \leq y' \text{ for some } x' \sim_f x \text{ and } y' \sim_f y.$$
Orbitals inherit order structure from P!

Definition

Define two orders on $O_f[P]$ — one strong and one weak:

$$O_f(x) <^s_f O_f(y) \iff x' < y' \text{ for all } x' \sim_f x \text{ and } y' \sim_f y,$$

$$O_f(x) \leq^w_f O_f(y) \iff x' \leq y' \text{ for some } x' \sim_f x \text{ and } y' \sim_f y.$$
Orbitals inherit order structure from P!

Definition

Define two orders on $O_f [P]$ — one **strong** and one **weak**:

$$O_f (x) <_f O_f (y) \overset{\text{def}}{\iff} x' < y' \text{ for all } x' \sim_f x \text{ and } y' \sim_f y,$$

$$O_f (x) \leq_w O_f (y) \overset{\text{def}}{\iff} x' \leq y' \text{ for some } x' \sim_f x \text{ and } y' \sim_f y.$$

Remark

If P is linearly ordered, these orders agree and are linear orders themselves.
Theorem (Truss, 1991)

Let $f \in \text{Aut}(Q)$. Then f is generic if and only if $O_f[Q] \sim = Q$, and for each $\sigma \in \{+1, -1, 0\}$, the set of orbitals of parity σ is dense in $O_f[Q]$.

Question

Is an analogous statement true for P?

Answer

Partially.
Using orbitals to characterize generics

Theorem (Truss, 1991)

Let $f \in \text{Aut}(\mathbb{Q})$.

Question
Is an analogous statement true for \mathbb{P}?

Answer
Partially.
Theorem (Truss, 1991)

Let \(f \in \text{Aut}(\mathbb{Q}) \). Then \(f \) is generic if and only if \(\mathcal{O}_f[\mathbb{Q}] \cong \mathbb{Q} \).
Theorem (Truss, 1991)

Let $f \in \text{Aut}(\mathbb{Q})$. Then f is generic if and only if $O_f[\mathbb{Q}] \cong \mathbb{Q}$, and for each $\sigma \in \{+1, -1, 0\}$, the set of orbitals of parity σ is dense in $O_f[\mathbb{Q}]$.

Question

Is an analogous statement true for P?

Answer

Partially.
Using orbitals to characterize generics

Theorem (Truss, 1991)

Let \(f \in \text{Aut}(\mathbb{Q}) \). Then \(f \) is generic if and only if \(O_f[\mathbb{Q}] \cong \mathbb{Q} \), and for each \(\sigma \in \{+1, -1, 0\} \), the set of orbitals of parity \(\sigma \) is dense in \(O_f[\mathbb{Q}] \).

Question

Is an analogous statement true for \(\mathbb{P} \)?
Using orbitals to characterize generics

Theorem (Truss, 1991)

Let $f \in \text{Aut}(\mathbb{Q})$. Then f is generic if and only if $O_f[\mathbb{Q}] \cong \mathbb{Q}$, and for each $\sigma \in \{+1, -1, 0\}$, the set of orbitals of parity σ is dense in $O_f[\mathbb{Q}]$.

Question

Is an analogous statement true for \mathbb{P}?

Answer

Partially.
Using orbitals to characterize generics of Aut (P)?

Theorem (I., 2020)

If $f \in \text{Aut} (\mathbf{P})$ is generic, then

$$(O_f[\mathbf{P}], <) \sim = \mathbf{P}.$$

Moreover, the following sets are dense in $(O_f[\mathbf{P}], <)$:

- $\{O_f(x) : \text{par}(x, f) = +1\}$
- $\{O_f(x) : \text{par}(x, f) = -1\}$
- $\{O_f(x) : \text{par}(x, f) = 0, \text{sp}(x, f) = n\}$
for each $1 \leq n \leq \infty$.

Remark This is a partial answer to our goal because we do not know if the converse holds: whether this property implies genericity.
Using orbitals to characterize generics of $\text{Aut}(P)$?

Theorem (I., 2020)

If $f \in \text{Aut}(P)$ is generic,

$$(O_f[P], <_f) \sim P.$$

Moreover, the following sets are dense in $(O_f[P], <_f)$:

1. \{ $O_f(x) : \text{par}(x, f) = +1$ \}
2. \{ $O_f(x) : \text{par}(x, f) = -1$ \}
3. \{ $O_f(x) : \text{par}(x, f) = 0, \text{sp}(x, f) = n$ \} for each $1 \leq n \leq \infty$.

Remark

This is a partial answer to our goal because we do not know if the converse holds: whether this property implies genericity.
Using orbitals to characterize generics of $\text{Aut}(P)$?

Theorem (I., 2020)

If $f \in \text{Aut}(P)$ is generic, then $(\mathcal{O}_f[P], \prec_f) \cong P$. Moreover, the following sets are dense in $(\mathcal{O}_f[P], \prec_f)$:

- $\{\mathcal{O}_f(x) : \text{par}(x, f) = +1\}$
- $\{\mathcal{O}_f(x) : \text{par}(x, f) = -1\}$
- $\{\mathcal{O}_f(x) : \text{par}(x, f) = 0, sp(x, f) = n\}$ for each $1 \leq n \leq \infty$.

Remark

This is a partial answer to our goal because we do not know if the converse holds: whether this property implies genericity.
Using orbitals to characterize generics of $\text{Aut}(\mathbf{P})$?

Theorem (I., 2020)

If $f \in \text{Aut}(\mathbf{P})$ is generic, then $(\mathcal{O}_f[\mathbf{P}], <_f^s) \cong \mathbf{P}$. Moreover, the following sets are dense in $(\mathcal{O}_f[\mathbf{P}], <_f^s)$:

$$\{ \mathcal{O}_f(x) : \text{par}(x, f) = +1 \} ;$$

$$\{ \mathcal{O}_f(x) : \text{par}(x, f) = -1 \} ;$$

$$\{ \mathcal{O}_f(x) : \text{par}(x, f) = 0, \text{sp}(x, f) = n \} \text{ for each } 1 \leq n \leq \infty.$$
Using orbitals to characterize generics of $\text{Aut} (\mathbb{P})$?

Theorem (I., 2020)

If $f \in \text{Aut} (\mathbb{P})$ is generic, then $(\mathcal{O}_f [\mathbb{P}], <^s_f) \cong \mathbb{P}$. Moreover, the following sets are dense in $(\mathcal{O}_f [\mathbb{P}], <^s_f)$:

- $\{ \mathcal{O}_f (x) : \text{par} (x, f) = +1 \}$;
- $\{ \mathcal{O}_f (x) : \text{par} (x, f) = -1 \}$;
- $\{ \mathcal{O}_f (x) : \text{par} (x, f) = 0, \text{sp} (x, f) = n \}$ for each $1 \leq n \leq \infty$.

Remark

This is a partial answer to our goal because we do not know if the converse holds: whether this property implies genericity.
Note

Equip \mathbf{P} with a relation symbol for the graph of a unary function, and consider the resulting structures (\mathbf{P}, f) and (\mathbf{P}, g) for $f, g \in \text{Aut}(\mathbf{P})$. Then f and g are conjugate iff $(\mathbf{P}, f) \cong (\mathbf{P}, g)$.

Question: Can we study this structure to describe the conjugacy relation on $\text{Aut}(\mathbf{P})$?

Answer: Yes and no. Finite substructures in this language don't "remember" enough.
A different tactic

Note

Equip \mathbf{P} with a relation symbol for the graph of a unary function, and consider the resulting structures (\mathbf{P}, f) and (\mathbf{P}, g) for $f, g \in \text{Aut}(\mathbf{P})$. Then f and g are conjugate iff $(\mathbf{P}, f) \cong (\mathbf{P}, g)$.

Question

Can we study this structure to describe the conjugacy relation on $\text{Aut}(\mathbf{P})$?

Answer

Yes and no. Finite substructures in this language don’t “remember” enough.
A different tactic

Note

Equip \(P \) with a relation symbol for the graph of a unary function, and consider the resulting structures \((P, f)\) and \((P, g)\) for \(f, g \in \text{Aut}(P) \). Then \(f \) and \(g \) are conjugate iff \((P, f) \cong (P, g)\).

Question

Can we study this structure to describe the conjugacy relation on \(\text{Aut}(P) \)?
A different tactic

Note

Equip \(P \) with a relation symbol for the graph of a unary function, and consider the resulting structures \((P, f)\) and \((P, g)\) for \(f, g \in \text{Aut}(P) \). Then \(f \) and \(g \) are conjugate iff \((P, f) \cong (P, g)\).

Question

Can we study this structure to describe the conjugacy relation on \(\text{Aut}(P) \)?

Answer

Yes and no.
A different tactic

Note
Equip \mathbf{P} with a relation symbol for the graph of a unary function, and consider the resulting structures (\mathbf{P}, f) and (\mathbf{P}, g) for $f, g \in \text{Aut}(\mathbf{P})$. Then f and g are conjugate iff $(\mathbf{P}, f) \cong (\mathbf{P}, g)$.

Question
Can we study this structure to describe the conjugacy relation on $\text{Aut}(\mathbf{P})$?

Answer
Yes and no. Finite substructures in this language don’t “remember” enough.
A first-order language

Definition

• Let L be the language consisting of binary relations b_i, for $i \in \mathbb{Z}$.

• For each poset P and each $f \in \text{Aut}(P)$, let P^f be the L-structure obtained by letting:

 $b^f_i(x, y) \iff x \leq f_i(y)$.

• We identify $b^f_i(x, y)$ with its truth value in $\{0, 1\}$, and we consider the bi-infinite sequence $b^f(x, y) \in 2^\mathbb{Z}$.

Remark: $P^f \sim P^g$ iff f and g are conjugate in $\text{Aut}(P)$.

But also, since L is infinite, finite substructures can encode a lot more information.
A first-order language

Definition

- Let L be the language consisting of binary relations b_i, for $i \in \mathbb{Z}$.
Definition

- Let \(L \) be the language consisting of binary relations \(b_i \), for \(i \in \mathbb{Z} \).
- For each poset \(P \) and each \(f \in \text{Aut}(P) \), let \(P_f \) be the \(L \)-structure obtained by letting:

\[
b^f_i (x, y) \overset{\text{def}}{\iff} x \leq f^i (y).
\]
A first-order language

Definition

• Let L be the language consisting of binary relations b_i, for $i \in \mathbb{Z}$.

• For each poset P and each $f \in \text{Aut}(P)$, let P_f be the L-structure obtained by letting:

$$b^f_i(x, y) \overset{\text{def}}{=} x \leq f^i(y).$$

• We identify $b^f_i(x, y)$ with its truth value in $\{0, 1\}$, and we consider the bi-infinite sequence $b^f(x, y) \in 2^\mathbb{Z}$.

Remark $P_f \sim = P_g$ iff f and g are conjugate in $\text{Aut}(P)$. But also, since L is infinite, finite substructures can encode a lot more information.
A first-order language

Definition

- Let L be the language consisting of binary relations b_i, for $i \in \mathbb{Z}$.
- For each poset P and each $f \in \text{Aut}(P)$, let P_f be the L-structure obtained by letting:

$$b_i^f (x, y) \overset{\text{def}}{\iff} x \leq f^i (y).$$

- We identify $b_i^f (x, y)$ with its truth value in $\{0, 1\}$, and we consider the bi-infinite sequence $b^f (x, y) \in 2^\mathbb{Z}$.

Remark

$P_f \cong P_g$ iff f and g are conjugate in $\text{Aut}(P)$.
A first-order language

Definition

- Let L be the language consisting of binary relations b_i, for $i \in \mathbb{Z}$.
- For each poset P and each $f \in \text{Aut}(P)$, let P_f be the L-structure obtained by letting:
 \[b^f_i(x, y) \overset{\text{def}}{\iff} x \leq f^i(y). \]
- We identify $b^f_i(x, y)$ with its truth value in $\{0, 1\}$, and we consider the bi-infinite sequence $b^f(x, y) \in 2^\mathbb{Z}$.

Remark

$P_f \cong P_g$ iff f and g are conjugate in $\text{Aut}(P)$. But also, since L is infinite, finite substructures can encode a lot more information.
How to control b^f sequences

Remark

Controlling behavior of b^f sequences with finitary configurations is the name of the game here.
Remark

Controlling behavior of b^f sequences with finitary configurations is the name of the game here.

Example

Suppose the following is a substructure of P:

![Diagram](image_url)

Let $p := \{ (y, y'), (z, z') \} \in \text{Aut}^{<\omega}(P)$. Then $\text{sp}(x, f) = \infty$ for every $f \in [p]$, and so $b^f_i(x, x) = 0$ for all $i \neq 0$.
How to control b^f sequences

Remark

Controlling behavior of b^f sequences with finitary configurations is the name of the game here.

Example

Suppose the following is a substructure of P:

```
   y'    z
   /\    /\  \
  y    x  z'
```

Let $p := \{(y, y'), (z, z')\} \in \text{Aut}_{<\omega}(P)$.

How to control b^f sequences

Remark

Controlling behavior of b^f sequences with finitary configurations is the name of the game here.

Example

Suppose the following is a substructure of P:

```
     y'
    /  \
   /    \
  y     x
    \
     z
    \
   /  \
  z'   
```

Let $p := \{(y, y'), (z, z')\} \in \text{Aut}_{<\omega}(P)$. Then $sp(x, f) = \infty$ for every $f \in [p]$, and so $b_i^f(x, x) = 0$ for all $i \neq 0$.
What generic automorphisms of the random poset look like

Theorem (I., 2020)

Let $f \in \text{Aut}(P)$. Then f is generic iff the following hold:

(A) f has dense conjugacy class;
(B) Pf is ultrahomogeneous (as an L-structure);
(C) $b_{f}(x, x)$ is eventually constant on both sides whenever $\text{par}(x, f) \neq 0$;
(D) A technical condition — illustrated on the next slide — that forces $b_{f}(x, y)$ to be eventually periodic on both sides for all $x, y \in P$.
What generic automorphisms of the random poset look like

Theorem (I., 2020)

Let $f \in \text{Aut}(\mathcal{P})$. Then f is generic iff the following hold:

(A) f has dense conjugacy class;

(B) \mathcal{P}^f is ultrahomogeneous (as an L-structure);

(C) $b^f(x, x)$ is eventually constant on both sides whenever $\text{par}(x, f(x)) \neq 0$;

(D) A technical condition — illustrated on the next slide — that forces $b^f(x, y)$ to be eventually periodic on both sides for all $x, y \in \mathcal{P}$.
What generic automorphisms of the random poset look like

Theorem (I., 2020)

Let \(f \in \text{Aut}(P) \). Then \(f \) is generic iff the following hold:

(A) \(f \) has dense conjugacy class;
What generic automorphisms of the random poset look like

Theorem (I., 2020)

Let $f \in \text{Aut}(P)$. Then f is generic iff the following hold:

(A) f has dense conjugacy class;
(B) P_f is ultrahomogeneous (as an L-structure);
What generic automorphisms of the random poset look like

Theorem (I., 2020)

Let $f \in \text{Aut}(\mathbf{P})$. Then f is generic iff the following hold:

(A) f has dense conjugacy class;
(B) \mathbf{P}_f is ultrahomogeneous (as an L-structure);
(C) $b^f(x, x)$ is eventually constant on both sides whenever $\text{par}(x, f) \neq 0$;
What generic automorphisms of the random poset look like

Theorem (I., 2020)

Let $f \in Aut(P)$. Then f is generic iff the following hold:

(A) f has dense conjugacy class;

(B) P_f is ultrahomogeneous (as an L-structure);

(C) $b^f(x, x)$ is eventually constant on both sides whenever $par(x, f) \neq 0$;

(D) A technical condition — illustrated on the next slide — that forces $b^f(x, y)$ to be eventually periodic on both sides for all $x, y \in P$.
Let $x, y \in P$ such that $\text{sp} (x, f) = \infty$ and $y \notin f^\mathbb{Z} (x)$.
(...what’s with condition (D)?)

Let \(x, y \in P \) such that \(\text{sp} (x, f) = \infty \) and \(y \notin f^\mathbb{Z} (x) \). (D) asserts there is some chunk of \(f^\mathbb{Z} (x) \) ...
(...what’s with condition (D)?)

Let $x, y \in \mathbb{P}$ such that $\text{sp}(x, f) = \infty$ and $y \notin f^\mathbb{Z}(x)$. (D) asserts there is some chunk of $f^\mathbb{Z}(x)$... where this configuration exists.
Remark

We hoped model theory might be able to help, but there are some notable complications.

Facts

Suppose $f \in \text{Aut}(P)$ is generic.

- The L-theory of P_f is not ω-categorical.
- P_f is not ω-saturated.
- The relation $\text{sp}(x, f) = \infty$ is definable in P_f, but not quantifier-freely.

Thus, the L-theory of P_f does not have QE.
Remark

We hoped model theory might be able to help, but there are some notable complications.
Remark

We hoped model theory might be able to help, but there are some notable complications.

Facts

Suppose $f \in \text{Aut}(\mathbf{P})$ is generic.
Remark

We hoped model theory might be able to help, but there are some notable complications.

Facts

Suppose $f \in \text{Aut}(P)$ is generic.

- The L-theory of P_f is not ω-categorical.
Remark
We hoped model theory might be able to help, but there are some notable complications.

Facts
Suppose $f \in \text{Aut}(P)$ is generic.
- The L-theory of P_f is not ω-categorical.
- P_f is not ω-saturated.
Remark

We hoped model theory might be able to help, but there are some notable complications.

Facts

Suppose \(f \in \text{Aut}(P) \) is generic.

- The \(L \)-theory of \(P_f \) is not \(\omega \)-categorical.
- \(P_f \) is not \(\omega \)-saturated.
- The relation \(\text{sp}(x, f) = \infty \) is definable in \(P_f \), but not quantifier-freely.
Remark

We hoped model theory might be able to help, but there are some notable complications.

Facts

Suppose $f \in \text{Aut}(\mathbf{P})$ is generic.

- The L-theory of \mathbf{P}_f is not ω-categorical.
- \mathbf{P}_f is not ω-saturated.
- The relation $\text{sp}(x, f) = \infty$ is definable in \mathbf{P}_f, but not quantifier-freely. Thus, the L-theory of \mathbf{P}_f does not have QE.
Tack så mycket!